MagiCServer++

Internet Programming Framework for C++

Version 0.1

Developer's Guide

Marko Gronroos (magi @iki.fi)

June 13th 2003

MagiCServer++
Developer's Guide Version 0.1 About this document

About this document

This document provides information about the MagiCServer++framework.

Copyright and License

Developer's Guide
MagiCServer++ version 0.1
Copyright (c) 2003 Marko Gronroos.

Permission is granted to copy, distribute and/or modify this document under the terms of theGNU
Free Documentation License, Version 1.2 or any later version published by theFree Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license isincluded in the section entitled "GNU Free Documentation Licensg'.

MagiCServer++
About this document Version 0.1 Developer's Guide

Table of Contents

ADOUL thiS AOCUMENL. ... ettt e e st e s neesae e 2
Chapter 1 INErO0UCTION. ...ttt b e bbb e e e e e ne e 5
1.1.SyStEM FEQUITEIMENTS.......eeiieeiieiteeieesteestteetee e ee et e eseebe e sreesseesseesseesreessaesnsesnseensesnneessesnseenseennesd 6
L2, LICENSING. ...ttt ettt ettt ettt sb e et b et b e e e e bt se e be st e nnenbe e e e nbenneennenneennennenneennes) 6

(O aF=T o1 = S 0 1S = 1 1T T S 7
2.1.0pening the SOUrCe PACKAJE..........cceererierieeieseesee ettt se e snesnnesneennesne]

P2 ©%o o 1 o 111 oo OSSPSR 4
2.3 COMPIING. ¢ttt R bbb n b e 7
PZ20C T8 I @0 o1 o] F= 1) 0 1 011 11 U | PP 8

P2 g = o o PR TRRRR 8

2. 5. UNINSLBIHTING. ..ttt ae et e e e e s ae e saeeeaeeaneeeteenneeneereenreens 9
Chapter 3 Server arChitECIUMNES........ooii i e e 10
S L OVEIVIBI. ...ttt ettt h et bttt st et e b e e it e b e e bt e a et e b e e Rt e bt e Re et e be e Rt et e nRe et e nne e e e nne s 10
3.2.Distribution @rChitECIUNE..........oivieie e 11
3.2.1.Single-thread listener arChiteCtUNE..........ccveeeieee e 12
3.2.2.Per-client thread arChiteCtUre...........c.ooier e 13
3.2.3.Listener thread arChitECIUIE.........cveieeeee ettt neeenes 14
3.2.4Worker thread arChiteCIUIE...........oo i 14
3.2.5.MUIti-ProCeSS arChITECIUNES.........ceieiiieeiieie ittt es 15
Chapter 4 MagiCServer++ ar ChiteCtural OVEr VIEW..........cceevuereenieeieniesieeee e s 17
g T g1 oo (U o1 o o RO S 17
A.2.LIStENEY FrAMEWOIK. ... eiiiiiiie ettt sttt st st e et e et e e beebeeneen 18

T N o] 4107 ot (0] USRS 18
S0 (U SRR STRRTR 19
4.5.Distribution With WOIKEI'S...........oeieiie et e srae e 20
Chapter 5 Usingthe server frameworK..........cooeoiiiiiiieieee e 22
ST O Y= T ST 22
5.2.Writing arequest NANAIEL...........cooiiiie et eae e saee s e e saeeenneeea 23
5.2.1.Request SPECITIC NANAIET ..o 23
5.2.2.Generic requeSst NaNIEYooii et 27
5.3.MaAIN GPPHICALTON. ...ttt e b e e e 28
LG T @ o 1= a1 o 1 oo OSSR 28
5.3.2.Creating, initializing, and running ServerLiStener..........ccoveeierininiene e 29
B.3.3.SNULLING OWN......ceeeieeeece ettt ettt e e r e sreesre et e e nteeneesneeneennas 30
5.4.0ther Programming ISSUES........cueeiuieiiuieesreesteseiteseseeessseessseeessseeassesassesesssessnsessaseessssessnsenans 31
5.4, 1. LIStENEN TIMEOULS......cotiitiiie ittt sttt sttt s b et sttt ae et e e s be e e nes 31
Chapter 6 EXAMPIES......oo ottt e b et e e sre e e re e erae e enee e 32
LI O Y= TS 32
6.1.1.DIreCtOry NIEIAICNY......cceeiieie ettt b e neesreeseeneens 33

MagiCServer++

Developer's Guide Version 0.1 About this document
6.2.CommON SAMPIE SEIVETN [TDIAIY......ccuiiiieiire e 33
A =T a1 o 0o | =T OSSR 33
6.2.2.COMMANG-TINE PAISEY.........eeiiitieie sttt et eae b sne e 34
6.2.3. APPIICALION TOGIC.....eeeieeiieeiieecee sttt ettt et e e steesseesneesneeenneanne s 35
6.3.SiNGIE-thread [ISLENEI SEIVEN ..o sr e 35
6.3. 1. SAMPIE SESSION.....cueieuiieie ettt te et ettt et e e st e e e steeseesreesseeseeseesseesseeseeneennaesneenseennens 36
6.4.Sample server using worker thread architeCture............oooviiiiiiecieicee e 37
6.4.1.SAMPIE SESSION.....ueitiiieieeiiete ettt ettt sttt et e e e b e sb e bt s e et e nb et e sne e 37
Chapter 7 MagiCServer++ deVelOPMENT........cccooiiiiiiieiereere e 39
T L. BUITA SYSLEIM.....cceee ettt e s e e s re e s st e be e se e s e eteenseeteeseanseenteenneeneeenns 39
7.2.Reference dOCUMENTALION.........coiuiiiirie ettt s e e sre e e e e 39
ST @ o [oo I el0] 01V7= o1 (o] RS 39
A0S T8 I o To L= £ 1 = 411 o PSR 39
7.3.2.C008 COMMIBINES.......eete ittt ettt sttt b et b et e b s be e besse e s e sbeensenbesneenae s 40
7.3.3.NaMING CONVENLIONS........eeiieiieiieeiieeiteeste et eee et s e et e e te e e e ae s e e sreesae e teenseenneeneesnnesneas 41
Chapter 8 Known bugsand lImMitatioNS..........cceiiiiiieiiiiie e 43
LS 0= 0 0 TR URTOTRTOPRTO 43
8.2 LIMITALIONS. .. .cueeeeeeieeie sttt e et e st e s e teeseesseesbeeneesseenseeneeaneesseenseensesseensennensnenns 43
Chapter 9 GNU Free Documentation LICENSE......ccciiiiieeiiie e cciee et eiee et 45

MagiCServer++
Introduction Version 0.1 Developer's Guide

Chapter 1 Introduction

MagiCServer++ is aframework for implementing efficient and flexible Internet
server applications. It supports both connection-based TCP and connectionless UDP
datagram protocols in atransparent fashion.

Clients Response

TCPor UDP
Y

M agiCServer++ Framework

Request
Y

User Application

The main task of the framework isto listen to a server socket and a number of
connected TCP client sockets. When a client connects to the server socket, a new
connection socket is created and added to the list of established client sockets.
When data arrives from a client to a connection socket, it isrelayed to the user
application as arequest. The application can respond, if necessary. The user
application is notified also about other important events, such a establishment of a
new connection, losing an old one, and initiation of server shutdown.

The framework isimplemented as a C++ library, which has been kept as
independent from other libraries as possible, to make reuse easier. Error handling is
done with error codes; exceptions are not used except for constructors. For data
structures, low-level C data structures are used for most tasks. Simple support tools
are provided for logging, threading, and queues.

Features
TCP and UDP
Threading and thread locking (Thread and ThreadL ock)

MagiCServer++
Developer's Guide Version 0.1 Introduction

Easy-to-use logging facility (Log)

Transparent distribution interfaces

Limitations
Only one server socket is currently supported in ServerListener.
No support for multi-process servers
No C++ wrapper for sockets

For amore complete list of limitations, see the chapter Known bugs and limitations.

1.1. System requirements
MagiCServer++ has the following system requirements:
GNU/Linux operating system
g++ (GCC) compiler, version 2.96, 3.0, or higher
pthread library
GNU Make

Platforms

The following Linux distributions have been tested:

Distribution Notes

Red Hat Linux 9 g++ 3.2

Red Hat Linux 7.3 g++ 2.96 (some pthread functions not enabled by default)
Mandrake 7.0 g++2.96

Debian 2.2 + upgrades g++ 3.3

1.2. Licensing

The library part of MagiCServer++ islicensed under the GNU Lesser General
Public License (LGPL), also called asGNU Library General Public License.

The sample programs are licensed under the GNU General Public License (GPL).

