The codedescribe and codelisting Packages
Version 1.18

Alceu Frigeri*

November 2025

Abstract

This package is designed to be as class independent as possible, depending only
on expl3, scontents, listing, xpeekahead and pifont. Unlike other packages of the
kind, a minimal set of macros/commands/environments is defined: most/all defined
commands have an “object type” as a keyval parameter, allowing for an easy expansion
mechanism (instead of the usual “one set of macros/environments” for each object
type).

No assumption is made about page layout (besides “having a marginpar”), or un-
derlying macros, so it should be possible to use these with any/most document classes.

Contents
1 Introduction 1
1.1 Single versus Multi-column Classes 2
1.2 Current Version 2
2 codelisting Package 2
2.1 Package Options L 2
2.2 In Memory Code Storage 3
2.3 Code Display/Demo 3
2.3.1 CodeKeys 4
3 codedescribe Package 6
3.1 Package Options 6
3.2 Object Typekeys o e 6
3.2.1 Format Keys e 6
3.2.2 Format Groups 7
3.2.3 Object Types o o e 7
3.2.4 Customization 7
3.3 Locale e 8
3.4 Environments e 9
3.5 Typeset Commands e 10
3.6 Note/Remark Commands 11
3.7 Auxiliary Commands and Environment 11
4 codelstlang Package 12

1 Introduction

This package aims to document both Document level (i.e. final user) commands, as well
Package/Class level commands. It’s fully implemented using expl3 syntax and structures,
in special 13coffins, 13seq and 13keys. Besides those scontents and listing packages (see
[1] and [2]) are used to typeset code snippets. The package pifont is needed just to typeset
those (open)stars, in case one wants to mark a command as (restricted) expandable.

*https://github.com/alceu-frigeri/codedescribe

load xtra dialects

TeX dialects

No other package/class is needed, and it should be possible to use these packages with
most classes!, which allows to demonstrate document commands with any desired layout.

codelisting defines a few macros to display and demonstrate ITEX code (using listings
and scontents), codedescribe defines a series of macros to display/enumerate macros and
environments (somewhat resembling the doc3 style), and codelstlang defines a series of
listings TeX dialects.

1.1 Single versus Multi-column Classes

This package “can” be used with multi-column classes, given that the \linewidth and
\columnsep are defined appropriately. \linewidth shall defaults to text/column real width,
whilst \columnsep, if needed (2 or more columns) shall be greater than \marginparwidth plus

\marginparsep.

1.2 Current Version

All packages (codedescribe, codelisting, codelstlang and codedescsets) share the same ver-
sion, currently: 1.18. Those packages are fairly stable, and given the (obj-type) mechanism
(see 3.2) they can be easily extended without changing their interface.

2 codelisting Package

It requires two packages: listings and scontents, defines an environment: codestore, a few
commands for listing/demo code: \tscode, \tsmergedcode, \tsdemo, \tsresult and \tsexec
and 2 auxiliary commands: \setcodekeys and \setnewcodekey.

2.1 Package Options
The following options are also codedescribe options, see 3.1.

(defaults to false) If set, it will load the auxiliary package codelstlang (see 4), which just
defines a series of listings TeX dialects.

This will set which Iistings TeX dialects will be used when defining the listing style
codestyle. It defaults to doctools, which is derived from the [LaTeX]TeX dialect (this
contains the same set of commands used by the package doctools). One can use any valid
(TeX derived) 1istings dialect, including user defined ones, see [2] for details.

Besides those, one can use (if the load xtra dialects is set): 13kernelsign, 13expsign,
13amssign, 13pgfsign, 13bibtexsign, 13kernel, 13exp, 13ams, 13pgf, 13bibtex, kernel, xpacks,
ams, pgf, pgfplots, bibtex, babel and hyperref. See 4 for details on those dialects.

Note: TeX dialects is a comma separated list of the dialect’s name, without
the base language (internally it will be converted to [dialect]TeX).

