
MagiCServer++

Internet Programming Framework for C++

Version 0.1

Developer's Guide

Marko Grönroos (magi@iki.fi)

June 13th 2003

MagiCServer++
Developer's Guide Version 0.1 About this document

About this document
This document provides information about the MagiCServer++ framework.

Copyright and License

Developer's Guide

MagiCServer++ version 0.1

Copyright (c) 2003 Marko Grönroos.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled "GNU Free Documentation License".

2

MagiCServer++
About this document Version 0.1 Developer's Guide

Table of Contents
About this document...2

Chapter 1 Introduction..5
1.1.System requirements...6
1.2.Licensing...6

Chapter 2 Installing...7
2.1.Opening the source package...7
2.2.Configuring...7
2.3.Compiling..7

2.3.1.Compilation output..8
2.4.Installing..8
2.5.Uninstalling...9

Chapter 3 Server architectures..10
3.1.Overview...10
3.2.Distribution architecture..11

3.2.1.Single-thread listener architecture...12
3.2.2.Per-client thread architecture..13
3.2.3.Listener thread architecture...14
3.2.4.Worker thread architecture..14
3.2.5.Multi-process architectures...15

Chapter 4 MagiCServer++ architectural overview..17
4.1.Introduction...17
4.2.Listener framework...18
4.3.Connections...18
4.4.Requests...19
4.5.Distribution with workers...20

Chapter 5 Using the server framework...22
5.1.Overview...22
5.2.Writing a request handler..23

5.2.1.Request specific handler..23
5.2.2.Generic request handler...27

5.3.Main application..28
5.3.1.Opening log...28
5.3.2.Creating, initializing, and running ServerListener..29
5.3.3.Shutting down..30

5.4.Other programming issues..31
5.4.1.Listener timeouts...31

Chapter 6 Examples...32
6.1.Overview...32

6.1.1.Directory hierarchy..33

3

MagiCServer++
Developer's Guide Version 0.1 About this document

6.2.Common sample server library...33
6.2.1.Main program..33
6.2.2.Command-line parser..34
6.2.3.Application logic...35

6.3.Single-thread listener server..35
6.3.1.Sample session...36

6.4.Sample server using worker thread architecture...37
6.4.1.Sample session...37

Chapter 7 MagiCServer++ development...39
7.1.Build system..39
7.2.Reference documentation..39
7.3.Coding conventions...39

7.3.1.Code formatting...39
7.3.2.Code comments...40
7.3.3.Naming conventions..41

Chapter 8 Known bugs and limitations...43
8.1.Bugs...43
8.2.Limitations...43

Chapter 9 GNU Free Documentation License..45

4

MagiCServer++
Introduction Version 0.1 Developer's Guide

Chapter 1 Introduction

MagiCServer++ is a framework for implementing efficient and flexible Internet
server applications. It supports both connection-based TCP and connectionless UDP
datagram protocols in a transparent fashion.

The main task of the framework is to listen to a server socket and a number of
connected TCP client sockets. When a client connects to the server socket, a new
connection socket is created and added to the list of established client sockets.
When data arrives from a client to a connection socket, it is relayed to the user
application as a request. The application can respond, if necessary. The user
application is notified also about other important events, such a establishment of a
new connection, losing an old one, and initiation of server shutdown.

The framework is implemented as a C++ library, which has been kept as
independent from other libraries as possible, to make reuse easier. Error handling is
done with error codes; exceptions are not used except for constructors. For data
structures, low-level C data structures are used for most tasks. Simple support tools
are provided for logging, threading, and queues.

Features

• TCP and UDP

• Threading and thread locking (Thread and ThreadLock)

5

Clients

MagiCServer++ Framework

User Application

ClientsClients Response

Request

TCP or UDP

MagiCServer++
Developer's Guide Version 0.1 Introduction

• Easy-to-use logging facility (Log)

• Transparent distribution interfaces

Limitations

• Only one server socket is currently supported in ServerListener.

• No support for multi-process servers

• No C++ wrapper for sockets

For a more complete list of limitations, see the chapter Known bugs and limitations.

1.1. System requirements
MagiCServer++ has the following system requirements:

• GNU/Linux operating system

• g++ (GCC) compiler, version 2.96, 3.0, or higher

• pthread library

• GNU Make

Platforms

The following Linux distributions have been tested:

Distribution Notes

Red Hat Linux 9 g++ 3.2

Red Hat Linux 7.3 g++ 2.96 (some pthread functions not enabled by default)

Mandrake 7.0 g++ 2.96

Debian 2.2 + upgrades g++ 3.3

1.2. Licensing
The library part of MagiCServer++ is licensed under the GNU Lesser General
Public License (LGPL), also called as GNU Library General Public License.

The sample programs are licensed under the GNU General Public License (GPL).

The GNU General Public License and GNU Lesser General Public License are
given in the source package in files docs/COPYING and docs/COPYING.LIB.

This documentation is licensed under the GNU Free Documentation License, as
presented in the end of this document.

6

MagiCServer++
Installing Version 0.1 Developer's Guide

Chapter 2 Installing

This chapter describes the installation procedure of MagiCServer++ library,
including configuration, compilation, actually installing, and uninstalling.

2.1. Opening the source package
The source code is provided as a tar package compressed with bz2. You can
unpack it with the following shell command:

tar jxf magicserver++-0.1beta1.tar.bz2

This will unpack the source code in an appropriate subdirectory under the current
directory.

2.2. Configuring
To configure the source code for compilation, change to the source directory and
run the configure script as follows:

cd magicserver++-0.1beta1
./configure

Optionally, if you wish to later install the package (headers and library) to some
other than the default directory, you need to set the installation path with the --
prefix attribute:

./configure --prefix=/usr/local

The default path for root user is /usr, and for other users their home directory.

2.3. Compiling
Include dependencies have to be determined before actual compiling, with the
following command:

make deps

This may produce some errors, which are usually not relevant. Making
dependencies is important if you intend to recompile the sources after making

7

MagiCServer++
Developer's Guide Version 0.1 Installing

changes to them.

The package is compiled with the following simple command:

make

To build the reference manual (not usually needed), issue command "make dox".

2.3.1. Compilation output

The output binaries, documentation, and any intermediate files of the compilation
will be written to an output directory tree that is separate from the source tree.

The default output directory is located in:

/tmp/$USER/build/<architecture>/release

where $USER is the user name and architecture is the operating system and
processor architecture, for example, Linux-i686.

For example, binaries are found under the bin subdirectory:

cd /tmp/$USER/build/Linux-i686/release/bin
./msrvsample_listener

2.4. Installing
After compiling, you can be install the package under the configured installation
directory (see above) by issuing the following command in the source directory:

make install

This will copy the output library binaries and header files to appropriate
subdirectories under the installation directory.

Directory Description

<instdir>/lib Libraries

<instdir>/bin Binaries

<instdir>/include/magicserver Headers

Notice that any documentation that comes with the source package is currently not
installed anywhere.

After installation, you can clean the output directory tree with "make clean"
command in the top-level source directory to remove all the temporary files. You do
not need to clean the output, but you might want to free the disk space.