The GNU General Public License and GNU Lesser General Public License are
given in the source package in filesdocs/ COPYI NGand docs/ COPYI NG. LI B.

This documentation is licensed under the GNU Free Documentation License, as
presented in the end of this document.

MagiCServer++
Installing Version 0.1 Developer's Guide

Chapter 2 Installing

This chapter describes the installation procedure of MagiCServer++ library,
including configuration, compilation, actually installing, anduninstalling.

2.1. Opening the source package

The source code is provided asat ar package compressed withbz2. You can
unpack it with the following shell command:

tar jxf magi cserver++-0. lbetal.tar.bz2

Thiswill unpack the source code in an appropriate subdirectory under the current
directory.

2.2. Configuring

To configure the source code for compilation, change to the source directory and
run the conf i gur e script asfollows:

cd magi cserver ++- 0. lbet al
./ configure

Optionally, if you wish to later install the package (headers and library) to some
other than the default directory, you need to set the installation path with the - -
prefi x attribute:

./configure --prefix=/usr/loca

The default path for root user is/ usr, and for other users their home directory.

2.3. Compiling

Include dependencies have to be determined before actual compiling, with the
following command:

make deps

This may produce some errors, which are usually not relevant. Making
dependenciesisimportant if you intend to recompile the sources after making

MagiCServer++
Developer's Guide Version 0.1 Installing

changes to them.
The package is compiled with the following simple command:
make

To build the reference manual (not usually needed), issue command "make dox".

2.3.1. Compilation output

The output binaries, documentation, and any intermediate files of the compilation
will be written to an output directory tree that is separate from the source tree.

The default output directory is located in:
[t mp/ $USER/ bui | d/ <ar chi tecture>/rel ease

where $USER is the user name and architecture is the operating system and
processor architecture, for example, Li nux- i 686.

For example, binaries are found under thebi n subdirectory:

cd /tnp/ $USER/ bui | d/ Li nux-i 686/ rel ease/ bi n
./ mervsanpl e_| i st ener

2.4. Installing

After compiling, you can be install the package under the configured installation
directory (see above) by issuing the following command in the source directory:

make i nstall

Thiswill copy the output library binaries and header files to appropriate
subdirectories under the installation directory.

Directory Description
<instdir>/lib Libraries
<instdir>/bin Binaries

<i nstdir>/include/ nmagi cserver Headers

Notice that any documentation that comes with the source package is currently not
installed anywhere.

After installation, you can clean the output directory tree with "make cl ean”
command in the top-level source directory to remove all the temporary files. You do
not need to clean the output, but you might want to free the disk space.

MagiCServer++
Installing Version 0.1 Developer's Guide

2.5. Uninstalling

Y ou can remove the installation by giving the following command in thesource
directory:

make uni nst al |

Thisremoves the installed files and directories only if the installation path has not
been changed with conf i gur e script after installing.

MagiCServer++

Developer's Guide Version 0.1 Server architectures

Chapter 3 Server architectures

This chapter describes a general overview to server architectures made possible by
MagiCServer++ framework.

Instructions for actually using MagiCServer++ are provided in the subsequent
chapters.

3.1. Overview

Figure below presents a generic server architecture, with communications

framework tasks shown in yellow, application-specific modules shown in pale blue,
database connectivity interface in orange, and databases in blue.

Clients "

y Requests
Communications/ Request Listener

Distribution M anager

Log

Request Handler M anager

Protocol Filter (s)

Transaction Session
Handler Handler

Database Connectivity

Queriei

The "clients" represent any communicating entities, such as client application or
serversin amulti-tier model.

10

MagiCServer++
Server architectures Version 0.1 Developer's Guide

The communications or request listening layer isthe most low-level layer that
listens for new connections or data from clients.

Distribution manager is an application-non-specific layer that allocates system
resources to request handling by distributing requests to different threads or
processes. The threads and processes can execute in asingle or multiple CPUs in
the same computer, and in some distributed processing architectures processes can
exist also in separate computers. Choices of distribution management architectures
for different tasks are described in detail in subsequent sections.

The distribution manager communicates requests to the application-specificrequest
handler. The request handler is not afunctional part as such, but merely an
interface through which the requests are communicated.

All communication uses many different communication protocolson different
levels. Application-level communication protocol is the highest-level protocol,
handling application-specific requests. Examples of such protocols areHTTPin a
web server, FTPin afile server, and so on.

Transaction handler contains the core application-specific logic for handling
requests. Often they too have a hierarchy, typically with atransaction manager that
classifies and distributes requests to specific handlers.

The transaction handler often incorporates asession handler, which handles tasks
and data concerning client sessions. In some applications, this enables dynamic
interplay between clients. Many applications do not need to track sessions.

Most servers require access to data storage, either alocal file system or aremote
database. For databases, database connectivity interface layer isrequired for
access to databases. Transparent database connectivity adapter interfaces that can be
used to access different types of databases include systems such asODBC, JDBC,
etc.

L ogging described in the diagram above isavertical log, that is, all levels of the
application write to the samelog. In small applications, logs are typically written to
alocal file system, but in large systems they are often written to adatabase.

3.2. Distribution architecture

Different server architecturesfit in different computing tasks and hardware
environments. We can observe at least the following case-specific factors for
choosing between distribution architectures:

Frequency and CPU burden of client requests

Number and frequency of new client sessions

11

MagiCServer++
Developer's Guide Version 0.1 Server architectures

Persistence of client sessions
Response time requirements
Number of processors

Back-end database requirements
Request protocol used: TCP or UDP

All these differences affect the choice of theserver architecturefor a particular task.
Number of processorsis certainly an important factor, as taking advantage of
multiple CPUs is not possible within a singlethread. However, threading is useful
also for most single processor situations. For example, if some requests are heavy to
process, but short response times would be preferred for light requests. In such
cases, it is best to use threading to allow the scheduler to give time slices to light
requests.

On the other hand, if client connections are very short -- and especially if requests
are done with connectionless UDP datagrams -- and if they are very light and very
frequent, it may be best not to use an advanced listening framework at al. In such a
case, simpleaccept () andread() loopswould suffice for aTCP server and
recvfrom) loop for aUDP server.

MagiCServer++ has currently no support for multiple-processdistribution
architectures, so they are not considered in this treatment.

3.2.1. Single-thread listener architecture

Many serversrun in asinglethread of execution. Thisis often agood approach in
single-processor machines if client requests are light to process. No time is wasted
in distributing requests or context switches. This architecture can be used for both
TCP and UDP servers.

UNIX-based systems allow two low-level mechanisms for implementing efficient
single-thread servers, one based on thesel ect () function and another based on

pol | (). The latter mechanism is not discussed here. Thesel ect () function allows
to wait, that is, to "listen" for status changes in a set of descriptors, for example file
or socket descriptors. The exact meaning of status change depends on the socket

type.

The listener needs to maintain alist of different types of descriptors (sockets) it is
listening. When a status change occurs for alistening TCP server socket, it can only
mean that athe listener must use the accept () function to establish the connection.
If the socket isan UDP server socket, the status change indicates arrival of new data
in the socket. If it isaconnected client socket, it can also indicate arrival of data, but
also breaking of connection.

When request data arrives on a socket, the server can read it, process it, and send a

12

MagiCServer++
Server architectures Version 0.1 Developer's Guide

response back to the client. After the socket events are handled, the server returns
back to the sel ect () loop.

The activities during the execution of asinglethread server are illustrated below:

Handle
Connection Lost

I nitialize

Accept New
Connection

TCP server

Socket status

Shutdown UDP server

Yes
Handlt—?-)-—(Read Data)
Transaction

This architecture type isimplemented in MagiCServer++. For more details, please
see the following chapters.

3.2.2. Per-client thread architecture

In a"per-client thread architecture”, each client connection has its ownthread. The
task of the main thread is ssimply to accept new connections, which can be donein a
trivial accept () loop. When anew connection is accepted, a new thread is created
and the main thread can immediately return to theaccept () loop. The threads,
each handling one client, execute in asimpler ead() loop that receives data from
the client and send responses. A client thread exits when the connection to the client
isterminated, either intentionally withcl ose() or because the connection was lost.

This architecture is mostly suitable for cases where client sessions are rather long,

as creation of the client threads can take considerably long, even hundreds of
milliseconds. Context switches between threads take someoverhead, so many
threads alot of time wasted in context switching. Operating systems also have limits
on the number of threads, so this architecture can't be used if the maximum number
of simultaneous connections can exceed those limits. In addition, threads also take
some memory overhead, typically about 16 kilobytes in Linux.

