MagiCBuild
Configuration and build system

Version 0.1
User's Guide

Marko Gronroos (magi @iki.fi)

August 5th 2003

MagiCBuild
User's Guide Version 0.1 Copyright and License

About this document

This document provides information about the MagiCBUuild configuration and build system.

Copyright and License
User's Guide

MagiCBuild version 0.1
Copyright (¢) 2003 Marko Grénroos.

Permission is granted to copy, distribute and/or modify this document under the terms of theGNU
Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the licenseisincluded in the chapter entitled "GNU Free Documentation License".

Special copyright chapter

The copyright is waived for the chapter titled in this document as "Building a package" to alow the
use of the documentation in the installation instructions for software that uses MagiCBuild build
system.

No material from other parts of this document many be transferred to that chapter without a prior
written permission from the copyright owner, as the material would need to have itscopyright
waived. If the permission is not granted for such transferral, the modified chapter will follow the
copyright and license of the transferred material.

MagiCBuild
Copyright and License Version 0.1 User's Guide

Table of Contents

(@ gF=To) (= g N I 1 o [F ox i o o 10 PSSR 4
1.1, SYStEM FEOUITEMENTS......ceiiiieeceeeee et e ste e st e steesteesaeesseeseesseesseeesaeesseenseeseenseesseassenssensneesnneanens 5
O I o= 1 o PSS 5

Chapter 2 Installing MagiCBUIId..........cooiiiiie e 6
2.1. Unpacking the distribution PaCKage............ooueriuieiiieiie et 6
2.2. INStall8tI0N 10 USEY PrOJECL.......eiueeeetirieeieie sttt sttt st b e b n e sre e e n e ne e 6

Chapter 3 BUilding @ Package..........cccuiieiiiiiiciee et b e eenreas 8
3.1. Opening the SOUICE PACKAJE.ceieeiiee e eseestee et stee st e e e ee e te e s e e saeenseenneesnneenseens 3
A o1 o [0 1 o OSSPSR 3
IR T @0 1 4101 11 0T PO PR P PRPR 9

G T0C T I @co 1o o 1] P> o o U 110 | R 9
I 1 0 = 1 o O PR UOOPTPRPRPP 9
TR T U 1 11T = o SRS 10

Chapter 4 Using the configuration SYSEEM.........cceiiiiiiiiriee e e 11
O Y= oY= T OO P RPN 11
4.2, REQUITEMENTES FIIE.......eieeeeeeee e e 11
4.3. Extending requiremMent CHECKS.........c.eciicieie et 12

4.3.1. Writing @ CUSIOM CHECK........cueiiiiiiiie et s 12
4.3.2. Writing custom CONfIQUIaioN..........cceeiieiiiciic et 13

Chapter 5 USiNg the build SYSteM........c.ov i 14
5.1 OVEIVIBW. ...ttt sttt sttt s b et be et e b e bt e st se e e bt et e sbeene e e beeaeenbenae et e nnenneenens 14
5.2, BUIA TAIQELS. ...ttt ettt e h et ae e et s e et e ae e b e sne e b nne s 14
5.3. Parameter Variabl€S..........ccueeiiieee ettt e ae e neene e 15
5.4. DEfINEA VANTADIES.......coiieceieee ettt st sr et esneenre s 16

SN IS o TH [t o] = o (o 1 == 17
5.4.2. OULPUL QITECLOMTES. .. e veeeieieestee e sieeseesiee ettt sttt et e te e be et e beenbeesneesree e 18
5.5. RECUISIVE MEKEFIIES......eiieiee et st e ene e e enns 19
5.5.1. Definitions for building distribution packages.........ccccvcvvieieiecciee e, 20
5.5.2. CUSIOM TAIGELS......ceiueieieiieieiit ettt r e r e s r b et e b nre e sneenre e 21
5.6. TOP-16VEl MAKEFIIE.......ooceeeeeeece et sree e 22
5.7. Module-1evel MaKEFITES.........cceiieeecesee et sre e 24
5.7.1. MOUUIE PAra@MELEYS........ceiueeiieiie e ce ettt ettt e sbe e sreesaeesteesreesbeesneenseenseenn 25
5.7.2. Compilation parameters fOr Ctt.. ...t 25

Chapter 6 Known problems and limitationS.........cccoieeiieiieiienic e 27
G300 I 0] o] =0 P 27
I T 41 (0] ST SSOPRRSTPP 27

Chapter 7 GNU Free Documentation LiCENSE........coieiireiiieeesieeeree e 29

MagiCBuild
User's Guide Version 0.1 Introduction

Chapter 1 Introduction

MagiCBuild isabuild system that provides high-level functionality for compiling a
software product from source code. It is based on GNU Make and consists of a
framework of makefiles.

The most important feature of MagiCBuild isthat all output and intermediate files
are written to an output directory tree that is totally separate from source code tree.
This helps keep the source tree completely clean from trash such as object files and
executables. After compilation, the executable binaries, libraries, headers, shared
files, and documentation can be "installed" from theoutput directory to actual
installation directory hierarchy.

MagiCBuild aso contains a configuration tool, "conf i gur e", that can be used to
automatically detect relevant features of the platform such as availability and
version numbers of required software packages, output and installation directories,
and machine architecture. The configuration tool is a shell script, which makes
extending its functionality very easy. The basic usage of the configuration tool is
compatible with GNU Autoconf, making its use easy for open source software
developers.

An example of using the configuration and build system is provided in thet est
subdirectory of the MagiCBuild distribution package.