8

MagiCServer++
Installing Version 0.1 Developer's Guide

2.5. Uninstalling
You can remove the installation by giving the following command in the source
directory:

make uninstall

This removes the installed files and directories only if the installation path has not
been changed with configure script after installing.

9

MagiCServer++
Developer's Guide Version 0.1 Server architectures

Chapter 3 Server architectures

This chapter describes a general overview to server architectures made possible by
MagiCServer++ framework.

Instructions for actually using MagiCServer++ are provided in the subsequent
chapters.

3.1. Overview
Figure below presents a generic server architecture, with communications
framework tasks shown in yellow, application-specific modules shown in pale blue,
database connectivity interface in orange, and databases in blue.

The "clients" represent any communicating entities, such as client application or
servers in a multi-tier model.

10

Distribution Manager

Communications / Request Listener

Session
Handler

Protocol Filter(s)

Transaction
Handler

ClientsClients

Log
Manager

Queries

Request Handler

Log

Database Connectivity

DBMS

Clients

Requests

MagiCServer++
Server architectures Version 0.1 Developer's Guide

The communications or request listening layer is the most low-level layer that
listens for new connections or data from clients.

Distribution manager is an application-non-specific layer that allocates system
resources to request handling by distributing requests to different threads or
processes. The threads and processes can execute in a single or multiple CPUs in
the same computer, and in some distributed processing architectures processes can
exist also in separate computers. Choices of distribution management architectures
for different tasks are described in detail in subsequent sections.

The distribution manager communicates requests to the application-specific request
handler. The request handler is not a functional part as such, but merely an
interface through which the requests are communicated.

All communication uses many different communication protocols on different
levels. Application-level communication protocol is the highest-level protocol,
handling application-specific requests. Examples of such protocols are HTTP in a
web server, FTP in a file server, and so on.

Transaction handler contains the core application-specific logic for handling
requests. Often they too have a hierarchy, typically with a transaction manager that
classifies and distributes requests to specific handlers.

The transaction handler often incorporates a session handler, which handles tasks
and data concerning client sessions. In some applications, this enables dynamic
interplay between clients. Many applications do not need to track sessions.

Most servers require access to data storage, either a local file system or a remote
database. For databases, database connectivity interface layer is required for
access to databases. Transparent database connectivity adapter interfaces that can be
used to access different types of databases include systems such as ODBC, JDBC,
etc.

Logging described in the diagram above is a vertical log, that is, all levels of the
application write to the same log. In small applications, logs are typically written to
a local file system, but in large systems they are often written to a database.

3.2. Distribution architecture
Different server architectures fit in different computing tasks and hardware
environments. We can observe at least the following case-specific factors for
choosing between distribution architectures:

• Frequency and CPU burden of client requests

• Number and frequency of new client sessions

11

MagiCServer++
Developer's Guide Version 0.1 Server architectures

• Persistence of client sessions

• Response time requirements

• Number of processors

• Back-end database requirements

• Request protocol used: TCP or UDP

All these differences affect the choice of the server architecture for a particular task.
Number of processors is certainly an important factor, as taking advantage of
multiple CPUs is not possible within a single thread. However, threading is useful
also for most single processor situations. For example, if some requests are heavy to
process, but short response times would be preferred for light requests. In such
cases, it is best to use threading to allow the scheduler to give time slices to light
requests.

On the other hand, if client connections are very short -- and especially if requests
are done with connectionless UDP datagrams -- and if they are very light and very
frequent, it may be best not to use an advanced listening framework at all. In such a
case, simple accept() and read() loops would suffice for a TCP server and
recvfrom() loop for a UDP server.

MagiCServer++ has currently no support for multiple-process distribution
architectures, so they are not considered in this treatment.

3.2.1. Single-thread listener architecture

Many servers run in a single thread of execution. This is often a good approach in
single-processor machines if client requests are light to process. No time is wasted
in distributing requests or context switches. This architecture can be used for both
TCP and UDP servers.

UNIX-based systems allow two low-level mechanisms for implementing efficient
single-thread servers, one based on the select() function and another based on
poll(). The latter mechanism is not discussed here. The select() function allows
to wait, that is, to "listen" for status changes in a set of descriptors, for example file
or socket descriptors. The exact meaning of status change depends on the socket
type.

The listener needs to maintain a list of different types of descriptors (sockets) it is
listening. When a status change occurs for a listening TCP server socket, it can only
mean that a the listener must use the accept() function to establish the connection.
If the socket is an UDP server socket, the status change indicates arrival of new data
in the socket. If it is a connected client socket, it can also indicate arrival of data, but
also breaking of connection.

When request data arrives on a socket, the server can read it, process it, and send a

12

MagiCServer++
Server architectures Version 0.1 Developer's Guide

response back to the client. After the socket events are handled, the server returns
back to the select() loop.

The activities during the execution of a single-thread server are illustrated below:

This architecture type is implemented in MagiCServer++. For more details, please
see the following chapters.

3.2.2. Per-client thread architecture

In a "per-client thread architecture", each client connection has its own thread. The
task of the main thread is simply to accept new connections, which can be done in a
trivial accept() loop. When a new connection is accepted, a new thread is created
and the main thread can immediately return to the accept() loop. The threads,
each handling one client, execute in a simple read() loop that receives data from
the client and send responses. A client thread exits when the connection to the client
is terminated, either intentionally with close() or because the connection was lost.

This architecture is mostly suitable for cases where client sessions are rather long,
as creation of the client threads can take considerably long, even hundreds of
milliseconds. Context switches between threads take some overhead, so many
threads a lot of time wasted in context switching. Operating systems also have limits
on the number of threads, so this architecture can't be used if the maximum number
of simultaneous connections can exceed those limits. In addition, threads also take
some memory overhead, typically about 16 kilobytes in Linux.

A read() loop can pull data in very fast and make quick responses with little
latency. The read() function has no timeout mechanism, which can lead to
problems. Using select() for just one socket is one solution.

This architecture is only applicable to TCP servers.

13

Start

Initialize

Run
Listener

Socket
Type?

Accept New
Connection

Handle
Connection Lost

StartEnd

Handle
Transaction

Socket status
change

Shutdown

TCP server

Data
Available?

No

Yes

Client

Read Data

UDP server

MagiCServer++
Developer's Guide Version 0.1 Server architectures

3.2.3. Listener thread architecture

In a listener thread architecture, the main thread listens the server socket for new
connections. When one arrives, it accepts the connection and passes the TCP
connection socket to a listener in another thread (or a pool of threads). There can be
one connection listener for each connection (a trivial case) or a single thread can
handle requests from multiple client connections.

This architecture is only applicable to TCP servers.

3.2.4. Worker thread architecture

The worker thread architecture is much like the single-thread listener architecture.
The server socket and the client sockets are listened and otherwise managed in the
listener thread. The difference is that the requests are passed to other, "worker",
threads to process.

The activities of a worker thread server are illustrated in the diagram below:

The requests are queued in the listener thread. The threads normally sleep in wait
state, waiting for a signal. When the listener thread inserts a request in the queue, it
awakens one of the sleeping threads to process the request. Also, when the main

14

Start

Listen

StartEnd

Queue
Request

Dequeue and
Handle Request

Create
WorkerThreads

Listener thread Worker threads

Wait for
Requests

Shutdown?