For example:
%% could be \usepackagel...]{codelisting}

\usepackage[load xtra dialects,
TeX dialects={doctools,l3kernel,l3ams}]{codedescribe}

Yy
%% assuming the user has defined a dialect, named: [my-own-set]TeX
W
\usepackage [TeX dialects={doctools,my-own-set}]{codedescribe}
Wt

Lf, by chance, a class with compatibility issues is found, just open an issue at https://github.com/
alceu-frigeri/codedescribe/issues to see what can be done

https://github.com/alceu-frigeri/codedescribe/issues
https://github.com/alceu-frigeri/codedescribe/issues

2.2 In Memory Code Storage

Thanks to scontents (expl3 based) it’s possible to store IMTEX code snippets in a expl3
sequence variable.

codestore \begin{codestore} [(stcontents-keys)]
\end{codestore}

This environment is an alias to scontents environment (from scontents package, see [1]),
all scontents keys are valid, with two additional ones: st and store-at which are aliases
to the store-env key. If an “isolated” (st-name) is given (unknown key), it is assumed that
the environment body shall be stored in it (for use with \tscode, \tsmergedcode, \tsdemo,
\tsresult and \tsexec).

Note: From scontents, (st-name) is (index)ed (The code is stored in a se-
quence variable). It is possible to store as many code snippets as needed under
the same name. The first one will be (index)— 1, the second 2, and so on.

Warning: If explicitly using one of the store-env, st or store-at keys, the
storage name can be anything. BUT, due to changes (August 2025) in the latex
kernel keys processing, if an implicity key is used, then colons (:), besides a
comma and equal signs, aren’t allowed.

ETEX Code:

%The code will be stored as 'store:A'
\begin{codestore} [store-env = store:A]

\end{codestore}

%Same
\begin{codestore}[st = store:A]

\end{codestore}

%The code will be stored as 'storeA'
\begin{codestorel} [storeA]

\end{codestore}
%This might raises an error.
%It will be stored as 'store' (not as 'store:A')

\begin{codestore} [store:A]

\end{codestore}

2.3 Code Display/Demo

\tscodex* \tscode* [(code-keys)] {(st-name)} [(index)]
\tsdemo* \tsdemo* [(code-keys)] {(st-name)} [(index)]
\tsresult* \tsresult* [(code-keys)] {(st-name)} [(index)]

updated: 2024/01/06 \tscode* just typesets (st-name) (created with codestore) verbatim with syntax highlight
updated: 2025/04/29 . . .
(from 1istings package [2]). The non-star version centers it and use just half of the base
line. The star version uses the full text width.
\tsdemo* first typesets (st-name), as above, then ezecutes it. The non-start version place
them side-by-side, whilst the star version places one following the other.
(new 2024/01/06) \tsresult* only ezecutes it. The non-start version centers it and use just
half of the base line, whilst the star version uses the full text width.

Note: (from stcontents package) (index) can be from 1 up to the number of
stored codes under the same (st-name). Defaults to 1.

Note: All are executed in a local group which is discarded at the end. This
is to avoid unwanted side effects, but might disrupt code execution that, for
instance, depends on local variables being set. That for, see \tsexec below.

For Example:

\tsmergedcode*

new:

2025/04/29

\tsexec

new:

2025/04/29

\setcodekeys

\setnewcodekey

new:

2025/05/01

Iststyle

new:

2025/11/22

ETEX Code:

\begin{codestore} [stmetal

Some \LaTeX{} coding, for example: \ldots.
\end{codestore}
This will just typesets \tsobj[key]{stmeta}:
\tscode* [codeprefix={Sample Code:}] {stmeta}
and this will demonstrate it, side by side with source code:
\tsdemo [numbers=left,ruleht=0.5,

codeprefix={inner sample code}l,

resultprefix={inner sample result}] {stmeta}

ETEX Result:

This will just typesets stmeta:

Sample Code:
Some \LaTeX{} coding, for example: \ldots.

and this will demonstrate it, side by side with source code:

inner sample code inner sample result

Some \LaTeX{} coding, for example: \ldots. Some]_A’IEX coding, for example:

\tsmergedcode* [(code-keys)] {(st-name-index list)}

This will typeset (as \tscode) the merged contents from (st-name-index list). The list
syntax comes from scontents (command \mergesc), where it is possible to refer to a single
index {(st-name A)} [(index)], a index range {(st-name B)} [(indexA-indexB)], or all indexes
from a (st-name), {(st-name C)} [(1-end)]. The special index (i-end) refers to all indexes
stored under a given (st-name).