A read() loop can pull datain very fast and make quick responses with little
latency. Theread() function has no timeout mechanism, which can lead to
problems. Using sel ect () for just one socket is one solution.

This architecture isonly applicable to TCP servers.

13

MagiCServer++
Developer's Guide Version 0.1 Server architectures

3.2.3. Listener thread architecture

In alistener thread architecture, the main thread listens the server socket for new
connections. When one arrives, it accepts the connection and passes the TCP
connection socket to alistener in another thread (or a pool of threads). There can be
one connection listener for each connection (atrivia case) or asinglethread can
handle requests from multiple client connections.

This architecture is only applicable to TCP servers.

3.2.4. Worker thread architecture

The worker thread architecture is much like the single-thread listener architecture.
The server socket and the client sockets are listened and otherwise managed in the
listener thread. The difference isthat the requests are passed to other, "worker",
threads to process.

The activities of aworker thread server areillustrated in the diagram below:

Listener thread Worker threads

Create
Worker Threads

Awaken Wait for

Dequeue and
Handle Request

Shutdown
Join threads Exit thread

The requests are queued in thelistener thread. The threads normally sleep in wait
state, waiting for asignal. When the listener thread inserts a request in the queue, it
awakens one of the sleeping threads to process the request. Also, when the main

14

MagiCServer++
Server architectures Version 0.1 Developer's Guide

thread has started shutdown, it broadcast a signal to awaken all the threads to exit
them.

Worker thread architecture is especially useful when most of the workload isin
processing requests. There is some overhead in creating request objects and queuing
them for the worker threads to process, so this architecture may not be best if al the
requests are very light and very frequent.

While the worker thread architecture excellent for TCP servers, it isthe only
sensible threaded architecture for UDP servers.

3.2.5. Multi-process architectures

Threads are arelatively new concept in Linux and UNIX server programming. Most
existing servers do not use threads for distribution and concurrency, but multiple
processes. Using processes instead of threads has both very big advantages and
disadvantages. A very important advantage is that each child process runsin its own
protected data memory segment so memory corruption in one process does not
crash the entire server. Even more advantageously, this model also protects the
server effectively from segmentation faults and other crashes.

The most traditional way to implement a multi-process server isan "ad hoc fork"
architecture where we accept new connectionsinaccept () loop inthe main
process. When anew connection is established, the main process forks (withf or k
()) to create a child process to handle the client session. The child exits after the
connection is closed. This model is very heavy, as the creation of a new process
with fork can take considerably long time.

A very similar way, "pre-fork" architecture, isto first create the server listener
socket in the main process and then fork a number of child processes that al share
the same server socket. They all enter anaccept () loop that accepts connections.
After accepting aclient, the child process handles the entire client session and then
returns to theaccept () loop. This architecture have some obvious variants. Each
child process can have alistener loop as we had above in the single-thread model.
Each of such child processes can also have an internal distribution mechanism using
threads. The main process can accept new connections and process requests just like
the children do. Thisis, however, not recommended because if the main process
crashes, the server crashes. It istherefore best that the main process only takes care
of watching over the child processes, re-spawning them if they crash, and other
administrative tasks.

The disadvantage of process-based distribution is that the processes do not normally
use a common data memory segment, which is a necessary requirement for many
kinds of servers. This problem ismore or less easy to solve by using shared memory
or other inter-process communication, but these solutions easily bring back the
initial problem -- data corruption.

15

MagiCServer++
Developer's Guide Version 0.1 Server architectures

MagiCServer++ does not implement any multi-process architectures, so thistopic is
not discussed any further. One reason for this omission is that, because the
processes have separate data segments, a process-based distribution architecture can
not be done as transparently as the thread-based distribution can be done.

16

MagiCServer++
Version 0.1

MagiCServer++ architectural overview

Developer's Guide

Chapter 4
overview

MagiCServer++ architectural

This chapter provides an overview of the general architecture of MagiCServer++.

4.1. Introduction

The centerpiece of the framework isthe Listener object, which listens to a number
of server or client sockets. ServerListener is ahigher-level class that distinguishes
between server and TCP client sockets and manages TCP connections. When a
socket event occurs, it calls a user-defined RequestHandler with the request data
provided in a Request object. Each TCP client connection has an associated
Connection object, which the user application can inherit to store application-

specific connection data. Thisisillustrated in the figure below.

Clients

M agiCServer

———

Listener

Y

Request

descriptorevent()

ServerListener

process()

Connection

Response :

" > RequestH andler

" |Request Handler

User -defined

In addition, the framework provides an advanced distribution facility for threaded
servers, implemented with Worker Pool and Worker classes. Thisfacility has
transparent interfaces that enable effortless transition from one server architecture to

another.

17

MagiCServer++
Developer's Guide Version 0.1 MagiCServer++ architectural overview

4.2. Listener framework

The Listener object manages a set of descriptors that can have data associated with
them. It listens for descriptor events and, when one occurs, callsdescri pt or Event
(), Thismethod is an event handler that needs to be implemented by an inheritor.

. 0..* . 0..1 associated void* data object
Listener Descriptor

inherits
1]

server socket

. 0..* creates and handles O .
ServerListener Connection

1

sends | s Req u est

requests to

V

RequestH andler

The descriptors handled by the Listener can actually be any file descriptors such as
files, pipes, or sockets. TheListener class doesn't know anything about sockets or

socket types (server or client) or Connection objects. These are semantics attached
to the descriptors and their associated data by the ServerListener class.

ServerListener inherits Listener to give the descriptors a specific meaning: they are
sockets. One of the sockets is the server socket, which is can be either aTCP or
UDP socket. TCP (stream) server socket can accept new client connections and
UDP server socket can receive datagrams. A TCP server has also a number of client
sockets. The Listener asjust as descriptors, but ServerListener identifies their
associated data object as Connection objects.

4.3. Connections

The connection objects are used for accessing connection-related data associated
with a socket and session handling. A user application can inherit the Connection
class to store application-specific data to connection objects. In such a case, the user
application also has to inherit ConnectionFactory, re-implement the cr eat e()
method, and give areference to the factory to ServerListener with

set Connect i onFact ory(). The ServerListener then uses the factory to create
user-defined connection objects.

18

MagiCServer++
MagiCServer++ architectural overview Version 0.1 Developer's Guide

User -Defined
Connection Class

Connection Kp—nherls

N _*

ServerListener creates creates

|12

User -Defined
Factory Class

ConnectionFactory Ki—inherits |

(Note that the diagram above illustrates logically relevant relationships of
MagiCServer++ classes; the actual implementation is dightly different.)

4.4, Requests

Requests are generated by the ServerListener and passed to the RequestHandler to
process. The request related classes have the following class relationships:

Connection

NewConnecti onRequest

1

ServerListener |

ConnectionRequest ConnectionL ostRequest

StreamDataRequest

— DataRequest

....... Request K DatagramRequest

sends

— TimeoutRequest

requests to

v

— ShutdownRequest

RequestH andler

The ConnectionRequest class is associated with an established TCP client
connection object, to provide its inheritors access to that object. The abstract
DataRequest class contains a data buffer containing request data read from the
socket by ServerListener.

After being processed, the requests are destroyed by therequest handler.

The semantics of the various requests are detailed in next chapter.

19

MagiCServer++
Developer's Guide Version 0.1 MagiCServer++ architectural overview

4.5. Distribution with workers

MagiCServer++ provides one distribution mechanism, which is an implementation
of the worker thread architecture discussed in the previous chapter. For amore
general description of the distribution mechanism, please refer to the previous
chapter.

Distribution is done transparently using the WorkerPool class, which inherits and
therefore acts like aRequestHandler that receives requests from ServerListener.
This transparent chaining isillustrated in the following schematic diagram:

User-Defined

L'
ServerListener Request Handler

WorkerPool
(RequestH andler)

WorkerPool distributes the requests to workers that process them with a user-
defined request handler using exactly the samepr ocess() interfaces of
RequestHandler class as without the distribution.

The relevant class relationships are illustrated in the class diagram below:

ServerListener

SNds | e Req uest

requests to

v

RequestH andler

A
inherits
1 3 0.*

1 1.x 1
Worker ¢ WorkerPool @—— Queue<Request>

The RequestHandler referred by the ServerListener isaWorkerPool, which in
turn refers to a user-defined sub-class of RequestHandler. Each of the Worker
objects have an execution method that executes in its own thread, reading requests
from the queue and passing the to the user-defined request handler.

Note that the ownership of the Request objects changes several times during their

20

MagiCServer++
MagiCServer++ architectural overview Version 0.1 Developer's Guide

lifetime. ServerListener passes the ownership to the WorkerPool, which passesit to
the request queue, which passesiit to the Worker, which passes it to therequest
handler.