No

Awaken

Join threads Exit thread

Yes

Awakened

Notify
Shutdown

Broadcast

Shutdown?

Yes

No

MagiCServer++
Server architectures Version 0.1 Developer's Guide

thread has started shutdown, it broadcast a signal to awaken all the threads to exit
them.

Worker thread architecture is especially useful when most of the workload is in
processing requests. There is some overhead in creating request objects and queuing
them for the worker threads to process, so this architecture may not be best if all the
requests are very light and very frequent.

While the worker thread architecture excellent for TCP servers, it is the only
sensible threaded architecture for UDP servers.

3.2.5. Multi-process architectures

Threads are a relatively new concept in Linux and UNIX server programming. Most
existing servers do not use threads for distribution and concurrency, but multiple
processes. Using processes instead of threads has both very big advantages and
disadvantages. A very important advantage is that each child process runs in its own
protected data memory segment so memory corruption in one process does not
crash the entire server. Even more advantageously, this model also protects the
server effectively from segmentation faults and other crashes.

The most traditional way to implement a multi-process server is an "ad hoc fork"
architecture where we accept new connections in accept() loop in the main
process. When a new connection is established, the main process forks (with fork
()) to create a child process to handle the client session. The child exits after the
connection is closed. This model is very heavy, as the creation of a new process
with fork can take considerably long time.

A very similar way, "pre-fork" architecture, is to first create the server listener
socket in the main process and then fork a number of child processes that all share
the same server socket. They all enter an accept() loop that accepts connections.
After accepting a client, the child process handles the entire client session and then
returns to the accept() loop. This architecture have some obvious variants. Each
child process can have a listener loop as we had above in the single-thread model.
Each of such child processes can also have an internal distribution mechanism using
threads. The main process can accept new connections and process requests just like
the children do. This is, however, not recommended because if the main process
crashes, the server crashes. It is therefore best that the main process only takes care
of watching over the child processes, re-spawning them if they crash, and other
administrative tasks.

The disadvantage of process-based distribution is that the processes do not normally
use a common data memory segment, which is a necessary requirement for many
kinds of servers. This problem is more or less easy to solve by using shared memory
or other inter-process communication, but these solutions easily bring back the
initial problem -- data corruption.

15

MagiCServer++
Developer's Guide Version 0.1 Server architectures

MagiCServer++ does not implement any multi-process architectures, so this topic is
not discussed any further. One reason for this omission is that, because the
processes have separate data segments, a process-based distribution architecture can
not be done as transparently as the thread-based distribution can be done.

16

MagiCServer++
MagiCServer++ architectural overview Version 0.1 Developer's Guide

Chapter 4 MagiCServer++ architectural
overview

This chapter provides an overview of the general architecture of MagiCServer++.

4.1. Introduction
The centerpiece of the framework is the Listener object, which listens to a number
of server or client sockets. ServerListener is a higher-level class that distinguishes
between server and TCP client sockets and manages TCP connections. When a
socket event occurs, it calls a user-defined RequestHandler with the request data
provided in a Request object. Each TCP client connection has an associated
Connection object, which the user application can inherit to store application-
specific connection data. This is illustrated in the figure below.

In addition, the framework provides an advanced distribution facility for threaded
servers, implemented with WorkerPool and Worker classes. This facility has
transparent interfaces that enable effortless transition from one server architecture to
another.

17

Connection

Clients

ServerListener

ClientsClients

Response

RequestHandler

Connection

process()

Request

Connection

Listener

User-defined
Request Handler

MagiCServer

descriptorevent()

MagiCServer++
Developer's Guide Version 0.1 MagiCServer++ architectural overview

4.2. Listener framework
The Listener object manages a set of descriptors that can have data associated with
them. It listens for descriptor events and, when one occurs, calls descriptorEvent
(), This method is an event handler that needs to be implemented by an inheritor.

The descriptors handled by the Listener can actually be any file descriptors such as
files, pipes, or sockets. The Listener class doesn't know anything about sockets or
socket types (server or client) or Connection objects. These are semantics attached
to the descriptors and their associated data by the ServerListener class.

ServerListener inherits Listener to give the descriptors a specific meaning: they are
sockets. One of the sockets is the server socket, which is can be either a TCP or
UDP socket. TCP (stream) server socket can accept new client connections and
UDP server socket can receive datagrams. A TCP server has also a number of client
sockets. The Listener as just as descriptors, but ServerListener identifies their
associated data object as Connection objects.

4.3. Connections
The connection objects are used for accessing connection-related data associated
with a socket and session handling. A user application can inherit the Connection
class to store application-specific data to connection objects. In such a case, the user
application also has to inherit ConnectionFactory, re-implement the create()
method, and give a reference to the factory to ServerListener with
setConnectionFactory(). The ServerListener then uses the factory to create
user-defined connection objects.

18

RequestHandler

ServerListener
creates and handles ➼

0..10..*

s ends

reques ts to
�

Listener Descriptor

Connection

inherits

1

0..*

as s ociated void* data object

s erver s ocket
1

Request

MagiCServer++
MagiCServer++ architectural overview Version 0.1 Developer's Guide

(Note that the diagram above illustrates logically relevant relationships of
MagiCServer++ classes; the actual implementation is slightly different.)

4.4. Requests
Requests are generated by the ServerListener and passed to the RequestHandler to
process. The request related classes have the following class relationships:

The ConnectionRequest class is associated with an established TCP client
connection object, to provide its inheritors access to that object. The abstract
DataRequest class contains a data buffer containing request data read from the
socket by ServerListener.

After being processed, the requests are destroyed by the request handler.

The semantics of the various requests are detailed in next chapter.

19

Connection

ConnectionFactory

User-Defined
Connection Class

User-Defined
Factory Class

ServerListener

inherits

inherits

� creates

1

0..*

� creates

RequestHandler

ServerListener

s ends

reques ts to
�

1

Request

NewConnectionRequest

ConnectionLostRequest

S hutdownRequest

TimeoutRequest

S treamDataRequest

Da tagramRequest

ConnectionRequest

Da taRequest

Connection

1

MagiCServer++
Developer's Guide Version 0.1 MagiCServer++ architectural overview

4.5. Distribution with workers
MagiCServer++ provides one distribution mechanism, which is an implementation
of the worker thread architecture discussed in the previous chapter. For a more
general description of the distribution mechanism, please refer to the previous
chapter.

Distribution is done transparently using the WorkerPool class, which inherits and
therefore acts like a RequestHandler that receives requests from ServerListener.
This transparent chaining is illustrated in the following schematic diagram:

WorkerPool distributes the requests to workers that process them with a user-
defined request handler using exactly the same process() interfaces of
RequestHandler class as without the distribution.

The relevant class relationships are illustrated in the class diagram below:

The RequestHandler referred by the ServerListener is a WorkerPool, which in
turn refers to a user-defined sub-class of RequestHandler. Each of the Worker
objects have an execution method that executes in its own thread, reading requests
from the queue and passing the to the user-defined request handler.