Features
Compiling C++ applications
Compilation output tree separate from source tree
Building reference documentation with Doxygen
Installing and uninstalling
Cleaning up the output directory
Creation of source code distribution packages

Configuration tool with GNU Autoconf compatibility

Limitations
No installation to system directories

MagiCBuild
Introduction Version 0.1 User's Guide

Only GNU/Linux platform currently supported
Only C++ compilation currently supported with gcc
For amore complete list of limitations, see the chapter Known bugs and limitations.

1.1. System requirements
MagiCBuild has the following system requirements:
GNU/Linux operating system
GNU Make 3.79.1 or newer
Doxygen (optional)

Platforms
The following Linux distributions have been tested:

Distribution

Red Hat Linux 9
Mandrake 9.1

Debian 2.2 + upgrades

1.2. Licensing

MagiCBuild islicensed under the GNU Lesser General Public License (LGPL). The
GNU Lesser General Public Licenseisgiven in filedocs/ COPYI NG. LI B.

This documentation is licensed under the GNU Free Documentation License, as
presented in the Chapter 7.

MagiCBuild
User's Guide Version 0.1 Installing MagiCBuild

Chapter 2 Installing MagiCBuild

This chapter describes the installation procedure of MagiCBuild package.

Note: Thereis currently no way to "install" MagiCBuild to standard system
directories, but you must use it from thedistribution directory.

2.1. Unpacking thedistribution package

If you wish to make the distribution package available system-wide, you need to
login in as root and change to the directory under which you wish to unpack the
distribution package.

cd /opt

The source code is provided as at ar package compressed with BZip2 (bz2). If you
have GNU Tar, you can unpack the package with the following shell command:

tar jxf magicbuild-0.1lbetal.tar.bz2

Thiswill unpack the package in an appropriate subdirectory under the current
directory.

2.2. Installation to user project

This section describes how toinstall MagiCBuild build system to your software
project. The installation copies all of its relevant files to the project directory.

MagiCBuild is used from the distribution directory that was contained in the
distribution package.

To install MagiCBuild filesin your own programming project, change to theroot
directory of your own project (not the MagiCBuild directory) and run theinstall-
magicbuild script from the MagiCBuild distribution directory. For example:

$ cd nysources
$ /opt/ magi cbuil d- 0. 1bet al/ buil d/install-nmagi cbuild

Thiswill create a"bui | d" subdirectory and copy all the MagiCBuild files there.
The configuration script will be copied to the current directory, as will be atemplate
top-level Makefi |l e.

MagiCBuild
Installing MagiCBuild Version 0.1 User's Guide

nkdir: created directory " build'

“../configure' -> "configure'

../build/ makefile.tenplate' -> "~Mkefile.tenpl ate'

../ build/ makefile.tenplate' -> "build/ nmakefile.tenplate'
../build/install-magicbuild -> "build/install-magicbuild'
../ bui |l d/ magi cdef . nk' -> " buil d/ nagi cdef . k'

../ buil d/ magi ccnp. nk' -> "buil d/ magi ccnp. nk'

*../build/ magicdist.nk' -> "build/ magi cdi st. nk'
*../buil d/ magi ctop. nk' -> "buil d/ magi ct op. nk'
*../buil d/ magi cver.nk' -> "build/mgicver. nk'
“../build/toDox.pl' -> "build/toDox.pl'

A fileisnot copied if there already exists a newer file with same name.

MagiCBuild
User's Guide Version 0.1 Building a package

Chapter 3 Building a package

This chapter provides instructions for configuring, building, and actually installing a
software package managed by MagiCBuild build system.

The installation instructions for the software package would probably be very much
like the instructions in this chapter.

Note: You are granted a permission to use any material in this (and only this)
chapter for the installation instructions of your software. We hereby waive the
copyrights for the contents of this chapter.

3.1. Opening the source package

The source code is normally provided asaGNU Tar package compressed with bz2.
Y ou can unpack it with the following shell command:

tar jxf nysoftware-0.lbetal.tar.bz2

Thiswill unpack the source code into an appropriate subdirectory under the current
directory.

3.2. Configuring

To configure the source code for compilation, change to the source directory and
run the conf i gur e script asfollows:

cd nysoftware-0. lbetal
./ configure

Optionally, if you wish to later install the package (headers and library) to some
other than the default directory, you need to set the installation path with the- -
prefi x attribute:

./Iconfigure --prefix=/opt/nmysoftware

The default path for root user is/ usr/ | ocal , and for other users their home
directory.

No other configuration flags are currently supported.

MagiCBuild
Building a package Version 0.1 User's Guide

3.3. Compiling

Include dependencies have to be determined before actual compiling, with the
following command:

make deps

This may produce some errors, which are usually not relevant. Making
dependenciesisimportant if you intend to recompile the sources after making
changes to them.

The package is compiled with the following simple command:

make

3.3.1. Compilation output

The output binaries as well as any intermediate files of the compilation will be
located in an output directory tree separate from the source tree.

The build framework does the compilation output in separate directory, determined
by the configuration script. The default output directory is located in:

/ t np/ $USER/ bui | d/ <ar chi t ect ure>/rel ease

where $USER is the user name and architectureis the operating system and
processor architecture, for example, Li nux- i 686.

For example, binaries are found under thebi n subdirectory:

cd /tnp/ SUSER/ bui | d/ Li nux-i 686/ rel ease/ bi n
./ some_bi nary

Y oy can clean the output with the following command in thetop-level source
directory:

make cl ean

Y ou do not normally need to clean the output.

3.4. Installing

After compiling, you can beinstall the package under the configured installation
directory (see above) by issuing the following command in the source directory:

make install

Thiswill copy the output library binaries and header files to appropriate
subdirectories under the installation directory.