The following object collaboration diagram illustrates the handling of requests:

aRequest aRequest

create 0*

process push
— —

aServerListener aWorkerPool aQueue<Request>

i read from

I

aWorker

awakens one

\l process

aRequestHandler

The user of the worker pool distribution mechanism can chain the request handlers
asfollows:

/* Create transaction handler. */
MyHandl er nyHandl er;

/* Create a worker thread pool. */
Wor ker Pool workers (myHandl er, |og, 10);

/* Create and configure server object. */
Server Li stener nyServer (workers, & og);

21

MagiCServer++
Developer's Guide Version 0.1 Using the server framework

Chapter 5 Usingthe server framework

This chapter gives an introduction to programming server applications with
MagiCServer++ framework.

5.1. Overview

The following diagram illustrates the basic activities during the execution of a
server with alistener architecture. Distribution is not shown in this diagram.

Open log
Create & Initialize
Request Handler
Create & Initialize
Server Listener

Handle New
Connection

Handle
Transaction
Run andlée
Server Listener Reque

Shutdow

Handle
Handle onnection L os}
Errors

Handle
Shutdown

Initialization includes parsing possible command-line arguments, reading
configuration files, setting up the application-specific data structures, and
performing other application-specific tasks such asinitializing database
connections.

22

Using the server framework

MagiCServer++
Version 0.1 Developer's Guide

Other main tasks of the server execution are described in following sections.

5.2. Writing a request handler

A request handler is a class that inherits the RequestHandler class and
reimplements the generic pr ocess(Request *) method or any of the more specific
process() methods. The default implementation of pr ocess(Request *) isa
switchboard that casts the Request* to the proper subclasses and calls the
appropriate handler method.

5.2.1. Request specific handler

A request specific handler allows the default implementation of process(Request*)
to cast the Request pointer to proper subclass and call the appropriateprocess()
method. It also takes care of destructing the request object after processing.

Class Description

NewConnectionRequest A new TCP client connection has been accepted.

StreamDataRequest Data has arrived to TCP client socket. The data is automatically read
from the socket by ServerListener and can be retrieved from the
request object with getData() and dataLen() methods.

DatagramRequest Data has arrived to UDP server socket. The data is automatically read

ConnectionL ostRequest

ShutdownRequest

TimeoutRequest

from the socket by ServerListener and can be retrieved from the
request object with getData() and dataLen() methods.

Connection to aTCP client has been lost. The socket is closed. The
Connection object associated with the connection will be destroyed
after this request.

Shutdown of the server has been initiated. New connections will not
be accepted. Old connections are still open and therequest handler
can send a shutdown message to them and then close them. The
ServerListener exits after thisrequest is processed. If WorkerPool is
used, all Worker threads are exited before sending this request, which
is processed in the main thread.

Listener timeout counter has timed out.

Inheriting RequestHandler
Let usfirst look at the header for arequest handler:

#i ncl ude <Magi CServer ++/ nsrvr equest . h>

usi ng namespace Msrv;

/***

* Sanpl e request handl er

**/

23

MagiCServer++
Developer's Guide Version 0.1 Using the server framework

class MyHandl er : public Request Handl er {

publi c:
MyHandl er {r= ... *;}
{/* ... }

()
Vi rtual ~MyHandl er ()

/* Rei npl ement ati ons */

MSrvResul t request (NewConnecti onRequest* request);
MBrvResul t request (ConnectionlLost Request* request);
MSrvResul t request (StreanDat aRequest* request);
MBrvResul t request (DatagranRequest* request);
MSrvResul t request (ShutdownRequest* request);
MBrvResul t request (Timeout Request* request);

s

Notice that the M Srv name space needs to be used for accessing classesin the
MagiCServer++ library. Y ou can do it with the "usi ng" directive, as above, or by
using the MBr v: : name space specifier for all MagiCServer++ classes.

The constructor should handle any application-specific initialization and the
destructor destruction. Inheritor can naturally have any application-specific member
variables.

New Connection Request

The following request handler example resolves the host name of the connected
client and sends it a welcome message.

MSrvResul t MyHandl er: : process (NewConnecti onRequest & r Request)

/* Resol ve host nane. */

struct hostent* host = gethostbyaddr (
& Request . connecti on() . address().si n_addr,
si zeof (in_addr),
AF_I NET) ;

/* Send wel cone nmessage to the client. */
if (host) {
char nmsg[MYLEN_OQUTPUT_BUFFER_SI ZE] ;
snprintf (msg, MYLEN OUTPUT BUFFER S| ZE
"001 Hello, %!\n",
host - >h_nane) ;
wite (rRequest.socket(), nsg, strlen (nsg));

}

return O;

Connection Lost Request

The connection lost request occurs when a client connection is unexpectedly
broken, usually because the client end closed the socket.

The following request handler example simply logs the event.

24

MagiCServer++

Using the server framework Version 0.1 Developer's Guide
MBrvResul t MyHandl er: : process (Connecti onLost Request & r Request)
{
r Request . serverListener().log().nmessage (
"SAMPLE", Log::Audit, O,
"Connection |ost");
return O;
}

The Connection object associated with the connection will be destroyed when the
Reqguest object is destroyed.

Stream Data Request

The stream data request occurs when data is received from an established TCP
client connection. The data is read automatically to abuffer stored in the request
object.

The following request handler example processes the request and sends a response.

MBrvResul t MyHandl er: : process (StreanDat aRequest & r Request)
{
char* dat a = rRequest.getData ();
[* Cut request data buffer at newine. */
for (int i=0; i<rRequest.datalLen(); ++i)
if (data[i] < '\x20') {
data[i] = 0x00;
br eak;
}
[* Shutdown command. */
if (!'strcnp (data, "shutdown"))
r Request . server Li stener (). start Shut down ();
el se {
/* Format and send a response. */
char nsg[1024] ;
snprintf (nmsg, 1024, "Hi, you wote: '9%'.\n"
dat a) ;
wite (rRequest.socket(), nsg, strlen (nsg));
}
}

Shutdown request

Shutdown requests occur when the Listener (and ServerListener) is shutting down
after receiving st ar t Shut down() command. Below is a sample handler:

MBrvResul t MyHandl er: : process (Shut downRequest & r Request)
{
r Request . serverListener().log().message (
"SAMPLE", Log::Info, O,
"Server is shutting down.");

/* Send shutdown message to all connected clients. */
const char* nsg = "Shutting down i medi ately! (byebye)\n";

25

MagiCServer++
Developer's Guide Version 0.1 Using the server framework

/* lterate through connections in the listener. */
for (ServerlListener::Connlter serv_i (
r Request . serverLi stener());
I'serv_i.exhausted ();
serv_i.next()) {
/* Wite shutdown nessage to the connection. */
wite (serv_i.get().socket(), msg, strlen (nsg));

}

return O;

}

The request handler does not have to close the client connections, as ServerListener
does that automatically after this request has been processed.

If the worker threading model is used (with WorkerPool), the final shutdown
request will be processed in the main thread after other threads have been shut
down.

For more details see the section on Shutting down below.

Timeout request

Listener generates timeout events according to the timeout setting set with

set Ti meout () and callsti meout Event (), which can be reimplemented by
inheritors. The implementation in ServerListener generates TimeoutRequest
reguests, presuming that the timeout events have been enabled in ServerListener by
applying the Request : : NewConnect i on mask with the set Request Mask()
method. For example, if arequest handler wants to process also the timeout
requests, it should implement the following kind of initialization function:

MsrvResult MyHandl er::init (ServerlListener& rlListener)

/* Add the tineout request to request nmask. */
rLi st ener.set Request Mask (
rLi stener.request Mask() | Request::Ti neout);

}

Timeouts are the only request type disabled by default. Y ou might not want to
generate timeout requests if the Listener timeout period is very small, as processing
them may take considerable time. Thisis one reason why thetimeout should not be
very short.

The time requests can be handled as follows:

MSrvResul t MyHandl er: : process (Ti meout Request & r Request)
{

r Request . serverLi stener().log(). nmessage (
"SAMPLE", Log::Info, O,
"Listener notified about a routine timeout.");

/* We could do sonething interesting here if we wanted. */
return O;

26

MagiCServer++
Using the server framework Version 0.1 Developer's Guide

}

5.2.2. Generic request handler

Writing a generic request handler is an alternative way to handle the requests. A
generic request handler processes all types of requests in asingle method, pr ocess
(Request *) . Reimplementing it is useful mostly in chained handlers, asisdonein
WorkerPool. Its speed advantage is not significant (a few nanoseconds perhaps).