Note that the ownership of the Request objects changes several times during their

20

RequestHandler

ServerListener

s ends

reques ts to
�

inherits

1

Request

WorkerPoolWorker Queue<Request>
1..* 1

0..*

1

1

User-Defined
Request Handler

ServerListener

WorkerPool
(RequestHandler)

MagiCServer++
MagiCServer++ architectural overview Version 0.1 Developer's Guide

lifetime. ServerListener passes the ownership to the WorkerPool, which passes it to
the request queue, which passes it to the Worker, which passes it to the request
handler.

The following object collaboration diagram illustrates the handling of requests:

The user of the worker pool distribution mechanism can chain the request handlers
as follows:

/* Create transaction handler. */
MyHandler myHandler;

/* Create a worker thread pool. */
WorkerPool workers (myHandler, log, 10);

/* Create and configure server object. */
ServerListener myServer (workers, &log);

21

WorkerWorker

RequestRequest

aServerListener

aRequest

aWorkerPool

aWorker

aQueue<Request>

read from

pus h

awakens one

0..*

proces s

aRequest

create

aRequestHandler

proces s

MagiCServer++
Developer's Guide Version 0.1 Using the server framework

Chapter 5 Using the server framework

This chapter gives an introduction to programming server applications with
MagiCServer++ framework.

5.1. Overview
The following diagram illustrates the basic activities during the execution of a
server with a listener architecture. Distribution is not shown in this diagram.

Initialization includes parsing possible command-line arguments, reading
configuration files, setting up the application-specific data structures, and
performing other application-specific tasks such as initializing database
connections.

22

Start

Initialize

Run
ServerListener

Handle
Request

Handle New
Connection

Handle
Connection Lost

Open log

Create & Initialize
Request Handler

Create & Initialize
ServerListener

StartEnd

Handle
Errors

Handle
Transaction

Handle
Shutdown

Request

Shutdown

MagiCServer++
Using the server framework Version 0.1 Developer's Guide

Other main tasks of the server execution are described in following sections.

5.2. Writing a request handler
A request handler is a class that inherits the RequestHandler class and
reimplements the generic process(Request*) method or any of the more specific
process() methods. The default implementation of process(Request*) is a
switchboard that casts the Request* to the proper subclasses and calls the
appropriate handler method.

5.2.1. Request specific handler

A request specific handler allows the default implementation of process(Request*)
to cast the Request pointer to proper subclass and call the appropriate process()
method. It also takes care of destructing the request object after processing.

Class Description

NewConnectionRequest A new TCP client connection has been accepted.

StreamDataRequest Data has arrived to TCP client socket. The data is automatically read
from the socket by ServerListener and can be retrieved from the
request object with getData() and dataLen() methods.

DatagramRequest Data has arrived to UDP server socket. The data is automatically read
from the socket by ServerListener and can be retrieved from the
request object with getData() and dataLen() methods.

ConnectionLostRequest Connection to a TCP client has been lost. The socket is closed. The
Connection object associated with the connection will be destroyed
after this request.

ShutdownRequest Shutdown of the server has been initiated. New connections will not
be accepted. Old connections are still open and the request handler
can send a shutdown message to them and then close them. The
ServerListener exits after this request is processed. If WorkerPool is
used, all Worker threads are exited before sending this request, which
is processed in the main thread.

TimeoutRequest Listener timeout counter has timed out.

Inheriting RequestHandler

Let us first look at the header for a request handler:

#include <MagiCServer++/msrvrequest.h>

using namespace MSrv;

/***
 * Sample request handler
 **/

23

MagiCServer++
Developer's Guide Version 0.1 Using the server framework

class MyHandler : public RequestHandler {
 public:
 MyHandler () {/* ... */;}
 virtual ~MyHandler () {/* ... */;}

 /* Reimplementations */
 MSrvResult request (NewConnectionRequest* request);
 MSrvResult request (ConnectionLostRequest* request);
 MSrvResult request (StreamDataRequest* request);
 MSrvResult request (DatagramRequest* request);
 MSrvResult request (ShutdownRequest* request);
 MSrvResult request (TimeoutRequest* request);
};

Notice that the MSrv name space needs to be used for accessing classes in the
MagiCServer++ library. You can do it with the "using" directive, as above, or by
using the MSrv:: name space specifier for all MagiCServer++ classes.

The constructor should handle any application-specific initialization and the
destructor destruction. Inheritor can naturally have any application-specific member
variables.

New Connection Request

The following request handler example resolves the host name of the connected
client and sends it a welcome message.

MSrvResult MyHandler::process (NewConnectionRequest& rRequest)
{
 /* Resolve host name. */
 struct hostent* host = gethostbyaddr (
 &rRequest.connection().address().sin_addr,
 sizeof (in_addr),
 AF_INET);

 /* Send welcome message to the client. */
 if (host) {
 char msg[MYLEN_OUTPUT_BUFFER_SIZE];
 snprintf (msg, MYLEN_OUTPUT_BUFFER_SIZE,
 "001 Hello, %s!\n",
 host->h_name);
 write (rRequest.socket(), msg, strlen (msg));
 }

 return 0;
}

Connection Lost Request

The connection lost request occurs when a client connection is unexpectedly
broken, usually because the client end closed the socket.

The following request handler example simply logs the event.

24

MagiCServer++
Using the server framework Version 0.1 Developer's Guide

MSrvResult MyHandler::process (ConnectionLostRequest& rRequest)
{
 rRequest.serverListener().log().message (
 "SAMPLE", Log::Audit, 0,
 "Connection lost");
 return 0;
}

The Connection object associated with the connection will be destroyed when the
Request object is destroyed.

Stream Data Request

The stream data request occurs when data is received from an established TCP
client connection. The data is read automatically to a buffer stored in the request
object.

The following request handler example processes the request and sends a response.

MSrvResult MyHandler::process (StreamDataRequest& rRequest)
{
 char* data = rRequest.getData ();

 /* Cut request data buffer at newline. */
 for (int i=0; i<rRequest.dataLen(); ++i)
 if (data[i] < '\x20') {
 data[i] = 0x00;
 break;
 }

 /* Shutdown command. */
 if (!strcmp (data, "shutdown"))
 rRequest.serverListener().startShutdown ();
 else {
 /* Format and send a response. */
 char msg[1024];
 snprintf (msg, 1024, "Hi, you wrote: '%s'.\n",
 data);
 write (rRequest.socket(), msg, strlen (msg));
 }
}

Shutdown request

Shutdown requests occur when the Listener (and ServerListener) is shutting down
after receiving startShutdown() command. Below is a sample handler:

MSrvResult MyHandler::process (ShutdownRequest& rRequest)
{
 rRequest.serverListener().log().message (
 "SAMPLE", Log::Info, 0,
 "Server is shutting down.");

 /* Send shutdown message to all connected clients. */
 const char* msg = "Shutting down immediately! (byebye)\n";

25

MagiCServer++
Developer's Guide Version 0.1 Using the server framework

 /* Iterate through connections in the listener. */
 for (ServerListener::ConnIter serv_i (
 rRequest.serverListener());
 !serv_i.exhausted ();
 serv_i.next()) {
 /* Write shutdown message to the connection. */
 write (serv_i.get().socket(), msg, strlen (msg));
 }

 return 0;
}

The request handler does not have to close the client connections, as ServerListener
does that automatically after this request has been processed.