MagiCBuild

User's Guide Version 0.1 Building a package
Directory Description
<instdir>/lib Libraries
<instdir>/bin Binaries
<instdir>/include Header files

3.5. Uninstalling

Y ou can remove the installation by giving the following command in the source
directory:

make uni nst al |

Thisremoves the installed files and directories only if the installation path has not
been changed with conf i gur e script after installing.

10

MagiCBuild
Using the configuration system Version 0.1 User's Guide

Chapter 4 Using the configuration system

This chapter gives a detailed description of the "confi gur e" configuration system
included with MagiCBuild and instructions for using it in your own software
proj ects.

Notice that the configuration system is currently really minimal and provides only
basic functionality.

4.1. Overview

The configuration system is defined entirely in theconf i gur e script copied to the
root directory of the source tree. Application-specific requirements are defined in
filebui | d/ conf - regs. sh.

The configuration system follows a commonly used scheme: detect the features and
write them to afile as variable definitions. Some other configuration systems write
to ashell script that isrun by the user to get the values as environment variables.
Our system avoids this sort of contamination of the environment and writes the
variables to a makefile include file, bui | d/ confi g. mk. Actually, asthe makefile
contains only lines such as"export SRC=/ pat h...", you can also use the
makefile as a shell script in Bash (Bourne-Again Shell).

Some features are always checked. These include operating system, processor
architecture, and C++ compiler.

An example of using the configuration system is provided in thet est subdirectory
of the MagiCBuild distribution package.

4.2. Requirementsfile

Application-specific requirements and any additional checking and configuration
code are placed infile bui | d/ conf - regs. sh.

The following requirement checks are currently defined:

Call Description
check_for_qt Qt C++ library by Trolltech

11

MagiCBuild
User's Guide Version 0.1 Using the configuration system

Call Description
check_for _I|ibjpeg JPEG library

Note: it isnot currently possible to check the version numbers of the required
components.

4.3. Extending requirement checks

It is possible to define custom checks for the configuration system, although this
feature is still somewhat immature.

The custom checks are written to the user-defined conf - r egs. sh file (or another
fileincluded from that file) in thebui | d subdirectory of the top-level project
directory ($SRCDI R), just like the check provided by the configuration framework.
The configuration framework does not, and does not need to, provide any assistance
for the actual checks. It provides a callback definition for writing the custom
configuration to the configuration file.

4.3.1. Writing a custom check

The user-defined filebui | d/ conf - r egs. sh can contain any custom checks and
actions.

Below isasimple definition that checks whether Python isinstalled in the system
and determines (at the same time) path to its binary executable.

function check python path () {
Print beginning of check nessage without a new ine
echo -n "checking for python...

Find out where Python binary is |ocated
PYTHONPATH="whi ch pyt hon"

Handl e situation where it is not found
if [! $PYTHONPATH] ; then

echo "not found"

exit 1
fi

Display rest of the check nessage
echo " $PYTHONPATH'

}

It is not really necessary to write the custom checks as functions, but writing them
as such isagood practice and helps for possible modularization if there are alot of
checks.

The custom check can now be called, inbui | d/ conf - r egs. sh, just like checks
defined in the framework:

12

MagiCBuild

Using the configuration system Version 0.1 User's Guide

check_pyt hon_pat h

Addinglibraries

A configuration function can add extra libraries as well as any necessary include file
and library paths with the following three functions:

add_i ncl ude_dir "$SOVEDI R/ i ncl ude"

add_library_dir "$SOVEDI R/ |ib"
add_library "somel i b"

The above three definitions would add the following flags to C++ compiler:
-1 $SOMEDI R/include -L $SOVEDIR/lib -Isonelib

(The $SOVEDI R variable in this example would be expanded in the configuration
script.)

4.3.2. Writing custom configuration

After all checks have been done, the configuration system writes a configuration
fileconfi g. mk. Custom configuration is written through a callback function, which
appends lines to configuration file. The name of the configuration file, including
path, is stored in the $MKCONFI G variable.

Wite customconfiguration to configuration file
function my_customconfig () {

echo "Witing customconfig..."

echo "export PYTHONPATH=$PYTHONPATH' >> $NMKCONFI G
}

The name of the callback function must be passed to the configuration framework
using the WRITE_CUSTOM_CONFIG variable.

Informthe framewor k about this custom zation call back
WRI TE_CUSTOM CONFI G=my_cust om confi g

13

MagiCBuild
User's Guide Version 0.1 Using the build system

Chapter 5 Using the build system

This chapter describes how to use the makefile framework of the build system by
creating an appropriate top-level and module makefiles.

51. Oveview

The build system is used by defining makefiles that include the makefiles of the
build system. The build framework requires various parameters defined by the
configuration system. Using these parameters, it defines a number of other variables
and, most importantly, makefile rules to build various targets.

make <target> — TOP'leYel MagiCBuild|
Makefile Framework
Include » (makefiles)
Definitions
Custom build rules
Include
) Module
Recursive make Makefiles
_ .
(recursively)

Figure 1: General makefile hierarchy

The various parameters and definitions required by the build system, as well asthe
structure of the top-level and module specific makefiles, are described in the
subsequent sections.

An example of using the build system is provided in thet est subdirectory of the
MagiCBuild distribution package.