Inheriting generic handler of RequestHandler

Let usfirst look at the header for arequest handler:
#i ncl ude <Magi CSer ver ++/ msrvr equest . h>

usi ng namespace Msrv;

/***

* Sanpl e request handl er

**/

cl ass MyHandl er : public RequestHandl er {
public:
MyHandl er O {/* ... *I;}
vi rtual ~MyHandler () {/* ... */;}
virtual MsrvResult request (Request* request);

b
Generic request handler method

The Request Handl er: : request () method handles the actual request. The
inheritor of RequestHandler must reimplement it.

The Request : : gettype() method returns a numeric type identifier for a
reguest, allowing a simple switch-case construction for handling them. The requests
can have the following types:

Type Class

NewConnecti on NewConnectionRequest
St reanDat a StreamDataRequest
Dat agr am DatagramRequest
ConnectionLost ConnectionL ostRequest
Shut down ShutdownRequest

Ti meout TimeoutReguest

Below isavery simple skeleton for arequest handler:
MBrvResul t MyHandl er: : process (Request* pRequest)

{
swi tch (request->get Type ()) {

27

MagiCServer++
Developer's Guide Version 0.1 Using the server framework

/* Handl e new connection notification. */
case Request:: NewConnection: {

} break;
/* Handl e data requests for both TCP and UDP. */

case Request:: StreanDat a:
case Request::Datagram {

} break:

/* Handl e connection |ost notification. */
case Request:: ConnectionLost: {

} break:

/* Handl e server shutdown notification. */
case Request:: Shutdown: {

} break:

/* Unhandl ed request types. */

defaul t: {

}
}
del ete request; /* Handler has to destroy it. */
return O;

}

Responses to client are sent using standard low-level /O routines for sockets. For a
more detailed example, see the Common Sample Request Library.

Notice: Request handler has the responsibility to destroy the Request object.

5.3. Main application

The main program of a server application consists of the main tasks illustrated in
the diagram above. Let us go through them step-by-step.

5.3.1. Opening log

Server log has to be opened for writing before the ServerListener can be created
(see below), asits creation and initialization may need to write to thelog.

/[* Open log to a file. */
LogFile log ("mylog.txt");

/[* Wite log entry. */

| og. nessage (" SAMPLE", /* Modul e nane. */
Log: : Audi t, /* Error severity. */
0, /* Optional nessage code. */
"Log opened.");/* Actual nessage text. */

28

MagiCServer++
Using the server framework Version 0.1 Developer's Guide

This opens alog file and writes an opening entry to it. If thelog file aready exists,
the log is appended to the end. Otherwise the file will be created. Themodule name
given to themessage() method is afree label attached inlog entries. The error
severity can be either Audi t, War ni ng, or Cri tical . An Audi t entry means any
routine message. War ni ng means an unusual situation, but which is handled
cleanly. Cri ti cal meansthat aserious error has occurred, which may lead to data
corruption or eventual malfunction of the server.

The optional message codeis a numeric code that is attached to each message. Its
purpose isto give aclear identifier for the specific message. Numeric message
codes are especially important in internationalized applications where the actual
message text can be in alanguage that is not understood by the developers or
support personnel. Numeric codes are also useful for automatically analyzing logs,
because the actual message texts are often changed dlightly for various reasons
(spell checking, etc).

The actual message text islike aformat string for pri nt f () and you can giveit
additional arguments. For example:

| og. message (" SAMPLE", Log::Critical, O,
"Execution failed with error %a.",
-mervResul t);

If you wish to open thelog to write to standard output for some reason, you can set
it in two ways, either:

‘LogFiIe | og (stdout);

or:

LogFile log ("-");

5.3.2. Creating, initializing, and running ServerListener

Creation of the ServerListener is easy, after which it must be initialized. Setting the
request handler is mandatory. Setting log is usually desired, though some simple
servers do not need logging.

/* Create transaction handler. */
MyHandl er nyHandl er;

/* Create and configure server object. */
Server Li stener nyServer (nyHandler, & og);

Next step in server initialization is setting up the server socket. This requires aport
number and protocol. Choises for the protocol are Ser ver Li st ener: : TCP and
Server Li st ener: : UDP.

V* Create a server socket and bind it to an address. */

29

MagiCServer++
Developer's Guide Version 0.1 Using the server framework

nsrvResult = myServer. bind (portno,
Server Li st ener: : TCP,
0);
if (mervResult < 0) {
| og. message (" TEST", Log::Critical, O,
"Server initialization failed with error %.",
-mervResul t) ;
return EXI TVAL_I NI T_FAI LED;

}
Finally, thel i st en() needsto be called to start listening.

/* Enter the |istener |oop. */
nmsrvResult = nyServer.listen ();
if (mervResult < 0) {
| og. message (" SMPLLIST", Log::Critical, O,
“Server execution failed with error %l.",
-mervResul t) ;
return MSRVTEST_ RETVAL_EXEC FAIl LED;
}

Thelisten() will return after the server has shut down.

5.3.3. Shutting down

Shutdown of aserver isadelicate procedure, especially on threaded servers where
threads may be processing requests while the order to shut down occurs.

Shutdown can be initiated by arequest handler. The are two very simple alternative
wayss to initiate shutdown. First, the handler can return a special error code,
MSRVERR_SHUTDOWN_EVENT, to notify the ServerListener that it should go down.
Second, the handler can call thest ar t Shut down() method of Listener.

When the Listener goes to shutdown state, it immediately stops listening for socket
events such as new connections in the server socket or data in the client sockets. It
notifies about the shutdown event to ServerListener, which results in a shutdown
request being sent to the request handler, which is either the user-defined handler
or WorkerPool.

If WorkerPool distribution manager is being used, it will shut down all theworker
threads when it receives the shutdown request. The threads shut down after the
request queue has been processed. After that, the WorkerPool calls the user-defined
request handler in the main thread to process the shutdown request.

Sequence diagram below illustrates the initiation and handling of shutdown on
different levels of worker thread architecture.

30

MagiCServer++

Using the server framework Version 0.1 Developer's Guide
Listener S-erver— Worker - Wor ker J Request
Listener Pool Handler

—— descriptorEvent()- . .
»— process() _ -

ITI L'J\ process()

B ! startShutdown() : 'J

——

shutdown() : process()

exit

delete :
process()

After the shutdown request has been processed, ServerListener closes any
remaining open client connections and then the server socket.

Finally, Listener returns from thel i st en() method.

5.4. Other programming issues

5.4.1. Listener timeouts

Setting a Listener timeout is important, because when aListener iswaiting events
on sockets, it cannot handle events from other threads. Listeners normally awaken
only when there arrives new connection request or data arrives in asocket. Thisis
typically relevant for shutdown. If arequest processor working in some thread
processes a shutdown command, it must put the Listenersin shutdown state and
then wait for it to awaken and actually start the shutdown.

The default timeout for Listener is one second.

31

MagiCServer++
Developer's Guide Version 0.1 Examples

Chapter 6 Examples

This chapter provides descriptions of some simple server examples implemented
with MagiCServer++.

6.1. Overview
Two sample server applications that use MagiCServer++ library are provided:

» Single-thread listener architecture (snr vsanpl e_I i st ener)
» Worker thread architecture (snr vsanpl e_wor ker)

The actual application logic of the sample serversisidentical and implemented in a
common library that acts as aframework for the sample servers. This architecture is
illustrated in the figure below:

. Response
Clients ﬂ &

... T O D e,
M agiC Ser ver :
Framework
Sample Server @ |y Request [T
Framework Sample Server J
: Request Handler (— P

Framework
;'.:'.::::::'.:'.:'.:::::::::::::::::::' I5Peeeeopooposotoupliotiototptototototototeintoivintoivivinioiiviiliuiotvintotutotvintoivioioly Pl Run..ow
Sample Servers Y
' Sample Server Main Program }

The sample server framework implements amain() program that parses command-
line arguments and calls the actual sample server main program. The main program

32

Examples

MagiCServer++
Version 0.1

Developer's Guide

creates and initalizes therequest handler, log, and alistener, and then runs the

listener.

6.1.1. Directory hierarchy

Below isthe directory tree of the examplesdirectory with all the contained files.
The three modules, the library module and two sample application modules, are

emphasized.