If the worker threading model is used (with WorkerPool), the final shutdown
request will be processed in the main thread after other threads have been shut
down.

For more details see the section on Shutting down below.

Timeout request

Listener generates timeout events according to the timeout setting set with
setTimeout() and calls timeoutEvent(), which can be reimplemented by
inheritors. The implementation in ServerListener generates TimeoutRequest
requests, presuming that the timeout events have been enabled in ServerListener by
applying the Request::NewConnection mask with the setRequestMask()
method. For example, if a request handler wants to process also the timeout
requests, it should implement the following kind of initialization function:

MSrvResult MyHandler::init (ServerListener& rListener)
{
 /* Add the timeout request to request mask. */
 rListener.setRequestMask (
 rListener.requestMask() | Request::Timeout);
}

Timeouts are the only request type disabled by default. You might not want to
generate timeout requests if the Listener timeout period is very small, as processing
them may take considerable time. This is one reason why the timeout should not be
very short.

The time requests can be handled as follows:

MSrvResult MyHandler::process (TimeoutRequest& rRequest)
{
 rRequest.serverListener().log().message (
 "SAMPLE", Log::Info, 0,
 "Listener notified about a routine timeout.");

 /* We could do something interesting here if we wanted. */
 return 0;

26

MagiCServer++
Using the server framework Version 0.1 Developer's Guide

}

5.2.2. Generic request handler

Writing a generic request handler is an alternative way to handle the requests. A
generic request handler processes all types of requests in a single method, process
(Request*). Reimplementing it is useful mostly in chained handlers, as is done in
WorkerPool. Its speed advantage is not significant (a few nanoseconds perhaps).

Inheriting generic handler of RequestHandler

Let us first look at the header for a request handler:

#include <MagiCServer++/msrvrequest.h>

using namespace MSrv;

/***
 * Sample request handler
 **/
class MyHandler : public RequestHandler {
 public:
 MyHandler () {/* ... */;}
 virtual ~MyHandler () {/* ... */;}
 virtual MSrvResult request (Request* request);
};

Generic request handler method

The RequestHandler::request() method handles the actual request. The
inheritor of RequestHandler must reimplement it.

The Request::gettype() method returns a numeric type identifier for a
request, allowing a simple switch-case construction for handling them. The requests
can have the following types:

Type Class

NewConnection NewConnectionRequest

StreamData StreamDataRequest

Datagram DatagramRequest

ConnectionLost ConnectionLostRequest

Shutdown ShutdownRequest

Timeout TimeoutRequest

Below is a very simple skeleton for a request handler:

MSrvResult MyHandler::process (Request* pRequest)
{
 switch (request->getType ()) {

27

MagiCServer++
Developer's Guide Version 0.1 Using the server framework

 /* Handle new connection notification. */
 case Request::NewConnection: {
 ...
 } break;

 /* Handle data requests for both TCP and UDP. */
 case Request::StreamData:
 case Request::Datagram: {
 ...
 } break;

 /* Handle connection lost notification. */
 case Request::ConnectionLost: {
 ...
 } break;

 /* Handle server shutdown notification. */
 case Request::Shutdown: {
 ...
 } break;

 /* Unhandled request types. */
 default: {
 ...
 }
 }

 delete request; /* Handler has to destroy it. */
 return 0;
}

Responses to client are sent using standard low-level I/O routines for sockets. For a
more detailed example, see the Common Sample Request Library.

Notice: Request handler has the responsibility to destroy the Request object.

5.3. Main application
The main program of a server application consists of the main tasks illustrated in
the diagram above. Let us go through them step-by-step.

5.3.1. Opening log

Server log has to be opened for writing before the ServerListener can be created
(see below), as its creation and initialization may need to write to the log.

/* Open log to a file. */
LogFile log ("mylog.txt");

/* Write log entry. */
log.message ("SAMPLE", /* Module name. */
 Log::Audit, /* Error severity. */
 0, /* Optional message code. */
 "Log opened.");/* Actual message text. */

28

MagiCServer++
Using the server framework Version 0.1 Developer's Guide

This opens a log file and writes an opening entry to it. If the log file already exists,
the log is appended to the end. Otherwise the file will be created. The module name
given to the message() method is a free label attached in log entries. The error
severity can be either Audit, Warning, or Critical. An Audit entry means any
routine message. Warning means an unusual situation, but which is handled
cleanly. Critical means that a serious error has occurred, which may lead to data
corruption or eventual malfunction of the server.

The optional message code is a numeric code that is attached to each message. Its
purpose is to give a clear identifier for the specific message. Numeric message
codes are especially important in internationalized applications where the actual
message text can be in a language that is not understood by the developers or
support personnel. Numeric codes are also useful for automatically analyzing logs,
because the actual message texts are often changed slightly for various reasons
(spell checking, etc).

The actual message text is like a format string for printf() and you can give it
additional arguments. For example:

 log.message ("SAMPLE", Log::Critical, 0,
 "Execution failed with error %d.",
 -msrvResult);

If you wish to open the log to write to standard output for some reason, you can set
it in two ways, either:

LogFile log (stdout);

or:

LogFile log ("-");

5.3.2. Creating, initializing, and running ServerListener

Creation of the ServerListener is easy, after which it must be initialized. Setting the
request handler is mandatory. Setting log is usually desired, though some simple
servers do not need logging.

/* Create transaction handler. */
MyHandler myHandler;

/* Create and configure server object. */
ServerListener myServer (myHandler, &log);

Next step in server initialization is setting up the server socket. This requires a port
number and protocol. Choises for the protocol are ServerListener::TCP and
ServerListener::UDP.

/* Create a server socket and bind it to an address. */

29

MagiCServer++
Developer's Guide Version 0.1 Using the server framework

msrvResult = myServer.bind (portno,
 ServerListener::TCP,
 0);
if (msrvResult < 0) {
 log.message ("TEST", Log::Critical, 0,
 "Server initialization failed with error %d.",
 -msrvResult);
 return EXITVAL_INIT_FAILED;
}

Finally, the listen() needs to be called to start listening.

/* Enter the listener loop. */
msrvResult = myServer.listen ();
if (msrvResult < 0) {
 log.message ("SMPLLIST", Log::Critical, 0,
 "Server execution failed with error %d.",
 -msrvResult);
 return MSRVTEST_RETVAL_EXEC_FAILED;
}

The listen() will return after the server has shut down.

5.3.3. Shutting down

Shutdown of a server is a delicate procedure, especially on threaded servers where
threads may be processing requests while the order to shut down occurs.

Shutdown can be initiated by a request handler. The are two very simple alternative
ways to initiate shutdown. First, the handler can return a special error code,
MSRVERR_SHUTDOWN_EVENT, to notify the ServerListener that it should go down.
Second, the handler can call the startShutdown() method of Listener.