5.2. Build targets
MagiCBuild framework defines the following targets for Make:

14

MagiCBuild

Using the build system Version 0.1 User's Guide
Target Description
all Default target. Compiles everything recursively from source tree to output
tree.
deps Makes dependencies. Y ou have to make dependenciesif you intend to

recompile something later and wish to ensure that al files are recompiled if
the files they depend on have changed.

cl ean Cleans output tree by deleting all intermediary and output files and
directories. If the directories contain files from other projects, the directories
are not removed.

rebuild Cleans output tree and recompiles everything using the default target. Same as
“clean all".
dox Compiles reference documentation for C or C++ projects using Doxygen

documentation generator.

install Installs files from output directory tree to an installation directory hierarchy.
For example, if the $1 NSTALLDI R (as defined with - - pr ef i x option for the
confi gur e script) is/ usr/ 1 ocal , binarieswill be copied to/
usr/ | ocal / bi n, librariesto/ usr/1 ocal /| i b, and shared filesto/
usr/ | ocal / share.

uni nstal | Removes files that were installed using "i nst al | " target. The files are
removed according to the$l NSTALLDI Rvariable, as defined with- - pref i x
option for theconf i gur e script. If the variable has changed after installing,
theinstalled files will not be removed correctly.

di st Builds a source code distribution package, which is aBZip2 compressed Tar
archive.

It is possible to add custom targets and extend some of the predefined targets, as
described in Section 5.5.2 Custom targets below.

5.3. Parameter variables

The build system requires the following parameters, which are usually defined by
the configuration system. The build system attempts to read them from the
bui | d/ confi g. nk configuration file, but they can also be given from the

environment.

Variable Default Description

SRCDI R .or.. Topmost source directory, under which thebui | d
subdirectory containing MagiCBuild filesis located.

BUI LDDI R /'tmp/ $USER/ bui 1 d Output directory where final executable files, object
files, temporary files, and documentation files are
written.

PLATFORM I'i nux Operating system.

ARCH i 386 Processor architecture.

15

MagiCBuild

User's Guide Version 0.1 Using the build system
Variable Default Description
I NSTALLDI R /usr/local or Base directory for installation. The default directory is
$HOME /usr/1ocal for system administrator (root) and
$HOME for other users.
BUI LDTYPE rel ease Build type.
CXX g++ C++ compiler to use.
CXX_PATH GCC ingtallation directory. The path is used to

determine dependencies correctly. If it is not defined or
isincorrect, generation of dependencieswith "make
deps" will generate many ugly (but mostly harmless)
warnings.

Specialized requirement checks can add more parameters. For example,
check_f or _qt configuration requirement adds variable QTDI R, which points to the
directory of the detected Qt installation.

Requirement checks that find out libraries can add elements to the following

parameters:

Variable name
EXTRA_| NCLUDE_DI RS

EXTRA LI B DI RS

Description

Extrainclude directories for C++. The directories are listed as
"- 1 <di rect or y>" flags for the compiler.

Extralibrary inclusion directories for C++. The directories are
listed as"- L<di r ect or y>" flags for the linker.

EXTRA_LI BS

Extralibraries for C++. Thelibraries are listed as
"-1 <li bname>" flags for the linker.

User-defined feature checks done inbui | d/ conf - regs. sh can also add their own

parameters.

5.4. Defined variables

MagiCBuild framework defines a set of variables for input and output directory
paths. The definitions are done inbui | d/ magi cdef . nk. and are based on the

parameter variables.

16

Using the build system

MagiCBuild

Version 0.1

S$SSRCDIR

,,,,,,,,,,,,,,,,,,,,,,,,

—conf-regs.sh |

install-magicbuild

—magiccmp.mk
—magicdef.mk
—magicdist.mk

—magictop.mk

!
——magicver.mk]
]
]

—makefile.template

—mysoftware-usersguide.sxw

—mysoftware-usersguide.pdf

——mymodulel
——mymodulel.mk
build

! dox.conf

include
mysoftware
L—myheader.h

src |

mymain.cc

mycode.cc

——submodulel
submodulel.mk

A%AmymoduleZ

Configure script
Top-level makefile

Project-specific configuration
Installation cloning script for MagiCBuild
Compilation rules and other targets
Definitions

Rules for building distribution packages
Rules for top-level makefile

Rules for maintaining version info files
Template for top-level makefile

Special style filter for Doxygen

User documentation
User documentation in another format

A module
Makefile for the module

Configuration file for Doxygen

Directory for software-specific headers
Header file for the module

Source file for the module
Source file for the module

A sub-module
M akefile for the submodule

Figure 2: Source directory hierarchy of a typical project

5.4.1. Sourcedirectories

The following variables define directories in the source tree.

Top-level sourcedirectories

The top-level source directories have "gr p-" prefix.

Description
Top-level include directory.
Top-level build directory that contains MagiCBuild

files and also application-specific configuration and
build files.

Variable Default

gr pi ncdi r $SRCDI R/ i ncl ude
gr pbui | ddi r $SRCDI R/ bui | d
gr pdocdi r $SRCDI R/ docs

Module level sourcedirectories

Top-level documentation directory.

The module-level source directories have "nod-" prefix.

17

User's Guide

MagiCBuild

User's Guide Version 0.1 Using the build system
Variable Default Description
moddi r $SRCDI R/ $nmodpath Full path to module directory.
nodsr cdi r $noddir/src C and C++ source code
modi ncdi r $noddi r/ i ncl ude C and C++ headers. The header files are written to

this common directory, or if header subdi r
variable is defined in source modules, to amodule
or software specific subdirectory defined with the

variable.
modcf gdi r $noddi r/ config Configuration filesto be installed
moddat adi r $noddi r/ dat a Run-time data filesto be installed
nodbui | ddi r $noddi r/ bui l d Additional build files

5.4.2. Output directories

All intermediate, temporary, and output files are written to a common output
directory tree, which istotally separate from the source tree.