Note: The brackets aren’t optional. For instance \tsmergedcode* [(code-keys)]
{ {(st-name A)} [(index)] , {(st-name B)} [(indexA-indexB)] , {(st-name
C)} [(1-end)] }

\tsexec {(st-name)} [(index)]

Unlike the previous commands which are all executed in a local group (discarded at the end)
this will execute the code stored at (st-name) [(index)] in the current HTEX group.

2.3.1 Code Keys

\setcodekeys {(code-keys)}

One has the option to set (code-keys) per \tscode, \tsmergedcode, \tsdemo and \tsresult
call (see 2.3), or globally, better said, in the called context group .
N.B.: All \tscode and \tsdemo commands create a local group in which
the (code-keys) are defined, and discarded once said local group is closed.
\setcodekeys defines those keys in the current context/group.

\setnewcodekey {(new-key)} {(code-keys)?}

This will define a new key (new-key), which can be used with \tscode, \tsmergedcode, \tsdemo
and \tsresult. (code-keys) can be any of the following ones, including other (new-key)s. Be
careful not to create a definition loop.

Iststyle

This sets the base style to be used. It defaults to codestyle, and the user can use this
(codestyle) as the base style for his own one (and avoid having to define every single aspect
of it). For example:

settexcs

texcs

texcsstyle

updated:

2025/05/01

setkeywd

keywd

keywdstyle

updated:

2025/05/01

setemph

emph

emphstyle

updated:

2025/05/01

letter
other

new:

2025/05/13

numbers
numberstyle

stringstyle
codestyle

bckgndcolor

codeprefix
resultprefix

parindent

ruleht

basicstyle

new:

2023/11/18

\1lstdefinestyle{my-own}{ 7% see the listings manual for a complete list of keywords
style=codestyle,
texcsstyle = % {\bfseries\color{red}}

i

\tscode* [1ststyle=my-own] {demo-X}

settexcs, settexcs2, settexcs3 and settexcs4
texcs, texcs2, texcs3 and texcs4
texcsstyle, texcs2style, texcs3style and texcs4style

These define sets of ITEX commands (csnames, sans the preceding slash bar), the set
variants initialize/redefine those sets (an empty list, clears the set), while the others extend
those sets. The style ones redefines the command display style (an empty (value) resets
the style to it’s default).

setkeywd, setkeywd2, setkeywd3 and setkeywd4
keywd, keywd2, keywd3 and keywd4
keywdstyle, keywd2style, keywd3style and keywd4style

Same for other keywords sets.

setemph, setemph2, setemph3 and setemph4
emph, emph2, emph3 and emph4
emphstyle, emph2style, emph3style and emph4style

for some extra emphasis sets.

letter and other

These allow to redefine what a letter or other are (they correspond to the alsoletter and
alsoother keys from listings). The default value for the letter includes (sans the comma)
@ : _, whilst other default value is an empty list.

Note: You might want to consider setting letter to just letter={@,_J} so you
don’t have to list all variants, but just the base name of an expl3 function.

numbers and numberstyle

numbers possible values are none (default) and left (to add tinny numbers to the left of the
listing). With numberstyle one can redefine the numbering style.

stringstyle and commentstyle

to redefine strings and comments formatting style.

bckgndcolor

to change the listing background’s color.

codeprefix and resultprefix

those set the codeprefix (default: WTEX Code:) and resultprefix (default: WTEX Result:)

parindent

Sets the indentation to be used when ‘demonstrating’ KTEXcode (\tsdemo). Defaults to
whatever value \parindent was when the package was first loaded.

ruleht

When typesetting the ‘code demo’ (\tsdemo) a set of rules are drawn. The Default, 1, equals
to \arrayrulewidth (usually 0.4pt).

basicstyle

Sets the base font style used when typesetting the ‘code demo’, default being \footnotesize
\ttfamily

nolisting

label set

base skip

strict

silence

color scheme

load xtra dialects

TeX dialects

3 codedescribe Package

This package aims at minimizing the number of commands, being the object kind (if a
macro, or environment, or variable, or key ...) a parameter, allowing for a simple extension
mechanism: other object types can be easily introduced without having to change, or add
commands.

3.1 Package Options

it will suppress the codelisting package load. In case it isn’t needed or another listing
package will be used.

(new: 2025/11/22) This allows to pre-select a label set, see 3.3. Currently, the possible values
are english, german and french, the ones present in the auxiliary package codedescsets.