When the Listener goes to shutdown state, it immediately stops listening for socket
events such as new connections in the server socket or data in the client sockets. It
notifies about the shutdown event to ServerListener, which results in a shutdown
request being sent to the request handler, which is either the user-defined handler
or WorkerPool.

If WorkerPool distribution manager is being used, it will shut down all the worker
threads when it receives the shutdown request. The threads shut down after the
request queue has been processed. After that, the WorkerPool calls the user-defined
request handler in the main thread to process the shutdown request.

Sequence diagram below illustrates the initiation and handling of shutdown on
different levels of worker thread architecture.

30

MagiCServer++
Using the server framework Version 0.1 Developer's Guide

After the shutdown request has been processed, ServerListener closes any
remaining open client connections and then the server socket.

Finally, Listener returns from the listen() method.

5.4. Other programming issues

5.4.1. Listener timeouts

Setting a Listener timeout is important, because when a Listener is waiting events
on sockets, it cannot handle events from other threads. Listeners normally awaken
only when there arrives new connection request or data arrives in a socket. This is
typically relevant for shutdown. If a request processor working in some thread
processes a shutdown command, it must put the Listeners in shutdown state and
then wait for it to awaken and actually start the shutdown.

The default timeout for Listener is one second.

31

WorkerListener
Server-
Listener

Worker-
Pool

Worker
Request
Handler

s tartShutdown()

s hutdown()

proces s ()

proces s ()

proces s ()

des criptorEvent()

exit

delete

proces s ()

MagiCServer++
Developer's Guide Version 0.1 Examples

Chapter 6 Examples

This chapter provides descriptions of some simple server examples implemented
with MagiCServer++.

6.1. Overview
Two sample server applications that use MagiCServer++ library are provided:

• Single-thread listener architecture (smrvsample_listener)

• Worker thread architecture (smrvsample_worker)

The actual application logic of the sample servers is identical and implemented in a
common library that acts as a framework for the sample servers. This architecture is
illustrated in the figure below:

The sample server framework implements a main() program that parses command-
line arguments and calls the actual sample server main program. The main program

32

Sample Servers

Sample Server Main Program

Sample Server
Framework

MagiCServer
Framework

Clients

ServerListener

Request Handler

ClientsClients
Response

Request

TCP or UDP

Sample Server
Framework

Sample Server Main Program

Run

C
on

fi
gu

re
 &

 R
un

MagiCServer++
Examples Version 0.1 Developer's Guide

creates and initalizes the request handler, log, and a listener, and then runs the
listener.

6.1.1. Directory hierarchy

Below is the directory tree of the examples directory with all the contained files.
The three modules, the library module and two sample application modules, are
emphasized.

The makefiles use the MagiCBuild build system to recursively compile the modules
and their submodules.

6.2. Common sample server library
This tiny library implements all the application logic of a server by subclassing the
RequestHandler class and reimplementing the process() method.

This sample server library forms an application framework that is used by the actual
sample server applications presented below.

6.2.1. Main program

The library acts as an application framework by implementing the main() program
internally. When the program starts, it parses the command-line arguments and then
calls a serverMain() function with those parameters. The serverMain()
function must be defined by the user of the library or otherwise a linkage error

33

<topdir>

examples

examples.mk

libmsrvsample

msrvsample_listener

msrvsample_worker

include

libmsrvsample.mk

msrvsamplemain.h

msrvsamplehandler.h

src

samplemain.cc

samplehandler.cc

src
samplelistener.cc

src

sampleworker.cc

Examples recursive makefile

Common sample l ibrary

Common definitions

Sample request handler c lass

M ain program

Sample request handler

S ingle-thread l istener serv er

W orker thread serv er

msrvsample_listener.mk

msrvsample_worker.mk M akefile

M akefile

M akefile

Server implementa tion

Header files

Source files

Source files

Source files

Server implementa tion

MagiCServer++
Developer's Guide Version 0.1 Examples

occurs.

int main (int argc, char* argv[])
{
 int exitValue = 0;
 TestArgs args;

 /* Parse command-line arguments. */
 exitValue = parse_cmd (argc, argv, args);
 if (exitValue)
 return exitValue;

 try {
 /* Initialize and run the server. */
 exitValue = serverMain (args);
 } catch (std::runtime_error& e) {
 fprintf (stderr, "Exception caught "
 "at main level: %s\n",
 (const char*) e.what ());
 }

 return exitValue;
}

The main program also catches any uncaught exceptions and prints the error
message stored in the exception object to standard error.

6.2.2. Command-line parser

The command-line parser parses the command-line arguments given to the
application and sets the appropriate configuration parameters in the TestArgs struct.
The struct is passed to the serverMain() main program of the actual sample
server.

The command-line parser accepts the following options:

Option Description

-h Prints help.

-d Runs the server as a daemon by detaching it from the terminal. The
standard output will be redirected to /dev/null.

-udp Creates an UDP (User Datagram Protocol) server socket instead of
the default TCP socket.

-p <portno> Sets the port number of the server. The default is 1234. The port
number must be greater than 1000 for normal users; only root can
run the server with a smaller number.

-l <logfile> Sets the log file. If the log file name is not given with this option, the
log is written to standard output.

34

MagiCServer++
Examples Version 0.1 Developer's Guide

6.2.3. Application logic

The actual application logic or "business logic" is implemented in the MyHandler
event handler, in file examples/libmsrvsample/src/samplehandler.cc.

The request handler does the following actions when it receices requests:

Request Action

New connection Send welcome message to new client

Data (message) Both TCP and UDP requests are handled in the same way.
If the message is a "quit" or "shutdown" command, it is executed.
Otherwise, send a response to the client and a notification to all other clients.

Connection lost Nothing (except write to log)

Shutdown Send a shutdown notification to all connected clients.

6.3. Single-thread listener server
The sample server based on a single-thread listener architecture uses the sample
server framework described above and implements the serverMain() function that
initializes the ServerListener and then runs it.

int serverMain (const TestArgs& args)
{
 MSrvResult msrvResult = 0;
 int exitValue = 0;

 /* Open log to file or standard output. */
 LogFile log (args.logfile? args.logfile : "-");
 log.message ("SMPLLIST", Log::Audit, 0, "Log opened.");

 /* Put process in background, if requested. */
 if (args.daemonize)
 if (daemon (0, 0) < 0) {
 log.message ("SMPLLIST", Log::Critical, 0,
 "Daemonization failed with error %d; %s.",
 errno, strerror (errno));
 }

 /* Create transaction handler. */
 MyHandler myHandler;

 /* Create and configure server object. */
 ServerListener myServer;
 myServer.setLog (log);
 myServer.setHandler (myHandler);

 /* Create a server socket and bind it to an address. */
 msrvResult = myServer.bind (args.portno,
 args.udp? ServerListener::UDP :
 ServerListener::TCP,
 0);

35

MagiCServer++
Developer's Guide Version 0.1 Examples

 if (msrvResult < 0) {
 log.message ("SMPLLIST", Log::Critical, 0,
 "Server initialization failed with error %d.",
 -msrvResult);
 exitValue = MSRVTEST_RETVAL_INIT_FAILED;
 }

 if (msrvResult >= 0) {
 /* Enter the listener loop. */
 msrvResult = myServer.listen ();
 if (msrvResult < 0) {
 log.message ("SMPLLIST", Log::Critical, 0,
 "Server execution failed with error %d.",
 -msrvResult);
 return MSRVTEST_RETVAL_EXEC_FAILED;
 }
 }

 /* Server has stopped. */
 log.message ("SMPLLIST", Log::Audit, 0,
 "Server stopped. Closing log and exiting.");

 return exitValue;
}

6.3.1. Sample session

Below is a screenshot of a sample session with the single-thread listener sample
server. On left, we have two client sessions, and on right, we have server run with
log printed to standard output.

