
MagiCBuild
Configuration and build system

Version 0.1
User's Guide

Marko Grönroos (magi@iki.fi)

August 5th 2003

MagiCBuild
User's Guide Version 0.1 Copyright and License

About this document
This document provides information about the MagiCBuild configuration and build system.

Copyright and License
User's Guide

MagiCBuild version 0.1

Copyright (c) 2003 Marko Grönroos.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the chapter entitled "GNU Free Documentation License".

Special copyright chapter
The copyright is waived for the chapter titled in this document as "Building a package" to allow the
use of the documentation in the installation instructions for software that uses MagiCBuild build
system.

No material from other parts of this document many be transferred to that chapter without a prior
written permission from the copyright owner, as the material would need to have its copyright
waived. If the permission is not granted for such transferral, the modified chapter will follow the
copyright and license of the transferred material.

2

MagiCBuild
Copyright and License Version 0.1 User's Guide

Table of Contents
Chapter 1 Introduction..4

1.1. System requirements..5
1.2. Licensing..5

Chapter 2 Installing MagiCBuild...6
2.1. Unpacking the distribution package..6
2.2. Installation to user project..6

Chapter 3 Building a package...8
3.1. Opening the source package..8
3.2. Configuring..8
3.3. Compiling...9

3.3.1. Compilation output...9
3.4. Installing...9
3.5. Uninstalling..10

Chapter 4 Using the configuration system..11
4.1. Overview..11
4.2. Requirements file...11
4.3. Extending requirement checks...12

4.3.1. Writing a custom check..12
4.3.2. Writing custom configuration..13

Chapter 5 Using the build system...14
5.1. Overview..14
5.2. Build targets...14
5.3. Parameter variables..15
5.4. Defined variables..16

5.4.1. Source directories...17
5.4.2. Output directories...18

5.5. Recursive makefiles...19
5.5.1. Definitions for building distribution packages..20
5.5.2. Custom targets..21

5.6. Top-level makefile...22
5.7. Module-level makefiles..24

5.7.1. Module parameters...25
5.7.2. Compilation parameters for C++...25

Chapter 6 Known problems and limitations...27
6.1. Problems...27
6.2. Limitations..27

Chapter 7 GNU Free Documentation License..29

3

MagiCBuild
User's Guide Version 0.1 Introduction

Chapter 1 Introduction

MagiCBuild is a build system that provides high-level functionality for compiling a
software product from source code. It is based on GNU Make and consists of a
framework of makefiles.

The most important feature of MagiCBuild is that all output and intermediate files
are written to an output directory tree that is totally separate from source code tree.
This helps keep the source tree completely clean from trash such as object files and
executables. After compilation, the executable binaries, libraries, headers, shared
files, and documentation can be "installed" from the output directory to actual
installation directory hierarchy.

MagiCBuild also contains a configuration tool, "configure", that can be used to
automatically detect relevant features of the platform such as availability and
version numbers of required software packages, output and installation directories,
and machine architecture. The configuration tool is a shell script, which makes
extending its functionality very easy. The basic usage of the configuration tool is
compatible with GNU Autoconf, making its use easy for open source software
developers.

An example of using the configuration and build system is provided in the test
subdirectory of the MagiCBuild distribution package.

Features

• Compiling C++ applications

• Compilation output tree separate from source tree

• Building reference documentation with Doxygen

• Installing and uninstalling

• Cleaning up the output directory

• Creation of source code distribution packages

• Configuration tool with GNU Autoconf compatibility

Limitations

• No installation to system directories

4

MagiCBuild
Introduction Version 0.1 User's Guide

• Only GNU/Linux platform currently supported

• Only C++ compilation currently supported with gcc

For a more complete list of limitations, see the chapter Known bugs and limitations.

1.1. System requirements
MagiCBuild has the following system requirements:

• GNU/Linux operating system

• GNU Make 3.79.1 or newer

• Doxygen (optional)

Platforms

The following Linux distributions have been tested:

Distribution

Red Hat Linux 9

Mandrake 9.1

Debian 2.2 + upgrades

1.2. Licensing
MagiCBuild is licensed under the GNU Lesser General Public License (LGPL). The
GNU Lesser General Public License is given in file docs/COPYING.LIB.

This documentation is licensed under the GNU Free Documentation License, as
presented in the Chapter 7.

5

MagiCBuild
User's Guide Version 0.1 Installing MagiCBuild

Chapter 2 Installing MagiCBuild

This chapter describes the installation procedure of MagiCBuild package.