Changes the base skip, all skips (used by the environments at 3.4) are scaled up from this.
It defaults to the font size at load time.

Package Warnings will be reported as Package Errors.

(new: 2025/11/22, defaults to 18.89999pt) This will suppress some annoying bad boxes
warnings. Given the way environments at 3.4 are defined, with expl coffins, TeX thinks
they are too wide, when they are not.

Possible values: black, default, brighter and darker. This will adjust the initial color
configuration for the many format groups/objects (see 3.2.1). black will defaults all \tsobj
colors to black. default, brighter and darker are roughly the same color scheme. The
default scheme is the one used in this document. With brighter the colors are brighter
than the default, and with darker the colors will be darker, but not black.

Note: color scheme doesn’t affect codelisting / listings colors.

This will be passed over to codelisting package (if loaded). See 2.1.
This will be passed over to codelisting package (if loaded). See 2.1.

3.2 Object Type keys

(obj-types) defines the applied format, which is defined in terms of (format-groups) wich
defines a formatting function, font shape, bracketing, etc. to be applied.

3.2.1 Format Keys

Those are the primitive (format-keys) used when (re)defining (format-groups) and (obj-types)
(see 3.2.4):

meta to typeset between angles,

xmeta to typeset *verbatim® between angles,

verb to typeset *verbatim*,

xverb to typeset *verbatim*, suppressing all spaces,

code to typeset *verbatim*, suppressing all spaces and replacing a TF by TF,
nofmt in case of a redefinition, to remove the ‘base’ formatting,

slshape to use a slanted font shape,

itshape to use an italic font shape,

noshape in case of a redefinition, to remove the ‘base’ shape,

lbracket defines the left bracket (when using \tsargs). Note: this key must have an

associated value,

rbracket defines the right bracket (when using \tsargs). Note: this key must have an
associated value,

color defines the text color. Note: this key must have an associated value (a color,
as understood by xcolor package).

3.2.2 Format Groups

Using \defgroupfmt (see 3.2.4) one can (re-)define custom (format-groups). The following
ones are predefined:

meta which sets meta and color
verb which sets color

oarg which sets meta and color
code which sets code and color
syntax which sets color

keyval which sets slshape and color
option which sets color

defaultval which sets color

env which sets slshape and color
pkg which sets slshape and color

Note: color was used in the list above just as a ‘reminder’ that a color is
defined /associated with the given group, it can be changed with \defgroupfmt.

3.2.3 Object Types

Object types are the (keys) used with \tsobj (and friends, see 3.5) defining the specific for-
matting to be used. With \defobjectfmt (see 3.2.4) one can (re-)define custom (obj-types).
The predefined ones are:

arg, meta based on meta

(group)
verb, xverb based on (group) verb plus verb or xverb
marg based on (group) meta plus brackets
oarg, parg, xarg based on (group) oarg plus brackets
code, macro, function based on (group)
syntax based on (group) syntax
keyval, key, keys, values based on (group)
(group)
(group)
(group)
()

group) pkg

option based on
defaultval based on defaultval
env based on env

pkg, pack based on

3.2.4 Customization

To create user defined groups/objects or change the pre-defined ones:

\defgroupfmt \defgroupfmt {(format-group)}{(format-keys)}

new: 2023/05/16 (format-group) is the name of the new group (or one being redefined, which can be one of
the standard ones). (format-keys) is any combination of the keys from 3.2.1

For example, one can redefine the code group standard color with \defgroupfmt{code}{color=red}
and all obj-types based on it will be typeset in red (in the standard case: code, macro and
function objects).

\defobjectfmt \defobjectfmt {(obj-type)} {(format-group)} {(format-keys)}

new: 2023/05/16 (obj-type) is the name of the new (object) being defined (or redefined), (format-group) is the
base group to be used (see 3.2.2). (format-keys) (see 3.2.1) allow for further differentiation.