Soutputdir
bin ($bindir) Directory for compiled binaries
myprogram A binary executable
1lib ($1ibdir) Directory for compiled libraries
\—libmylibrary.a A library
include ($incdir) Directory for compiled libraries
mysoftware Header files for a specific software
myheader.h A header file
dist ($distdir) Source distribution packages
\—mysoftware—o.l .lbetal.src.tar.bz2 A source distribution package
deps Dependency files ("make deps")
\—myprojectmymodulel—deps .mk Dependencies for a module
ob7j ($Sobjdir) Object files
mymodulel Object files for a specific module
mymain.o An object file
mysource.o An object file

Figure 3: Output directory hierarchy for a simple project

Common output directories
These directories contain files common to all projects.

Variable Default Description

archdir $BUI LDDI R/ $PLATFORM Operating system and processor architecture specific
- SARCH directory.

out putdir $ar chdi r/ $BUI LDTYPE | Qutput root directory

libdir $outputdir/lib Libraries

bi ndi r $out putdir/bin Executable binaries

obj dir $out put di r/ obj Object files Object filesfor each module and sub-

module (application or library) are contained in
respective subdirectories.

18

MagiCBuild

Using the build system Version 0.1 User's Guide

Variable Default Description

mocdi r $out put di r/ noc Meta-object compiler output files for Qt projects.

incdir $out putdir/include Shared headers

shar edi r $out put dir/share Shared files to be installed, such asconfiguration files
and datafiles

docdi r $out put di r/ doc Documentation files to be installed. Documentation files
for each module (application or library) are contained in
respective subdirectories.

t mpdi r Sout putdir/tnp Temporary files

di stdir $out put di r/ di st Distribution packages created with "make di st ".

Module specific output directories

The following variables specify modul e-specific output directories. The files are
placed in module-specific directories to avoid name clashes.

Variable Default Description

obj noddi r $obj di r/ $nodpat h Object filesfor amodule

docnoddi r $docdi r/ $nodpat h Documentation files for amodule

nocmoddi r $nocdi r/ $nodpat h Meta-object compiler output files for amodule

sharenoddir $sharedir/apps/ $modnane Shared directory for a project or module. Thisis

consistent with the Linux file hierarchy

standard.
cf gnoddi r $sharenoddi r/config Configuration filesfor a project or module
dat anoddi r $shar enroddi r/ dat a Datafilesfor a project or module

5.5. Recursive makefiles

All makefiles can be recursive to compile their sub-modules. The recursion is done
by listing the submodulesin thenmakenodul es variable. The submodules are built
after the magi ct op. nk or magi ccnp. nk iscalled from atop-level or module-level
makefile, respectively. These two types of recursive makefiles are detailed in

sections 5.6 and 5.7 bel ow.

The common variables defined for both types of recursive makefiles are:

Variable name

makenodul es

extra_targets

extra_dist_targets

Description

Space-separated list of modules (or sub-module) to be built
recursively.

Extra make targets to be built for the default target.

Extra make targets to be built for thedi st target for making
distribution packages Thisis often used to compile document
formats.

19

MagiCBuild
User's Guide Version 0.1 Using the build system

The general structure of recursive makefilesisillustrated in Figure 4 below.

make <target> = Recursive
Makefile

Definitions...

Include magicdef .mk _>{ build/magicdef.mk

Modified definitions...

build/magictop.mk
Include magictop.mk > or magiccmp.mk

O magiccmp.mk Build
L recursively

Custom build rules...

Modules
or
sub-modules

Figure 4: General structure of recursive makefiles

For example, the following top-level makefile builds two modules recursively:

i ncl ude $(SRCDIR)/ bui | d/ magi cdef . nk

Modules to build recursively
makenodul es = nmodul el nodul e2

BHBHB AR RHBHBHRHHAH AR HR A AR AHBH B AR R AR B AR RS R AR R

Include build rul es
HHHH RS HH R RS R R R R R R R R R R R]
i ncl ude $(SRCDI R)/ bui | d/ magi ct op. nk

5.5.1. Definitionsfor building distribution packages

The following definitions are needed to build source distribution packages. The
definitions list any "extra" filesto be included in the package. Also al the
MagiCBuild files must be listed (this may change in a future version).

Variable Description

distdirs Directories containing materia to be included in thedistribution package. In
top-level makefiles, also the "bui | d" directory containing MagiCBuild files
must be included. In module-level makefiles the bui | d directory must be
included only if it containscustom configuration files.

20

MagiCBuild

Using the build system Version 0.1 User's Guide
Variable Description
distfiles Files to beincluded in thedistribution package. Full relative path to the files

must be given, relative to the directory of the makefile. Intop-level makefile,
also the"confi gur e" script must beincluded in the list, as well asthe
"Makef il e". In module-level makefiles the makefileitself must be
included.

Thislist also typically contains aREADMVE. TXT file and any other
documentation files placed in thedocs subdirectory.

buildfiles Filesin thebui | d subdirectory to be included in thedistribution package.
The list must include all MagiCBuild files for thetop-level makefile The
user-defined conf - r egs. sh should also beincluded in thislist, if it exists.
In module-level makefiles the list typically containsdox. conf
configuration file for Doxygen documentation generator.

For example:

... basic definitions ...

HHHHHH R TR R S R R R RS R R R RS R S RS R]
Distribution files and directories

HHHHHEH R TR R R RS R R RS R R RS R RS R]

Extra directories to include in distribution package
distdirs = buil d docs

Files to include in distribution package
distfiles = README. TXT confi gure Makefile \
docs/ magi cbui | d- user sgui de. sxw \

Files in "build subdirectory, including custom ones
buildfiles = conf-regs.sh \
magi cdef . nk magi ccnp. nk magi cdi st. nk \
magi ct op. nk magi cver. nk \
i nstal | - magi cbui |l d toDox. pl \
makefil e.tenmpl ate

5.5.2. Custom targets

Although the build system defines internally most necessary targets, it is often
necessary to define custom targets, for example, if you need to compile software
written in programming language not supported by Magi CBuild.