Note: There is currently no way to "install" MagiCBuild to standard system
directories, but you must use it from the distribution directory.

2.1. Unpacking the distribution package
If you wish to make the distribution package available system-wide, you need to
login in as root and change to the directory under which you wish to unpack the
distribution package.

cd /opt

The source code is provided as a tar package compressed with BZip2 (bz2). If you
have GNU Tar, you can unpack the package with the following shell command:

tar jxf magicbuild-0.1beta1.tar.bz2

This will unpack the package in an appropriate subdirectory under the current
directory.

2.2. Installation to user project
This section describes how to install MagiCBuild build system to your software
project. The installation copies all of its relevant files to the project directory.

MagiCBuild is used from the distribution directory that was contained in the
distribution package.

To install MagiCBuild files in your own programming project, change to the root
directory of your own project (not the MagiCBuild directory) and run the install-
magicbuild script from the MagiCBuild distribution directory. For example:

$ cd mysources
$ /opt/magicbuild-0.1beta1/build/install-magicbuild

This will create a "build" subdirectory and copy all the MagiCBuild files there.
The configuration script will be copied to the current directory, as will be a template
top-level Makefile.

6

MagiCBuild
Installing MagiCBuild Version 0.1 User's Guide

mkdir: created directory `build'
`../configure' -> `configure'
`../build/makefile.template' -> `Makefile.template'
`../build/makefile.template' -> `build/makefile.template'
`../build/install-magicbuild' -> `build/install-magicbuild'
`../build/magicdef.mk' -> `build/magicdef.mk'
`../build/magiccmp.mk' -> `build/magiccmp.mk'
`../build/magicdist.mk' -> `build/magicdist.mk'
`../build/magictop.mk' -> `build/magictop.mk'
`../build/magicver.mk' -> `build/magicver.mk'
`../build/toDox.pl' -> `build/toDox.pl'

A file is not copied if there already exists a newer file with same name.

7

MagiCBuild
User's Guide Version 0.1 Building a package

Chapter 3 Building a package

This chapter provides instructions for configuring, building, and actually installing a
software package managed by MagiCBuild build system.

The installation instructions for the software package would probably be very much
like the instructions in this chapter.

Note: You are granted a permission to use any material in this (and only this)
chapter for the installation instructions of your software. We hereby waive the
copyrights for the contents of this chapter.

3.1. Opening the source package
The source code is normally provided as a GNU Tar package compressed with bz2.
You can unpack it with the following shell command:

tar jxf mysoftware-0.1beta1.tar.bz2

This will unpack the source code into an appropriate subdirectory under the current
directory.

3.2. Configuring
To configure the source code for compilation, change to the source directory and
run the configure script as follows:

cd mysoftware-0.1beta1
./configure

Optionally, if you wish to later install the package (headers and library) to some
other than the default directory, you need to set the installation path with the --
prefix attribute:

./configure --prefix=/opt/mysoftware

The default path for root user is /usr/local, and for other users their home
directory.

No other configuration flags are currently supported.

8

MagiCBuild
Building a package Version 0.1 User's Guide

3.3. Compiling
Include dependencies have to be determined before actual compiling, with the
following command:

make deps

This may produce some errors, which are usually not relevant. Making
dependencies is important if you intend to recompile the sources after making
changes to them.

The package is compiled with the following simple command:

make

3.3.1. Compilation output
The output binaries as well as any intermediate files of the compilation will be
located in an output directory tree separate from the source tree.

The build framework does the compilation output in separate directory, determined
by the configuration script. The default output directory is located in:

/tmp/$USER/build/<architecture>/release

where $USER is the user name and architecture is the operating system and
processor architecture, for example, Linux-i686.

For example, binaries are found under the bin subdirectory:

cd /tmp/$USER/build/Linux-i686/release/bin
./some_binary

Yoy can clean the output with the following command in the top-level source
directory:

make clean

You do not normally need to clean the output.

3.4. Installing
After compiling, you can be install the package under the configured installation
directory (see above) by issuing the following command in the source directory:

make install

This will copy the output library binaries and header files to appropriate
subdirectories under the installation directory.

9

MagiCBuild
User's Guide Version 0.1 Building a package

Directory Description

<instdir>/lib Libraries

<instdir>/bin Binaries

<instdir>/include Header files

3.5. Uninstalling
You can remove the installation by giving the following command in the source
directory:

make uninstall

This removes the installed files and directories only if the installation path has not
been changed with configure script after installing.