<t opdir>

exanpl es

—exanpl es. nk

—I i bnsr vsanpl e

I'i bmsr vsanpl e. nk
i ncl ude

——nsr vsanpl emai n. h

SI C

sanmpl emi n. cc

sanmpl ehandl er. cc

—nsrvsanpl e_| i st ener
nsrvsanpl e_| i st ener. nk

ST c
L—sanpl el i stener. cc

—nsr vsanpl e_wor ker
msr vsanpl e_wor ker . nmk
Src

I—sarrpl ewor ker . cc

——nsr vsanpl ehandl er. h

Examples recursive makefile

Common sample library
M akefile

Header files
Common definitions
Sample request handler class

Source files
M ain program
Sample request handler

Single-thread listener server
M akefile

Source files

Server implementation

W orker thread server

M akefile

Source files

Server implementation

The makefiles use the Magi CBuild build system to recursively compile the modules
and their submodules.

6.2. Common sample server library

Thistiny library implements all the application logic of a server by subclassing the
RequestHandler class and reimplementing the pr ocess() method.

This sample server library forms an application framework that is used by the actual
sample server applications presented below.

6.2.1. Main program

The library acts as an application framework by implementing the mai n() program
internally. When the program starts, it parses the command-line arguments and then
callsaserver Mai n() function with those parameters. Theser ver Mai n()

function must be defined by the user of the library or otherwise alinkage error

33

Developer's Guide

MagiCServer++
Version 0.1 Examples

Ooccurs.

i nt

{

}

main (int argc, char* argv[])

i nt exi t Val ue = 0;
Test Args ar gs;

/* Parse command-|ine argunments. */
exitVal ue = parse_cnd (argc, argv, args);
i f (exitVal ue)

return exitVal ue;

try {
/* Initialize and run the server. */

exitVal ue = serverMain (args);
} catch (std::runtinme_error& e) {
fprintf (stderr, "Exception caught
"at main level: 9%\n",
(const char*) e.what ());

}

return exitVal ue;

The main program also catches any uncaught exceptions and prints theerror
message stored in the exception object to standard error.

6.2.2. Command-line parser

The command-line parser parses the command-line arguments given to the
application and sets the appropriate configuration parameters in the TestArgs struct.
The struct is passed to theser ver Mai n() main program of the actual sample

Server.

The command-line parser accepts the following options:

Option
-h

Description
Prints help.

-d

- udp

Runs the server as a daemon by detaching it from the terminal. The
standard output will be redirected to/ dev/ nul | .

Creates an UDP (User Datagram Protocol) server socket instead of
the default TCP socket.

-p <portno> Sets the port number of the server. The default is 1234. Theport

number must be greater than 1000 for normal users; onlyr oot can
run the server with a smaller number.

-1 <logfile> Setsthelog file. If thelog file nameis not given with this option, the

log is written to standard output.

34

MagiCServer++
Examples Version 0.1 Developer's Guide

6.2.3. Application logic

The actual application logic or "business logic" isimplemented in theMyHandler
event handler, infileexanpl es/ | i bmsr vsanpl e/ src/ sanpl ehandl er. cc.

The request handler does the following actions when it receices requests:

Request Action
New connection | Send wel come message to new client

Data (message) Both TCP and UDP requests are handled in the same way.
If the message isa"quit" or "shutdown" command, it is executed.
Otherwise, send aresponse to the client and a notification to all other clients.

Connection lost Nothing (except write to log)

Shutdown Send a shutdown notification to al connected clients.

6.3. Single-thread listener server

The sample server based on a single-thread listener architecture uses the sample
server framework described above and implements theser ver Mai n() function that
initializes the ServerListener and then runsiit.

int serverMain (const TestArgs& args)

{

MSrvResul t nsrvResul t
i nt exi t Val ue

0;
0;

/[* Open log to file or standard output. */
LogFile log (args.logfile? args.logfile : "-");
| og. mressage (" SMPLLI ST", Log::Audit, 0, "Log opened.");

/* Put process in background, if requested. */
i f (args.daenonize)
if (daenmon (0, 0) < 0) {
| og. message (" SMPLLIST", Log::Critical, O,
"Daenoni zation failed with error %; %."
errno, strerror (errno));

}

/* Create transaction handler. */
MyHandl er nyHandl er;

[* Create and configure server object. */
Server Li st ener nyServer;

nySer ver. setLog (| o09);

nmySer ver . set Handl er (myHandl er) ;

/* Create a server socket and bind it to an address. */
nsrvResult = nyServer. bind (args. portno,
args. udp? ServerListener:: UDP :
Server Li st ener: : TCP,
0);

35

MagiCServer++
Developer's Guide Version 0.1 Examples

if (mervResult < 0) {
| og. message (" SMPLLIST", Log::Critical, O,
"Server initialization failed with error %d.",
-mervResul t);
exi tVal ue = MSRVTEST_RETVAL_| NI T_FAI LED;

}

if (mervResult >= 0) {
[* Enter the listener |oop. */
nsrvResult = myServer.listen ();
if (mervResult < 0)
| og. message (" SMPLLIST", Log::Critical, O,
"Server execution failed with error %d.",
-mervResul t) ;
return MSRVTEST RETVAL_ EXEC FAIl LED;

}

[* Server has stopped. */
| og. nessage (" SMPLLI ST", Log::Audit, O,
"Server stopped. Closing log and exiting.");

return exitVal ue;

6.3.1. Sample session

Below is ascreenshot of a sample session with the single-thread listener sample
server. On left, we have two client sessions, and on right, we have server run with
log printed to standard output.

'v m;gi.t_'t‘"";;gmh:‘ - Komentotulkki - Konsole <4> = = 3| magi®morgoth:tmp/magi/build/Linux-ic86/release/bin - Komentotulkki - Konsole -0 X
[magi@morgoth magi]$ nc localhost 1234 [magi@morgoth bin]$./msrvsample_listener ot
001 Hello, there, "morgoth" (127.0.0.1)! 2003/04/31 23:03:06 SMPLLIST AUDIT O: Log opened.

hello 2003/04/31 23:03:06 SERVER AUDIT 0: Binding to TCP port 1234...

004 Well well well, 'hello' to you tool 2003/04/31 23:03:06 LISTENER AUDIT O: Starting listening...

003 Server shutting down immedi;itely! (bye bye) 2003/04/31 23:03:19 SERVER AUDIT O: Accepted connection from 127.0.0.1
[magi@morgoth magil$ |:| 2003/04/31 23:03:25 SERVER AUDIT 0: Accepted connection from 127.0.0.1

2003/04/31 23:03:28 SAMPLE AUDIT O: Received message 'hello’.

2003/04/31 23:03:37 SAMPLE AUDIT O: Received message 'shutdown®.

2003/04/31 23:03:37 SAMPLE AUDIT O: Server is shutting down.

2003/04/31 23:03:37 SERVER AUDIT 0: Connection closed.

2003/04/31 23:03:37 SERVER AUDIT 0: Connection closed.

2003/04/31 23:03:37 SMPLLIST AUDIT O: Server stopped. Closing log and exiting.
[magidmorgoth binls []

[magi@morgoth magil$ nc localhost 1234

001 Hello, there, "morgoth" (127.0.0.1)!

005 Someone else said: 'hello’.

shutdown

003 Server shutting down immediately! (bye bye)
[magigmorgoth magils [l

g ;

IE3i

The example usesthe 'nc' (netcat) system utility as a client application to connect
to the server. The following steps can be observed:

1. The server is started in the right window and is bound to TCP port 1234.

36

Examples

MagiCServer++
Version 0.1 Developer's Guide

2. Both clientstry to connect to the server.

3. Server accepts the connections and greets the clients with awelcome
message (001) containing the host name (herenor got h) and IP address
(here 127. 0. 0. 1) of the client.

4. The client in upper left window sends a"hel | 0" request to the server.

5. Server receives the request, sends aresponse (004), and also notifies the
other client with a message (005).

6. Theclient in lower left window sends a"shut down" request to the server.

7. The server initializes shutdown, sends a shutdown message (003) to all the
clients, and closes the connections.

8. Finaly, the server stops and exits.

6.4. Sample server using worker thread architecture

The sample server based on aworker thread architecture uses the sample server
framework described above and implements theser ver Mai n() function that
initializes the ServerListener and then runsiit.

The implementation of this architecture is almost identical to the singlethread
model, except for the hooking of WorkerPool as a distribution manager between the
ServerListener and the actual request handler.

);'Create transacti on handler. */
MyHandl er nyHandl er;

/* Create a worker thread pool with 10 worker threads. */
Wor ker Pool workers (myHandl er, |og, 10);

[* Create and configure server object. */
Server Li st ener nyServer;
nmySer ver . set Handl er (workers);

6.4.1. Sample session

Below is ascreenshot of a sample session with the worker thread sample server. On
left, we have two client sessions, and on right, we have server run withlog printed
to standard output.