For example, the following top-level makefile builds two modules recursively:

... basic definitions ...
i ncl ude $(SRCDI R)/ bui | d/ nagi cdef . mk

Any extra targets (see bel ow)
extra targets = hello

Extra targets for building distribution package (see bel ow)
extra_ dist _targets = nmy_dist _target

21

MagiCBuild
User's Guide Version 0.1 Using the build system

HHEBHTHAH B HAE R R R R AR R R R R R R R R
Include build rules

HHH R R T
i ncl ude $(SRCDI R)/ bui | d/ magi ct op. nk

HHHHHHH R R H R R R R R R R R R
Extra targets
HH#HHHH R B HT R HH T R TR R R R R R R R R R
hel | o:

echo "Hel l o, world!"

Do extra stuff for building distribution package
ny_dist_target: $(distdir)/my_doc_fil e. pdf

$(distdir)/my_doc file.pdf: $(docdir)/nmy_doc file.ps
pst opdf $< $@

The custom targets are called from magi ct op. nk (for top-level makefiles) or
magi ccnp. nk (for module-level makefiles).

5.6. Top-level makefile

The top-level makefileisarecursive makefile that islocated at the top-level
directory of the source directory tree. It is used to build all top-level modules of the
software.

The top-level makefileis aways named as "Makef i | e, to allow automatic
recognition by the GNU Make without need to specify afile name. When
MagiCBuild isinstalled to a software project withi nst al | - magi cbui | d program,
the program creates atop-level makefiletemplate as Makefi | e. t enpl at e. You
just need to rename this template as "Makef i | e" and modify it for your software.

Module-level makefileshave the following structure:
1. Define project parameters
2. Cdl magi cdef . nk
3. Define recursive compilation parameters
4. Cal magi ct op. nk
5. Define custom targets

The structure of atop-level makefileisillustrated in the Figure 5 below.

See Section 5.5 Recursive makefiles above for general information about recursive
makefiles. Also the custom build rules are explained in that section.

22

MagiCBuild

Using the build system Version 0.1 User's Guide
make <target> = TOp-level
Makefile
Definitions...

Include magicdef .mk

_ﬂ build/magicdef.mk

Modified definitions...
Modules to be built...

Include magictop.mk

_H build/magictop.mk

Custom build rules...

Figure5: General structure of a top-level makefile

Basic definitions
The following definitions are necessary for the top-level makefile

export
export
export
expor t
expor t

HHAHHHHHHHH BB R HH R R R R R R R R R R R R R
Define default

root directory of the source tree

packagenane = nypackage
0

ver maj or
verm nor
verbuil d
versuffix

1
1
bet a

HHHHHBHHH B HH P H B H SR AR H R H R R H R R R R
export SRCDI R ?= .

HURHHHHHH R
Package and version info
HER R HHH IR

The package name and version numbers are used for building distribution packages.

Invoking build framework

After all the definitions above have been done, you can call the build framework.
First, call magi cdef . nk to make all the necessary definitions, and then
magi ct op. nk to make the recursive build.

Modul es to build recursively
makenodul es = nodul el nodul e2

23

HHHHH R R R R R R R R R R R R R R R R TR R R R R R AR
I nclude build franmework
HHHHHH R R R R R R R R R R R R R R R R R HHH R R R R R R R R
i ncl ude $(SRCDI R)/ bui | d/ magi cdef . mk

RHHBHBHHBH R BB H B BB B R B R R R R R R R R

User's Guide

MagiCBuild
Version 0.1 Using the build system

Include build rules
HERH R R R R R R R R R R R R
i ncl ude $(SRCDI R)/ bui | d/ magi ct op. nk

Y ou can add your custom targets after this, as described in section.

5.7. Module-level makefiles

Module-level makefilesare very much like the top-level makefiles, except that they
do not have the overall package definitions.

The name of a makefile of amodule matches the module name. For example, if the
module islocated in subdirectory "nmynodul e", the makefile must be named
"mynodul e. nk". The binary executable or library compiled from the module will
also have the same name by default.

Module-level makefileshave the following structure:

6. Define module parameters
7. Cdl magi cdef . nk
8. Define compilation parameters
9. Call magi ccnp. nk
10.Define custom targets
These areillustrated in the Figure 6 below.

make <target> =——m Module-level
Makefile

Definitions...

Include magicdef.mk —»‘ build/magicdef.mk

M odified definitions...

Include magiccmp.mk >‘ build/magiccmp.mk

Custom build rules...

Figure 6: General structure of module-level makefiles.

The module parameters and compilation parameters are defined in subsections
below.

See Section 5.5 Recursive makefiles above for general information about recursive
makefiles. Also the custom build rules are explained in that section.

24

MagiCBuild
Using the build system Version 0.1 User's Guide

5.7.1. Module parameters
The following parameters can be defined in a module-level makefile.

Variable Default Description
modnane - Name of the module (MANDATORY)
nodpat h $nodnane Path to the module directory, relative to the top-level source

directory. This must be defined if the module is a second or
lower level sub-module.

modt ar get $modnane Target basename for binaries and libraries.
conpile_library o Isthe module alibrary?
makedox Should Doxygen documentation be generated? This requires
having adox. conf configuration filein thebui | d
0 subdirectory of the module.
nmodversionfile Version info filefor the module
modver si onheader Version C or C++ header file for the module
For example:

HABHHH B R HHH R R H AR R R RS R R R R R R R R
Modul e paraneters
HRRHHH R R HHH R R H AR R AR R TR R R R R R R R R

nodnane = nmynodul e
nodpat h = somenodul e/ subnmodul e/ anot her| evel / mynodul e
nodt ar get = nybi nary

HARHHHHBHHH AR B H AR H R R R R R R R R
Include build franework definitions

HARHHHBRHHH B R B HHH BB HHH R BH AR R R R R R R R R R
i ncl ude $(SRCDI R)/ bui | d/ magi cdef . mk

In the above example, the "nynodul e" isa 4™ level submodule, so its path has to be
defined with nodpat h.