10

MagiCBuild
Using the configuration system Version 0.1 User's Guide

Chapter 4 Using the configuration system

This chapter gives a detailed description of the "configure" configuration system
included with MagiCBuild and instructions for using it in your own software
projects.

Notice that the configuration system is currently really minimal and provides only
basic functionality.

4.1. Overview
The configuration system is defined entirely in the configure script copied to the
root directory of the source tree. Application-specific requirements are defined in
file build/conf-reqs.sh.

The configuration system follows a commonly used scheme: detect the features and
write them to a file as variable definitions. Some other configuration systems write
to a shell script that is run by the user to get the values as environment variables.
Our system avoids this sort of contamination of the environment and writes the
variables to a makefile include file, build/config.mk. Actually, as the makefile
contains only lines such as "export SRC=/path...", you can also use the
makefile as a shell script in Bash (Bourne-Again Shell).

Some features are always checked. These include operating system, processor
architecture, and C++ compiler.

An example of using the configuration system is provided in the test subdirectory
of the MagiCBuild distribution package.

4.2. Requirements file
Application-specific requirements and any additional checking and configuration
code are placed in file build/conf-reqs.sh.

The following requirement checks are currently defined:

Call Description

check_for_qt Qt C++ library by Trolltech

11

MagiCBuild
User's Guide Version 0.1 Using the configuration system

Call Description

check_for_libjpeg JPEG library

Note: it is not currently possible to check the version numbers of the required
components.

4.3. Extending requirement checks
It is possible to define custom checks for the configuration system, although this
feature is still somewhat immature.

The custom checks are written to the user-defined conf-reqs.sh file (or another
file included from that file) in the build subdirectory of the top-level project
directory ($SRCDIR), just like the check provided by the configuration framework.
The configuration framework does not, and does not need to, provide any assistance
for the actual checks. It provides a callback definition for writing the custom
configuration to the configuration file.

4.3.1. Writing a custom check
The user-defined file build/conf-reqs.sh can contain any custom checks and
actions.

Below is a simple definition that checks whether Python is installed in the system
and determines (at the same time) path to its binary executable.

function check_python_path () {
 # Print beginning of check message without a newline
 echo -n "checking for python... "

 # Find out where Python binary is located
 PYTHONPATH=`which python`

 # Handle situation where it is not found
 if [! $PYTHONPATH] ; then

echo "not found"
exit 1

 fi

 # Display rest of the check message
 echo "$PYTHONPATH"
}

It is not really necessary to write the custom checks as functions, but writing them
as such is a good practice and helps for possible modularization if there are a lot of
checks.

The custom check can now be called, in build/conf-reqs.sh, just like checks
defined in the framework:

12

MagiCBuild
Using the configuration system Version 0.1 User's Guide

check_python_path

Adding libraries

A configuration function can add extra libraries as well as any necessary include file
and library paths with the following three functions:

add_include_dir "$SOMEDIR/include"
add_library_dir "$SOMEDIR/lib"
add_library "somelib"

The above three definitions would add the following flags to C++ compiler:

-I $SOMEDIR/include -L $SOMEDIR/lib -lsomelib

(The $SOMEDIR variable in this example would be expanded in the configuration
script.)

4.3.2. Writing custom configuration
After all checks have been done, the configuration system writes a configuration
file config.mk. Custom configuration is written through a callback function, which
appends lines to configuration file. The name of the configuration file, including
path, is stored in the $MKCONFIG variable.

Write custom configuration to configuration file
function my_custom_config () {
 echo "Writing custom config..."
 echo "export PYTHONPATH=$PYTHONPATH" >> $MKCONFIG
}

The name of the callback function must be passed to the configuration framework
using the WRITE_CUSTOM_CONFIG variable.

Inform the framework about this customization callback
WRITE_CUSTOM_CONFIG=my_custom_config

13

MagiCBuild
User's Guide Version 0.1 Using the build system

Chapter 5 Using the build system

This chapter describes how to use the makefile framework of the build system by
creating an appropriate top-level and module makefiles.

5.1. Overview
The build system is used by defining makefiles that include the makefiles of the
build system. The build framework requires various parameters defined by the
configuration system. Using these parameters, it defines a number of other variables
and, most importantly, makefile rules to build various targets.

The various parameters and definitions required by the build system, as well as the
structure of the top-level and module specific makefiles, are described in the
subsequent sections.

An example of using the build system is provided in the test subdirectory of the
MagiCBuild distribution package.