37

MagiCServer++

1 . -
Developer's Guide Version 0.1 Examples
. L
* magi@ morgothi~ - Komentotulkki - Konsole <4> = = 3% magi® morgoth:/timp/magi/build/Linux-i686/ralease/bin - Komentotulkki - Konsole - M X
[magi@morgoth magi]$ nc localhost 1234 «||||[[magi@morgoth binl$./msrvsample_worker e
001 Hello, there, "morgoth" (127.0.0.1)! 2003/04/31 22:57:00 SMPLWRKR AUDIT 0: Log opened.
hello 2003/04/31 22:57:00 WORKER AUDIT 0: Started 10 worker threads successfully.
004 Well well well, 'hello' to you too! 2003/04/31 22:57:00 SERVER AUDIT O: Binding to TCP port 1234...
003 Server shutting down immediately! (bye bye) 2003/04/31 22:57:00 LISTENER AUDIT 0: Starting listening...
[magi@morgoth magi]s [] 2003/04/31 22:57:04 SERVER AUDIT O: Accepted connectien from 127.0.0.1

2003/04/31 22:57:05 SERVER AUDIT
2003/04/31 22:57:08 SAMPLE AUDIT
2003/04/31 22:57:16 SAMPLE AUDIT
2003/04/31 22:57:17 WORKER AUDIT 0: Shutting down worker threads...

2003/04/31 22:57:17 WORKER AUDIT O: All 10 worker threads joined successfully.

0: Accepted connection from 127.0.0.1
o
4]
o]
o]
2003/04/31 22:57:17 WORKER AUDIT O: Handling shutdown request in main thread...
o
o
o
T

: Received message 'hello’.
: Received message 'shutdown'.

2003/04/31 22:57:17 SAMPLE AUDIT 0O: Server is shutting down.

2003,/04/31 22:57:17 SERVER AUDIT 0: Connection closed.

2003/04/31 22:57:17 SERVER AUDIT 0: Connection closed.

2003/04/31 22:57:17 SMPLWRKR AUDIT 0: Server stopped. Closing log and exiting.
[magiomorgoth bin]§ []

[«

Komentotulkki

[magi®morgoth magil$ nc localhost 1234 ke
001 Hello, there, "morgoth" (127.0.0.1)!

(005 Someone else said: 'hello”.

shutdown

1003 Server shutting down immediately! (bye bye)
[magigmorgoth magi]s Ji

_ il i

The execution of the server goes exactly asin the singlethread listener case above,
except that we can see in the server log that the server starts 10 worker threadsin
the startup, joins them during the shutdown, and processes the final shutdown
request in the main thread.

38

MagiCServer++
MagiCServer++ devel opment Version 0.1 Developer's Guide

Chapter 7 MagiCServer++ development

This chapter gives information for developers interested in making changes to the
MagiCServer++ framework.

7.1. Build system

The MagiCBuild build system is used for compiling MagiCServer++. The build
system consists of aframework of makefiles for GNU Make, and a configuration
script. MagiCBuild has a user interface very similar to the commonly used
configuration scripts generated with GNU Autoconf and GNU Automake.

The build system is currently undocumented.

7.2. Reference documentation

Reference Manual includes class documentation for all the C++ classesin the
library. It is generated with Doxygen documentation generator. Doxygen reads the
source and header files and generates documentation inHTML and PDF formats, as
well as man pages.

The Reference Manual is generated with make target "make dox".

7.3. Coding conventions

Magi CServer++ source code and headers follow afew conventions, as provided
below. Also other coding conventions commonly used in Linux and UNIX C++ and
C programming should be used.

7.3.1. Code formatting

Indentation depth of 4 isused. Thisisusually done with tabs with the tab length set
as 4 characters, but it can be done with spaces too. Opening brace is always written
in end of the line, except for the first brace in function. For example:

voi d nyFunction ()
if (a=1) {

39

MagiCServer++
Developer's Guide Version 0.1 MagiCServer++ development

hel I o() ;

else { /* Else statenent on separate line. */
f oobar ();

switch (42) {
case 42: { /* W use block here for |ocal scope. */
int i = 42;
foobar ();
} break; /* Break statenent here. */

}

7.3.2. Code comments

Classes, methods, and functions are commented using Doxygen compatible
notation. These code structures are preceded with a C-style comment block with 80
characters wide upper and lower border made with asterisks:

/***

Bri ef description.

*
* Longer description, which may take

* several |ines.

*

* \return Return val ue of nmethod or function
**/

All Doxygen directives are available inside these comment blocks, as applicable for
each code structure type.

A typical class documentation would be as follows:

/***

* Brief description of the class ..
**/

class MyClass : public Based ass {
publi c:
voi d someMet hod (int anArg, bool otherArg);
private:
int mwWwVariable; /**< Docunentation for the variable. */
1

Methods are not documented in headers, but in source files. Doxygen supports this
form of documentation seamlessly.

/***

* Brief description of the nethod ..
***/
void Myd ass: : soneMet hod (

int anArg, /**< Docunentation for anArg. */

bool otherArg) /**< Docunentation for otherArg. */

40

MagiCServer++
MagiCServer++ devel opment Version 0.1 Developer's Guide

Code comments are made as follows:

{
0; /* Descr. of the variable 1. */

false; /* Descr. of the variable 2. */

int |ocal Vari abl e
bool ot herVari abl e

/* Comment for sone code part. */
int result = functioncall (argunentl, /* Comment. */
argunent 2); /* Comment. */

}

It is not really relevant whether the source code comments are made with C or C++
style comments. The C comments may appear more clear than C++ comments. All
successive comment lines are intended at the same level, that is, their lining should
not appear ragged.

7.3.3. Naming conventions

Class and structure names begin with upper case letter. Function and method names
begin lower case. Words are indicated with capitalization of the first letter of each
word.

Names of constant values, typically defined as macros, are written in all upper case.

Variable names

Variable names begin lower case. They do not have any prefixes indicating type
("Hungarian notation™) of the variable, except for the scope, ownership, and
reference type. The following prefixes apply:

Prefix Example Description

m int mMember Member variable in a class

p int* pPointer Pointer to an owned object

r int& rReference Reference

rp int* rpPointer "Reference” pointer to not object not owned
S saticint sVariable Static variable

Ownership means basicly responsibility of destruction; the owner of an object has
the responsibility to destroy it when it itself is destroyed. References (asinint&) are
never owned by the referencing object, and the same meaning of reference applies
to pointed objects not owned.

The prefixes can be combined in the following ways:

Prefix Example Description
mr int& mrReference Member reference variable
mp int* pPointer Member pointer to an owned object

41

MagiCServer++

Developer's Guide Version 0.1 MagiCServer++ development
Prefix Example Description
mrp int* mrpPointer Member pointer to an object that is not owned
smp static int* smpVariable | Static member pointer to an owned object
...and so on.

The actual type of variables and constants should be clear from the context.
Variables can have anatural type specifier as postfix. For example:

Type Example Description

Socket socket Class name as variable name, when no semantics are
bound to the variable.

Socket clientSocket Semantics of the variable are given in prefix, class
name as suffix.

Array<Thread> threads Array type indicated with plural suffix (s)

int threadCount Quantities indicated with "Count", or if semantics are

clear, with plural suffix "-s".
bool misShutdown "Is" indicates truth value

42

MagiCServer++
Known bugs and limitations Version 0.1 Developer's Guide

Chapter 8 Known bugsand limitations

8.1. Bugs
MagiCServer++ has the following known bugs.

 The build system prints some shell execution errors. Thisis a problem of
the build system.

* Theget host byaddr () function used in the samplerequest handler is not
thread safe because the pointer it returns refers to a static data structure.
Corruption may occur if two threads use the function within avery short
time window.

* Thereisasmall time window between the time aWorker checksif the
Listener isin shutdown state and going to wait state. If the shutdown
broadcast occurs in this window, the worker won't know about it and goes
to eternal sleep.

» There probably are afew memory leaks, as the software has not been tested
for those.

 Reference Manual is rather messy and contains many unwanted entries.
Thisisdue to limitations of the Doxygen documentation generator.

* Error checking, especially for out of memory situations, is not complete.

8.2. Limitations
MagiCServer++ has the following limitations.

« ServerListener can handle only one listening server socket. This limitation
can be circumvented by running multiple ServerListenersin multiple
threads, while using a common request handler.

» Some relevant signals should be handled. Especially, asignal that would
awaken the Listener from sel ect (), for example when arequest handler
has ordered shutdown. Currently this situation is handled with asel ect ()
timeout.

43

Developer's Guide

MagiCServer++
Version 0.1 Known bugs and limitations

There isno option in Log to open log to system log (syslog).