5.7.2. Compilation parametersfor C++

Compilation parameters are defined usually after calling magi cdef . nk. The
following definitions can be made:

Variable Description

sour ces List of sourcefilesinsr ¢ subdirectory. The directory name should not be
included in the names.

headers List of header filesini ncl ude subdirectory. The directory name should not
be included in the names, unless theheaders are contained in a subdirectory.

I'i bdeps List of library dependecies. The libraries are listed with their short name, for
example, "dl " referstothelibrary |'i bdl . The library names will be passed
tothelinker as - | <name>", for example, "- | dI ".

25

User's Guide

MagiCBuild
Version 0.1 Using the build system

Variable Description

header subdi r Subdirectory of thei ncl ude subdirectory containing the header files,

making it possible to include the headers with "#i ncl ude

<header subdi r/ myheader . h>". If theheader subdi r isnot given, al
the headers will be written to a common include directory (such as/
usr/incl ude), which may result in file name clashes.

For example:

HU I R R S R
Conpil ati on paraneters
HHBHHH SRR R HHH R R HHH R R TR TR R R R R R R R R R R

Source files in "src" subdirectory
sources = mynmi n.cc nysource. cc

Header files in "include/ nysoftware" subdirectory
headers = nyheader. h

Sof tware-specific include directory
header subdi r = nysoftware

HHAEBHAHAH B HAE R R R R AR R R R R R R R R R
Include build rules

HHH R R T
i ncl ude $(SRCDI R)/ bui | d/ magi ccnp. nk

26

MagiCBuild

Known problems and limitations Version 0.1 User's Guide

Chapter 6 Known problemsand limitations

6.1.

6.2.

Problems
MagiCBuild has the following known problems:

» The build system prints some shell execution errors with "make" command.

* The cleanup with "make cl ean" isincomplete in some cases.

Limitations
MagiCBuild has the following general limitations:
* Only C++ language supported
* MagiCBuild and itsinstallation script can not be installed system-wide (to/
usr/ bin, etc.)

Configuration system
The configuration system, as defined in theconf i gur e script, has the following
l[imitations:

» Optionsfor theconfi gur e script are very limited. Especially the options
for following features are missing:

Extralibraries and library and include file search paths

Enabling and disabling software components
Enabling debug build
Adding prefixes and suffixesto compiled binaries

» Configuration file (conf i g. nk) iswritten to the source tree, not to the
output tree, which would be nicer. Asit iswritten to source tree, it is not
possible to maintain multiple configurations simultaneously, for example,
for debug and release builds. It would be possible to write it to theoutput
tree, but the build system would not know where it was written. This could
be solved by making the user define some environment variables, but we
want to avoid that.

27

MagiCBuild
User's Guide Version 0.1 Known problems and limitations

* Requiring a specific or minimum version number of required software is
currently not supported for any of the predefined requirement checks

» C++ features are not checked
» A C++ header file should be generated to offer definitions to programs

Build system
» Dependencies are not determined internally, but they must be determined
by running "make deps".
 All header files are currently copied to output directory and installed,
regardlessif they are private (such as those for compiling binary modules)
or actually intended to be shared (such as those that provide an API to
libraries).

28

MagiCBuild
GNU Free Documentation License Version 0.1 User's Guide

Chapter 7 GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License isto make a manual, textbook, or other functional and useful document “free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercialy or noncommercially. Secondarily, this License preserves for the author and publisher away to get credit for
their work, while not being considered responsible for modifications made by others.

This Licenseisakind of "copyleft", which means that derivative works of the document must themselves be free in the same
sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: afree program should come with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is
published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by thecopyright holder
saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions stated herein. The "Document", below, refersto any such manual or work.
Any member of the public isalicensee, and is addressed as "you". Y ou accept the license if you copy, modify or distribute
the work in away requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim,
or with modifications and/or trandlated into another language.

A "Secondary Section" is a named appendix or afront-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if the Document isin part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in
the notice that says that the Document is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover
Text may be at most 25 words.

A "Transparent”" copy of the Document means a machine-readable copy, represented in aformat whose specification is

available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is

29

User's Guide

MagiCBuild
Version 0.1 GNU Free Documentation License

suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subseguent modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent” is called "Opague".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input
format, SGML or XML using apublicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title
Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XY Z" means a named subunit of the Document whose title either is precisely XY Z or contains XYZ in
parentheses following text that translates XY Z in another language. (Here XY Z stands for a specific section name mentioned
below, such as"Acknowledgements’, "Dedications’, "Endorsements’, or "History".) To "Preserve the Title" of such a section
when you modify the Document means that it remains a section "Entitled XY Z" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document.
These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

Y ou may copy and distribute the Document in any medium, either commercially or noncommercialy, provided that this
License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute alarge enough number of copies you must also follow the conditions
in section 3.