For instance, the many optional (xarg) are defined as follow:

\setcodelabels

\newlabelset

\selectlabelset

new:

2025/11/22

\colorlet {c__codedesc_oarg_color} { gray!90!black }
\defgroupfmt {oarg} { meta , color=c__codedesc_oarg_color }

\defobjectfmt {oarg} {oarg} { lbracket={[} , rbracket={]} }
\defobjectfmt {parg} {oarg} { lbracket={(} , rbracket={)} }
\defobjectfmt {xarg} {oarg} { lbracket={<} , rbracket={>} }

3.3 Locale

The following commands allows to customize the many ‘labels’ in use, in particular the
auxiliary package codedescsets holds a few locale sets, the user is invited to submit trans-
lations for a specific case/language via a PR (Push Request) at https://github.com/
alceu-frigeri/codedescribe

\setcodelabels {(labels-list)}
\newlabelset {(lang)} {(labels-list)}
\selectlabelset {(lang)}

\setcodelabels allows to change the many ‘labels’ used (like ‘updated’ in the codedescribe
environment). See below for a complete list of possible labels, it can be used at any time,
allowing to change those labels mid text.

\newlabelset will create a label’s set (named as (lang)) for later use with \selectlabelset
(akin of a language locale), while \selectlabelset will select (activate) the given set. They
can also be used at any time.

The (labels-1list) can be any combination of:

new It set’s the ‘new’ label used in the codedescribe environment.

update It set’s the ‘update’ label used in the codedescribe environment.

note It set’s the ‘note’ label used in the codedescribe environment.

and It set’s the ‘and’ label used by \tsobj (hint: last item separator).

or Tt set’s the ‘or’ label used by \tsobj (hint: last item separator).

months It set’s the month list used by \tsdate, see 3.7. NB.: it expects a list of names

starting at ‘January’ and ending at ‘December’.

Note: \newlabelset is used in the auxiliary package codedescsets to pre-
define some sets, which can then be used as a package option, see 3.1.

Note: The given (labels-1list) doesn’t need to be complete, though, only the
given labels will be changed.

Note: \newlabelset can be used to redefine a given set, though, if doing so,
one has to provide all labels. The old (if any) definitions will be erased. No
warnings given.

For example, this sets a new label set for German. In fact, since this is defined in the
package codedescsets this label set can be used when loading this package, see 3.1.

\newlabelset {german}

{
new = neu B
update = aktualisiert |,
note = NB 5
remark = Hinweis B
and = und .
or = oder s
months =
{
Januar, Februar, Marz, April,
Mai, Juni, Juli, August,
September, Oktober, November, Dezember
}
}

https://github.com/alceu-frigeri/codedescribe
https://github.com/alceu-frigeri/codedescribe

codedescribe

new: 2023/05/01
updated: 2023/05/01
updated: 2024/02/16
updated: 2025/09/25
NB: a note example

codesyntax

updated: 2025/09/25

describelist
describelist*

3.4 Environments

\begin{codedescribe} [(obj-keys)] {(csv-1list)}

\end{codedescribe}

This is the main environment to describe Commands, Variables, Environments, etc. (csv-list)
items will be listed in the left margin. The optional (obj-keys) defaults to just code, it can
be any object type as defined at 3.2.3 (and 3.2.4), besides the following keys:

new To add a new line.

update To add an updated line.

note To add a NB line.

rulecolor For instance \begin{codedescribe}[rulecolor=white] will suppress the rules.

EXP A star % will be added to all items, signaling the commands are fully expand-
able.

rEXP A hollow star ¥¢ will be added to all items, signaling the commands are

restricted expandable.

Note: The keys new, update and note can be used multiple times. (2024/02/16)
Note: If using one of the keys new, update, note, rulecolor, EXP or rEXP the
user must also provide an object type. code is the solely default IF nothing else
is provided.

Note: With the strict package option an error will be raised if used inside
another codedescribe environment. Otherwise a warning will be raised. (it’s
safe to do so, but it doesn’t make much sense).

\begin{codesyntax}

\end{codesyntax}

The codesyntax environment sets the fontsize and activates \obeylines, \obeyspaces, SO one
can list macros/cmds/keys use, one per line.

Note: codesyntax environment shall appear only once, inside of a codedescribe
environment. Take note, as well, this is not a verbatim environment!

Note: With the strict package option an error will be raised if used outside
a codedescribe environment, or more than once inside. Otherwise a warning
will be raised.