The server port number can not changed and the server socket can not be
reconfigured without shutting down and restarting the server.

Shutdown doesn't allow a forced shutdown that ignores the remaining
requests in request queue.

Changing the distribution architecture run-time is not supported, though it
possibly can be done.

There is no mechanism to terminate a runaway thread.

Inheriting Connection and ConnectionFactory objects is not demonstrated
in examples.

STL isstill used for the runtime-error exception class.

MagiCServer++
GNU Free Documentation License Version 0.1 Developer's Guide

Chapter 9 GNU Free Documentation
License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercialy or noncommercially. Secondarily, this License preserves for the author and publisher away to get credit for
their work, while not being considered responsible for modifications made by others.

This Licenseisakind of "copyleft", which means that derivative works of the document must themselves be free in the same
sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: afree program should come with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is
published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work.
Any member of the public isalicensee, and is addressed as "you". Y ou accept the license if you copy, modify or distribute
the work in away requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim,
or with modifications and/or translated into another language.

A "Secondary Section" is anamed appendix or afront-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if the Document isin part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in
the notice that says that the Document is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice

that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover
Text may be at most 25 words.

45

MagiCServer++
Developer's Guide Version 0.1 GNU Free Documentation License

A "Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is
available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input
format, SGML or XML using apublicly available DTD, and standard-conforming simpleHTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generatedHTML, PostScript or PDF produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title
Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XY Z" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in
parentheses following text that translates XY Z in another language. (Here XY Z stands for a specific section name mentioned
below, such as "Acknowledgements”, "Dedications”, "Endorsements”, or "History".) To "Preserve the Title" of such a section
when you modify the Document means that it remains a section "Entitled XY Z" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document.
These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

Y ou may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this
License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License. Y ou may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you must aso follow the conditions
in section 3.

You may aso lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than
100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. Y ou may add other material on the covers in addition. Copying with changes
limited to the covers, aslong as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opague copies of the Document numbering more than 100, you must either include a machine-
readable Transparent copy along with each Opaque copy, or state in or with each Opague copy a computer-network location
from which the general network-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that thisTransparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated version of the Document.

46

MagiCServer++
GNU Free Documentation License Version 0.1 Developer's Guide

4. MODIFICATIONS

Y ou may copy and distribute aModified Version of the Document under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Usein the Title Page (and on the covers, if any) atitle distinct from that of the Document, and from those of previous
versions (which should, if there were any, be listed in the History section of the Document). Y ou may use the sametitleasa
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the
Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve al the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version
under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license
notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserveits Title, and add to it an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to aTransparent copy of the Document, and
likewise the network locations given in the Document for previous versions it was based on. These may be placed in the
"History" section. Y ou may omit a network location for awork that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements' or "Dedications’, Preserve the Title of the section, and preserve in the
section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the
equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements”. Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option designate some or al of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled "Endorsements’, provided it contains nothing but endorsements of your Modified Version by
various parties--for example, statements of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to
the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or
to assert or imply endorsement of any Modified Version.

47

MagiCServer++
Developer's Guide Version 0.1 GNU Free Documentation License

5. COMBINING DOCUMENTS

Y ou may combine the Document with other documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in the combination al of the Invariant Sections of al of the original
documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you
preserve al their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced
with asingle copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section
Entitled "History"; likewise combine any sections Entitled "Acknowledgements®, and any sections Entitled "Dedications".
You must delete al sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

Y ou may make acollection consisting of the Document and other documents released under this License, and replace the
individual copies of this License in the various documents with a single copy that isincluded in the collection, provided that
you follow the rules of this License for verbatim copying of each of the documents in all other respects.

Y ou may extract a single document from such a collection, and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on avolume
of astorage or distribution medium, is called an "aggregate” if the copyright resulting from the compilation is not used to
limit the legal rights of the compilation's users beyond what the individual works permit. When the Document isincluded in
an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one
half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document isin electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of
section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you
may include translations of some or al Invariant Sections in addition to the original versions of these Invariant Sections. Y ou
may include atranslation of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications’, or "History", the requirement (section 4) to
Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

Y ou may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any
other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

48

MagiCServer++
GNU Free Documentation License Version 0.1 Developer's Guide

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of theGNU Free Documentation Licensefrom time to time.
Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given adistinguishing version number. If the Document specifies that a particular numbered
version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of
that specified version or of any later version that has been published (not as a draft) by theFree Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever published (not as adraft) by
the Free Software Foundation.

49

Developer's Guide

MagiCServer++
Version 0.1

GNU Free Documentation License

Alphabetical Index

A

accept() 12p, 15

ad hoc fork 15

architectures 10pp., 15p.

B

buffer 19, 24p.

bugs 6, 43

build system 33, 39, 43

C

close() 13

coding conventions 39
command-line arguments 22, 32pp.
compiling 7p., 39

configuration 8, 22, 34, 39

configure 7,9, 21, 29, 35, 37
Configuring 7

ConnectionFactory 18,44
connectionless 5, 12

ConnectionLost 27p.

ConnectionL ostRequest 23pp., 27
conventions 39, 41

CPU 11

create() 18

D

data storage 11

database 10pp., 22

database connectivity 10p.
Datagram 5, 27p., 34
DatagramRequest 23p., 27
dependencies 7

descriptorEvent() 18
descriptors 12,18

directory 7pp., 33

Directory hierarchy 33
distribution 6, 11p., 15pp., 20pp., 30, 37, 44, 46pp.
documentation generator 39,43
Doxygen 39p., 43

E

error 5, 28pp., 33pp.

event handler 18, 35

F

fork() 15

Framework 1p., 5, 8, 10, 12, 17p., 22, 32p., 35, 37
Free Software Foundation 2,45, 49
FTP 11

G

gethostbyaddr() 43

gettype() 27

GNU Autoconf 39

GNU Automake

39

GNU Free Documentation License 2, 6,45, 49
GNU Make 6, 39
GPL 6
H
HTML 39, 46
http 11, 49
Hungarian notation 41
I
Indentation depth 39
installing 7pp.
L
LGPL 6
listen() 30p.
Listener 8, 12, 14p., 17p., 22p., 25p., 30pp., 35p., 38, 43
log 6, 11, 21, 25p., 28pp., 33pp., 44
logging 5p., 11, 29
M
MagiCBuild 33,39
main program 28, 32pp.
main() 32p.
memory leaks 43
message() 29
module name 28p.
N
netcat 36
NewConnection 26pp.
NewConnectionRequest 23p., 27
O
ODBC 11
operating system 6,8
optional message code 28p.
output directory 8
overhead 13,15
F)
path 7,9
PDF 39, 46
Persistence 12
poll() 12
port number 29, 34, 44
pre-fork 15
, 39 process() 20, 23, 33
processor 8,12, 31
Protocol 11p., 29, 34
R
read() 12p.
recvfrom() 12
Reference Manual 39,43

50

GNU Free Documentation License

MagiCServer++
Version 0.1

Developer's Guide

Request 12,17

request handler 11, 19pp., 23pp., 33, 35, 37, 43
RequestHandler 17, 19p., 23p., 27, 33
Responsetime 12

S

sample server library 33
sample session 36p.

screenshot 36p.

select() 12p., 43

server architecture 10, 12, 17

ServerListener 6, 17pp., 23, 25p., 28pp., 35, 37, 43
serverMain() 33pp., 37
session handler 11

setConnectionFactory() 18
setRequestM ask() 26
setTimeout() 26

severity 28p.

shell 7,43

shutdown 5, 15, 23, 25pp., 30p., 35, 37p., 43p.
shutdown request 25p., 30p., 38
ShutdownRequest 23pp., 27
signal 6, 14p., 43
smrvsample_listener 32
smrvsample_worker 32

source 6pp., 39pp.

standard output 29, 34pp.

startShutdown() 25, 30
status change 12
StreamData 27p.

StreamDataRequest 23pp., 27

syslog 44

system log 44

T

tar 7

TCP 5, 12pp., 17pp., 23, 25, 28pp., 34pp.
thread 5, 12pp., 20p., 23, 26, 30pp., 35pp., 42pp.
timeout 13, 23, 26p., 31, 43

timeout request 26

timeoutEvent() 26
TimeoutRequest 23p., 26p.
Transparent 5p., 11, 17, 20, 46p.

U

UDP 5, 12, 15, 18, 23, 28p., 34p.
V

vertical log 11

W

Worker 14, 17

worker thread architecture
worker threads 15, 23, 30, 37p.
WorkerPool 17, 20p., 23, 26p., 30, 37

14p., 20, 32, 37

51