The example uses the 'nc' (netcat) system utility as a client application to connect
to the server. The following steps can be observed:

1. The server is started in the right window and is bound to TCP port 1234.

36

MagiCServer++
Examples Version 0.1 Developer's Guide

2. Both clients try to connect to the server.

3. Server accepts the connections and greets the clients with a welcome
message (001) containing the host name (here morgoth) and IP address
(here 127.0.0.1) of the client.

4. The client in upper left window sends a "hello" request to the server.

5. Server receives the request, sends a response (004), and also notifies the
other client with a message (005).

6. The client in lower left window sends a "shutdown" request to the server.

7. The server initializes shutdown, sends a shutdown message (003) to all the
clients, and closes the connections.

8. Finally, the server stops and exits.

6.4. Sample server using worker thread architecture
The sample server based on a worker thread architecture uses the sample server
framework described above and implements the serverMain() function that
initializes the ServerListener and then runs it.

The implementation of this architecture is almost identical to the single-thread
model, except for the hooking of WorkerPool as a distribution manager between the
ServerListener and the actual request handler.

...
/* Create transaction handler. */
MyHandler myHandler;

/* Create a worker thread pool with 10 worker threads. */
WorkerPool workers (myHandler, log, 10);

/* Create and configure server object. */
ServerListener myServer;
myServer.setHandler (workers);
...

6.4.1. Sample session

Below is a screenshot of a sample session with the worker thread sample server. On
left, we have two client sessions, and on right, we have server run with log printed
to standard output.

37

MagiCServer++
Developer's Guide Version 0.1 Examples

The execution of the server goes exactly as in the single-thread listener case above,
except that we can see in the server log that the server starts 10 worker threads in
the startup, joins them during the shutdown, and processes the final shutdown
request in the main thread.

38

MagiCServer++
MagiCServer++ development Version 0.1 Developer's Guide

Chapter 7 MagiCServer++ development

This chapter gives information for developers interested in making changes to the
MagiCServer++ framework.

7.1. Build system
The MagiCBuild build system is used for compiling MagiCServer++. The build
system consists of a framework of makefiles for GNU Make, and a configuration
script. MagiCBuild has a user interface very similar to the commonly used
configuration scripts generated with GNU Autoconf and GNU Automake.

The build system is currently undocumented.

7.2. Reference documentation
Reference Manual includes class documentation for all the C++ classes in the
library. It is generated with Doxygen documentation generator. Doxygen reads the
source and header files and generates documentation in HTML and PDF formats, as
well as man pages.

The Reference Manual is generated with make target "make dox".

7.3. Coding conventions
MagiCServer++ source code and headers follow a few conventions, as provided
below. Also other coding conventions commonly used in Linux and UNIX C++ and
C programming should be used.

7.3.1. Code formatting

Indentation depth of 4 is used. This is usually done with tabs with the tab length set
as 4 characters, but it can be done with spaces too. Opening brace is always written
in end of the line, except for the first brace in function. For example:

void myFunction ()
{
 if (a = 1) {

39

MagiCServer++
Developer's Guide Version 0.1 MagiCServer++ development

 hello();
 }
 else { /* Else statement on separate line. */
 foobar ();
 }

 switch (42) {
 case 42: { /* We use block here for local scope. */
 int i = 42;
 foobar ();
 } break; /* Break statement here. */
 }
}

7.3.2. Code comments

Classes, methods, and functions are commented using Doxygen compatible
notation. These code structures are preceded with a C-style comment block with 80
characters wide upper and lower border made with asterisks:

/***
 * Brief description.
 *
 * Longer description, which may take
 * several lines.
 *
 * \return Return value of method or function.
 **/

All Doxygen directives are available inside these comment blocks, as applicable for
each code structure type.

A typical class documentation would be as follows:

/***
 * Brief description of the class ...
 **/
class MyClass : public BaseClass {
 public:
 void someMethod (int anArg, bool otherArg);
 private:
 int mMyVariable; /**< Documentation for the variable. */
};

Methods are not documented in headers, but in source files. Doxygen supports this
form of documentation seamlessly.

/***
 * Brief description of the method ...
 ***/
void MyClass::someMethod (
 int anArg, /**< Documentation for anArg. */
 bool otherArg) /**< Documentation for otherArg. */
{
 ...
}

40

MagiCServer++
MagiCServer++ development Version 0.1 Developer's Guide

Code comments are made as follows:

{
 int localVariable = 0; /* Descr. of the variable 1. */
 bool otherVariable = false; /* Descr. of the variable 2. */

 /* Comment for some code part. */
 int result = functioncall (argument1, /* Comment. */
 argument2); /* Comment. */
}

It is not really relevant whether the source code comments are made with C or C++
style comments. The C comments may appear more clear than C++ comments. All
successive comment lines are intended at the same level, that is, their lining should
not appear ragged.

7.3.3. Naming conventions

Class and structure names begin with upper case letter. Function and method names
begin lower case. Words are indicated with capitalization of the first letter of each
word.

Names of constant values, typically defined as macros, are written in all upper case.

Variable names

Variable names begin lower case. They do not have any prefixes indicating type
("Hungarian notation") of the variable, except for the scope, ownership, and
reference type. The following prefixes apply:

Prefix Example Description

m int mMember Member variable in a class

p int* pPointer Pointer to an owned object

r int& rReference Reference

rp int* rpPointer "Reference" pointer to not object not owned

s static int sVariable Static variable

Ownership means basicly responsibility of destruction; the owner of an object has
the responsibility to destroy it when it itself is destroyed. References (as in int&) are
never owned by the referencing object, and the same meaning of reference applies
to pointed objects not owned.

The prefixes can be combined in the following ways:

Prefix Example Description

mr int& mrReference Member reference variable

mp int* pPointer Member pointer to an owned object

41

MagiCServer++
Developer's Guide Version 0.1 MagiCServer++ development

Prefix Example Description

mrp int* mrpPointer Member pointer to an object that is not owned

smp static int* smpVariable Static member pointer to an owned object

...and so on.

The actual type of variables and constants should be clear from the context.
Variables can have a natural type specifier as postfix. For example:

Type Example Description

Socket socket Class name as variable name, when no semantics are
bound to the variable.

Socket clientSocket Semantics of the variable are given in prefix, class
name as suffix.

Array<Thread> threads Array type indicated with plural suffix (s)

int threadCount Quantities indicated with "Count", or if semantics are
clear, with plural suffix "-s".

bool mIsShutdown "Is" indicates truth value

42

MagiCServer++
Known bugs and limitations Version 0.1 Developer's Guide

Chapter 8 Known bugs and limitations

8.1. Bugs
MagiCServer++ has the following known bugs.

• The build system prints some shell execution errors. This is a problem of
the build system.