For example, the code for codedescribe (previous entry) is:
KTEX Code:

\begin{codedescribe}[env , new=2023/05/01, update=2023/05/01, note={a note example}, update
=2024/02/16, update=2025/09/25]{codedescribe}
\begin{codesyntax}
\tsmacro{\begin{codedescribe}}[obj-typel{csv-1list}
\1ldots
\tsmacro{\end{codedescribe}}{}
\end{codesyntax}
This is the main ...
\end{codedescribe}

\begin{describelist} [(item-indent)] {(obj-type)}
\describe {(item-name)} {(item-description)}
\describe {(item-name)} {(item-description)}

\end{describelist}

This sets a description like ‘list’ In the non-star version the (items-name) will be typeset
on the marginpar. In the star version, (item-description) will be indented by (item-indent)
(defaults to: 20mm). (obj-type) defines the object-type format used to typeset (item-name).

\describe

\typesetobj
\tsobj

updated: 2025/05/29

\typesetargs
\tsargs

\typesetmacro
\tsmacro

\typesetmeta
\tsmeta

\typesetverb
\tsverb

\describe {(item-name)} {(item-description)}

This is the describelist companion macro. In case of the describe*, (item-name) will be
typeset in a box (item-ident) wide, so that (item-description) will be fully indented, oth-
erwise (item-name) will be typed in the marginpar.

Note: An error will be raised (undefined control sequence) if called outside of
a describelist or describelist* environment.

3.5 Typeset Commands

Note that, in the following commands, (obj-type) refers to any object type defined in 3.2.3
and 3.2.4.

\typesetobj [(obj-type)] {(csv-list)}

\tsobj [(obj-type)] {(csv-1list)}

This is the main typesetting command, each term of (csv-list) will be separated by a
comma and formatted as defined by (obj-type) (defaults to code). (obj-type) can be any
object from 3.2.3 (or 3.2.4) and the following keys:

mid sep To change the item separator. Defaults to a comma, can be anything.
sep To change the separator between the last two items. Defaults to “and”.
or To set the separator between the last two items to “or”.

comma To set the separator between the last two items to a comma.

bnf or To produce a bnf style or list, like [abc|xdh|htf|hrf].

meta or To produce a bnf style or list between angles, like (abc|xdh|htf|hrt).

par or To produce a bnf style or list between parentheses, like (abc|xdh|htf|hrf).

\typesetargs [(obj-type)] {(csv-1list)}

\tsargs [(obj-type)] {(csv-list)}

These will typeset (csv-list) as a list of parameters, like [(argl)] [(arg2)] [(arg3)], or
{(arg1)} {(arg2)} {(arg3)}, etc. (obj-type) defines the formating AND kind of brackets used
(see 3.2): [1 for optional arguments (oarg), {} for mandatory arguments (marg), and so on.

\typesetmacro {(macro-list)} [(ocargs-list)] {(margs-1list)}

\tsmacro {(macro-list)} [(oargs-list)] {(margs-list)}

These are just short-cuts for

\tsobj[code]l{macro-1list} \tsargs[oarg]l{oargs-1list} \tsargs[marg] {margs-list}.

\typesetmeta {(name)}
\tsmeta {(name)}

These will just typeset (name) between left /right ‘angles’ (no further formatting).

\typesetverb [(obj-type)] {(verbatim text)}
\tsverb [(obj-type)] {(verbatim text)}

Typesets (verbatim text) as is (verbatim...). (obj-type) defines the used format. The dif-
ference with \tsobj [verb]l{something} is that (verbatim text) can contain commas (which,
otherwise, would be interpreted as a list separator by \tsobj.
Note: This is meant for short expressions, and not multi-line, complex code
(one is better of, then, using 2.3). (verbatim text) must be balanced ! other-
wise, some low level TEX errors might pop out.

10

3.6 Note/Remark Commands

\typesetmarginnote \typesetmarginnote {(note)}

\tsmarginnote

tsremark

\typesettitle
\tstitle

tsabstract

\typesetdate
\tsdate

new: 2023/05/16

\tsmarginnote {(note)’}

Typesets a small note at the margin.

\begin{tsremark} [(NB)]
\end{tsremark}

The environment body will be typeset as a text note. (NB) (defaults to Note:) is the note
begin (in boldface). For instance:

ETEX Code: ETEX Result:
Sample text. Sample test.
\begin{tsremark}[N.B.] Sample text. Sample test.
This is an example. P
\end{tsremark} N.B. This is an example.

3.7 Auxiliary Commands and Environment

In case the Document Class being used redefines the \maketitle command and/or abstract
environment, alternatives are provided (based on the article class).