Y ou may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in mediathat commonly have printed covers) of the Document, numbering more than
100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. Y ou may add other material on the covers in addition. Copying with changes
limited to the covers, aslong as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opague copies of the Document numbering more than 100, you must either include a machine-
readable Transparent copy aong with each Opaque copy, or state in or with each Opague copy a computer-network location
from which the general network-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opague copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

Y ou may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided

30

MagiCBuild
GNU Free Documentation License Version 0.1 User's Guide

that you release the Modified Version under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Usein the Title Page (and on the covers, if any) atitle distinct from that of the Document, and from those of previous
versions (which should, if there were any, be listed in the History section of the Document). Y ou may use the sametitle asa
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the
Modified Version, together with at least five of the principa authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve al the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, alicense notice giving the public permission to use the Modified Version
under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license
notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and
likewise the network locations given in the Document for previous versions it was based on. These may be placed in the
"History" section. Y ou may omit a network location for awork that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications', Preserve the Title of the section, and preserve in the
section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve al the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the
equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any
other section titles.

Y ou may add a section Entitled "Endorsements’, provided it contains nothing but endorsements of your Modified Version by
various parties--for example, statements of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to
the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or
to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

31

User's Guide

MagiCBuild
Version 0.1 GNU Free Documentation License

Y ou may combine the Document with other documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you
preserve al their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced
with asingle copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titlesin the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section
Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications’.
You must delete all sections Entitled "Endorsements.”

6. COLLECTIONS OF DOCUMENTS

Y ou may make a collection consisting of the Document and other documents released under this License, and replace the
individual copies of this License in the various documents with a single copy that isincluded in the collection, provided that
you follow the rules of this License for verbatim copying of each of the documentsin all other respects.

Y ou may extract a single document from such a collection, and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on avolume
of astorage or distribution medium, is called an "aggregate" if thecopyright resulting from the compilation is not used to

limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one
half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document isin electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of
section 4. Replacing Invariant Sections with translations requires special permission from theircopyright holders, but you
may include trandlations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include atranslation of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or anotice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements', “Dedications”, or "History”, the requirement (section 4) to
Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

Y ou may not copy, modify, sublicense, or distribute the Document except as expressy provided for under this License. Any
other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

32

MagiCBuild
GNU Free Documentation License Version 0.1 User's Guide

The Free Software Foundation may publish new, revised versions of theGNU Free Documentation License from time to time.
Such new versions will be similar in spirit to the present version, but may differ in detail to address newproblems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered
version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of
that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by
the Free Software Foundation.

33

MagiCBuild

User's Guide Version 0.1 GNU Free Documentation License
Alphabetical Index

$HOME 16 extra_dist_targets 19,21

$INSTALLDIR 15 EXTRA_INCLUDE_DIRS 16

$MKCONFIG 13 EXTRA_LIB_DIRS 16

$SRCDIR 12, 17p. EXTRA_LIBS 16
A extra_targets 19, 21
ARCH 15, 18 G
B GCC 16
GNU Autoconf 4
BaSh 11 GNU Free Documentation License 2,5,29 33
bindir 18 GNU General Public License 29
build/conf-regs.sh 11p., 16 GNU Lesser General Public License 5
build/config.mk 11 GNU Make 4,22
BL_”LPDlR 15,18 GNU Make 3.79.1 or newer 5
buildfiles 21 GNU Tar 6,8
BUILDTYPE 16, 18 GNU/Linux 5
bz2 6,8 grpbuilddir 17
BZip2 6,15 grpdocdir 17
C grpincdir 17
C++ 4p., 11, 13, 16, 18, 25, 27p. H
C++ compiler 11, 13, 16 headers 4,8, 18p., 25p.
check_for_libjpeg 12
check for_gt 11, 16 I
clean 4,9, 15,27 incdir 19
Cleaning up 4 install 6pp., 15, 21p.
compile_library 25 INSTALLDIR 15p.
conf-regs.sh 11p., 16, 21 Installing 4,6,9
config.mk 13, 15, 27 L
configuration files 18pp.
Configuration tool 4 L_GPL >
configure 4,7p., 10p., 15, 21, 27 libdeps 25
Copyight 2,20 Leies 10,18
custom check 12 '
custom configuration 12p., 20 limitations 4p., 27
custom targets 15, 21p., 24 M
CXX 16 magiccmp.mk 7, 19, 21p., 24, 26
CXX_PATH 16 magicdef.mk 7, 16, 20pp.
D magictop.mk 7, 19pp.
Datafiles 18p. makedox 25
debug build 27 makemodules 19p., 23
Dependencies 9, 15p., 28 Meta—_obj ect compiler 19
sar 1.2 oo
distdirs 20p. '
distfiles le modpath 18p., 25
distribution directory 6 mggt?rgg'trector 25 18 %5
ule di y)

distribution package

4,6, 11, 14p., 20pp.

distribution packages 4, 19p. Module-level makefiles 20pp., 24
docdir 19, 22 modversionfile 25
Documentation 2, 5, 19, 29, 33 modversionheader 25
Doxygen 4,21,25 O
objdir p.
E bjdii 18
Enabling and disabling 27 Object files 4, 15, 18p.
Executable binaries 18 output directory 4, 9, 16, 18
export 11, 13,23 Output root directory 18

34

MagiCBuild

GNU Free Documentation License Version 0.1 User's Guide
output tree 4,27 SRCDIR 12, 15, 17p., 20pp.
outputdir 18p. T
P tar 6,8
PLATFORM 15,18 Temporary files 19
prefixes and suffixes 27 tmpdir 19
problems 27,33 top-level makefile 6, 20pp.
Q top-level source directory 9,25
QTDIR 16 U
R uninstall 10, 15

. . uninstalling 4
recursive makefiles 19p., 22, 24 V
S i Version info file 25
sharedir 19
source code 4, 6,8, 15, 18 W
source tree 4,9,11, 17p., 23, 27 WRITE_CUSTOM_CONFIG 13
sources 9, 25p.

35