• The gethostbyaddr() function used in the sample request handler is not
thread safe because the pointer it returns refers to a static data structure.
Corruption may occur if two threads use the function within a very short
time window.

• There is a small time window between the time a Worker checks if the
Listener is in shutdown state and going to wait state. If the shutdown
broadcast occurs in this window, the worker won't know about it and goes
to eternal sleep.

• There probably are a few memory leaks, as the software has not been tested
for those.

• Reference Manual is rather messy and contains many unwanted entries.
This is due to limitations of the Doxygen documentation generator.

• Error checking, especially for out of memory situations, is not complete.

8.2. Limitations
MagiCServer++ has the following limitations.

• ServerListener can handle only one listening server socket. This limitation
can be circumvented by running multiple ServerListeners in multiple
threads, while using a common request handler.

• Some relevant signals should be handled. Especially, a signal that would
awaken the Listener from select(), for example when a request handler
has ordered shutdown. Currently this situation is handled with a select()
timeout.

43

MagiCServer++
Developer's Guide Version 0.1 Known bugs and limitations

• There is no option in Log to open log to system log (syslog).

• The server port number can not changed and the server socket can not be
reconfigured without shutting down and restarting the server.

• Shutdown doesn't allow a forced shutdown that ignores the remaining
requests in request queue.

• Changing the distribution architecture run-time is not supported, though it
possibly can be done.

• There is no mechanism to terminate a runaway thread.

• Inheriting Connection and ConnectionFactory objects is not demonstrated
in examples.

• STL is still used for the runtime-error exception class.

44

MagiCServer++
GNU Free Documentation License Version 0.1 Developer's Guide

Chapter 9 GNU Free Documentation
License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same
sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is
published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim,
or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in
the notice that says that the Document is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover
Text may be at most 25 words.

45

MagiCServer++
Developer's Guide Version 0.1 GNU Free Documentation License

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is
available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input
format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title
Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in
parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned
below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section
when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document.
These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this
License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than
100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-
readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated version of the Document.

46

MagiCServer++
GNU Free Documentation License Version 0.1 Developer's Guide

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous
versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the
Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version
under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license
notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and
likewise the network locations given in the Document for previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the
section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the
equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by
various parties--for example, statements of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to
the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or
to assert or imply endorsement of any Modified Version.

47

MagiCServer++
Developer's Guide Version 0.1 GNU Free Documentation License

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced
with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section
Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications".
You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the
individual copies of this License in the various documents with a single copy that is included in the collection, provided that
you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume
of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to
limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one
half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of
section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you
may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to
Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any
other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

48

MagiCServer++
GNU Free Documentation License Version 0.1 Developer's Guide

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time.
Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered
version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of
that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by
the Free Software Foundation.

49

MagiCServer++
Developer's Guide Version 0.1 GNU Free Documentation License

Alphabetical Index

A
accept() 12p., 15
ad hoc fork 15
architectures 10pp., 15p.

B
buffer 19, 24p.
bugs 6, 43
build system 33, 39, 43

C
close() 13
coding conventions 39
command-line arguments 22, 32pp.
compiling 7p., 39
configuration 8, 22, 34, 39
configure 7, 9, 21, 29, 35, 37
Configuring 7
ConnectionFactory 18, 44
connectionless 5, 12
ConnectionLost 27p.
ConnectionLostRequest 23pp., 27
conventions 39, 41
CPU 11
create() 18

D
data storage 11
database 10pp., 22
database connectivity 10p.
Datagram 5, 27p., 34
DatagramRequest 23p., 27
dependencies 7
descriptorEvent() 18
descriptors 12, 18
directory 7pp., 33
Directory hierarchy 33
distribution 6, 11p., 15pp., 20pp., 30, 37, 44, 46pp.
documentation generator 39, 43
Doxygen 39p., 43

E
error 5, 28pp., 33pp.
event handler 18, 35

F
fork() 15
Framework 1p., 5, 8, 10, 12, 17p., 22, 32p., 35, 37, 39
Free Software Foundation 2, 45, 49
FTP 11

G
gethostbyaddr() 43
gettype() 27
GNU Autoconf 39

GNU Automake 39
GNU Free Documentation License 2, 6, 45, 49
GNU Make 6, 39
GPL 6

H
HTML 39, 46
http 11, 49
Hungarian notation 41

I
Indentation depth 39
installing 7pp.

L
LGPL 6
listen() 30p.
Listener 8, 12, 14p., 17p., 22p., 25p., 30pp., 35p., 38, 43
log 6, 11, 21, 25p., 28pp., 33pp., 44
logging 5p., 11, 29

M
MagiCBuild 33, 39
main program 28, 32pp.
main() 32p.
memory leaks 43
message() 29
module name 28p.

N
netcat 36
NewConnection 26pp.
NewConnectionRequest 23p., 27

O
ODBC 11
operating system 6, 8
optional message code 28p.
output directory 8
overhead 13, 15

P
path 7, 9
PDF 39, 46
Persistence 12
poll() 12
port number 29, 34, 44
pre-fork 15
process() 20, 23, 33
processor 8, 12, 31
Protocol 11p., 29, 34

R
read() 12p.
recvfrom() 12
Reference Manual 39, 43

50

MagiCServer++
GNU Free Documentation License Version 0.1 Developer's Guide

Request 12, 17
request handler 11, 19pp., 23pp., 33, 35, 37, 43
RequestHandler 17, 19p., 23p., 27, 33
Response time 12

S
sample server library 33
sample session 36p.
screenshot 36p.
select() 12p., 43
server architecture 10, 12, 17
ServerListener 6, 17pp., 23, 25p., 28pp., 35, 37, 43
serverMain() 33pp., 37
session handler 11
setConnectionFactory() 18
setRequestMask() 26
setTimeout() 26
severity 28p.
shell 7, 43
shutdown 5, 15, 23, 25pp., 30p., 35, 37p., 43p.
shutdown request 25p., 30p., 38
ShutdownRequest 23pp., 27
signal 6, 14p., 43
smrvsample_listener 32
smrvsample_worker 32
source 6pp., 39pp.
standard output 29, 34pp.

startShutdown() 25, 30
status change 12
StreamData 27p.
StreamDataRequest 23pp., 27
syslog 44
system log 44

T
tar 7
TCP 5, 12pp., 17pp., 23, 25, 28pp., 34pp.
thread 5, 12pp., 20p., 23, 26, 30pp., 35pp., 42pp.
timeout 13, 23, 26p., 31, 43
timeout request 26
timeoutEvent() 26
TimeoutRequest 23p., 26p.
Transparent 5p., 11, 17, 20, 46p.

U
UDP 5, 12, 15, 18, 23, 28p., 34p.

V
vertical log 11

W
Worker 14, 17
worker thread architecture 14p., 20, 32, 37
worker threads 15, 23, 30, 37p.
WorkerPool 17, 20p., 23, 26p., 30, 37

51