\typesettitle {(title-keys)}
\tstitle {(title-keys)}

This is based on the \maketitle from the article class. The (title-keys) are:

title The title.
author Author’s name. It’s possible to use the \footnote command in it.
date Title’s date.

Note: The \footnote (inside this) will use an uniquely assigned counter, start-
ing at one, each time this is used (to avoid hyperref warnings).

\begin{tsabstract}

\end{tsabstract}

This is the abstract environment from the article class.

\typesetdate
\tsdate

This provides the current date (in Month Year, format).

11

[13kernelsign] TeX
[13expsign] TeX
[13amssign] TeX
[13pgfsign] TeX

[13bibtexsign] TeX

[13kernel] TeX
[13exp] TeX
[13ams]TeX
[13pgf]TeX

[13bibtex] TeX

[kernel] TeX
[xpacks] TeX
[ams] TeX
[pgtf]TeX
[pgfplots] TeX
[bibtex]TeX
[babel] TeX
[hyperref]TeX

4 codelstlang Package

This is an auxiliary package (which can be used on its own). It assumes the package 1istings
was already loaded, and just defines the following TEX dialects, all of them derived from
(listings) [LaTeX]TeX:

Most/all expl keys found in the 13kernel[3] packages, including signatures.

Most /all expl keys found in the 13kernel experimental packages, including signatures.
Most/all expl keys found in the ams, siunitx and related packages, including signatures.
Most/all expl keys found in the pgf and related packages, including signatures.

Most/all expl keys found in the bibtex, biblatex and related packages, including signatures.

Note: The underscore ‘_’ and colon ‘:’ have to be defined as letters (letter =
{_, }, see 2.3.1). Take note that those dialects are quite large, due the

many signatures variants.

Most /all expl keys found in the 13kernel packages, without signatures.

Most/all expl keys found in the 13kernel experimental packages, without signatures.
Most/all expl keys found in the ams, siunitx and related packages, without signatures.
Most/all expl keys found in the pgf and related packages, without signatures.

Most /all expl keys found in the bibtex, biblatex and related packages, without signatures.

Note: The underscore ‘_’ has to be defined as letter (Ietter = { _ }, but not
the colon ‘:’; see 2.3.1). Those are more compact versions of the previous ones.
Most/all document level keys found in the kernel packages.
Most/all document level keys found in the x* packages, like xkeyval, xpatch, xcolor etc.
Most/all document level keys found in the ams, siunitx and related packages.
Most/all document level keys found in the pgf and related packages.
Most/all document level keys found in the pgfplots and related packages.
Most/all document level keys found in the bibtex, biblatex and related packages.
Most/all document level keys found in the babel and related packages.
Most/all document level keys found in the hyperref and related packages.

Note: Those are usual document level, 'TEX 2¢, commands. In particular none
of them includes any ‘Q’ symbol.

References

Pablo Gonzalez. SCONTENTS - Stores LaTeX Contents. 2024. URL: http://mirrors.
ctan.org/macros/latex/contrib/scontents/scontents.pdf (visited on 03/10/2025).

[2] Jobst Hoffmann. The Listings Package. 2024. URL: http://mirrors . ctan . org/
macros/latex/contrib/listings/listings.pdf (visited on 03/10/2025).
[3] The LATEX Project. The LATEXS Interfaces. 2025. URL: https://mirrors.ctan.

org/macros/latex/required/13kernel/interface3.pdf (visited on 11/20/2025).

12

http://mirrors.ctan.org/macros/latex/contrib/scontents/scontents.pdf
http://mirrors.ctan.org/macros/latex/contrib/scontents/scontents.pdf
http://mirrors.ctan.org/macros/latex/contrib/listings/listings.pdf
http://mirrors.ctan.org/macros/latex/contrib/listings/listings.pdf
https://mirrors.ctan.org/macros/latex/required/l3kernel/interface3.pdf
https://mirrors.ctan.org/macros/latex/required/l3kernel/interface3.pdf

	Introduction
	Single versus Multi-column Classes
	Current Version

	codelisting Package
	Package Options
	In Memory Code Storage
	Code Display/Demo
	Code Keys

	codedescribe Package
	Package Options
	Object Type keys
	Format Keys
	Format Groups
	Object Types
	Customization

	Locale
	Environments
	Typeset Commands
	Note/Remark Commands
	Auxiliary Commands and Environment

	codelstlang Package