5.2. Build targets
MagiCBuild framework defines the following targets for Make:

14

Figure 1: General makefile hierarchy

Top-level
Makefile

Definitions

Custom build rules

make <target>
MagiCBuild
Framework
(makefiles)

MagiCBuild
Framework
(makefiles)

MagiCBuild
Framework
(makefiles)

Modules
(recursively)

Modules
(recursively)

Module
Makefiles

(recursively)

Recursive make

Include

Include

MagiCBuild
Using the build system Version 0.1 User's Guide

Target Description

all Default target. Compiles everything recursively from source tree to output
tree.

deps Makes dependencies. You have to make dependencies if you intend to
recompile something later and wish to ensure that all files are recompiled if
the files they depend on have changed.

clean Cleans output tree by deleting all intermediary and output files and
directories. If the directories contain files from other projects, the directories
are not removed.

rebuild Cleans output tree and recompiles everything using the default target. Same as
"clean all".

dox Compiles reference documentation for C or C++ projects using Doxygen
documentation generator.

install Installs files from output directory tree to an installation directory hierarchy.
For example, if the $INSTALLDIR (as defined with --prefix option for the
configure script) is /usr/local, binaries will be copied to /
usr/local/bin, libraries to /usr/local/lib, and shared files to /
usr/local/share.

uninstall Removes files that were installed using "install" target. The files are
removed according to the $INSTALLDIR variable, as defined with --prefix
option for the configure script. If the variable has changed after installing,
the installed files will not be removed correctly.

dist Builds a source code distribution package, which is a BZip2 compressed Tar
archive.

It is possible to add custom targets and extend some of the predefined targets, as
described in Section 5.5.2 Custom targets below.

5.3. Parameter variables
The build system requires the following parameters, which are usually defined by
the configuration system. The build system attempts to read them from the
build/config.mk configuration file, but they can also be given from the
environment.

Variable Default Description

SRCDIR . or .. Topmost source directory, under which the build
subdirectory containing MagiCBuild files is located.

BUILDDIR /tmp/$USER/build Output directory where final executable files, object
files, temporary files, and documentation files are
written.

PLATFORM linux Operating system.

ARCH i386 Processor architecture.

15

MagiCBuild
User's Guide Version 0.1 Using the build system

Variable Default Description

INSTALLDIR /usr/local or
$HOME

Base directory for installation. The default directory is
/usr/local for system administrator (root) and
$HOME for other users.

BUILDTYPE release Build type.

CXX g++ C++ compiler to use.

CXX_PATH GCC installation directory. The path is used to
determine dependencies correctly. If it is not defined or
is incorrect, generation of dependencies with "make
deps" will generate many ugly (but mostly harmless)
warnings.

Specialized requirement checks can add more parameters. For example,
check_for_qt configuration requirement adds variable QTDIR, which points to the
directory of the detected Qt installation.

Requirement checks that find out libraries can add elements to the following
parameters:

Variable name Description

EXTRA_INCLUDE_DIRS Extra include directories for C++. The directories are listed as
"-I<directory>" flags for the compiler.

EXTRA_LIB_DIRS Extra library inclusion directories for C++. The directories are
listed as "-L<directory>" flags for the linker.

EXTRA_LIBS Extra libraries for C++. The libraries are listed as
"-l<libname>" flags for the linker.

User-defined feature checks done in build/conf-reqs.sh can also add their own
parameters.

5.4. Defined variables
MagiCBuild framework defines a set of variables for input and output directory
paths. The definitions are done in build/magicdef.mk. and are based on the
parameter variables.

16

MagiCBuild
Using the build system Version 0.1 User's Guide

5.4.1. Source directories
The following variables define directories in the source tree.

Top-level source directories

The top-level source directories have "grp-" prefix.

Variable Default Description

grpincdir $SRCDIR/include Top-level include directory.

grpbuilddir $SRCDIR/build Top-level build directory that contains MagiCBuild
files and also application-specific configuration and
build files.

grpdocdir $SRCDIR/docs Top-level documentation directory.

Module level source directories

The module-level source directories have "mod-" prefix.

17

Figure 2: Source directory hierarchy of a typical project

$SRCDIR

build

mymodule1

docs

installmagicbuild

magiccmp.mk

magicdef.mk

magicdist.mk

magictop.mk

magicver.mk

makefile.template

toDox.pl

confreqs.sh

configure

Makefile Top-level makefile
Config ure script

Project-specific config uration
Installation cloning script for Mag iCBuild
Compilation rules and other targ ets
Definitions
Rules for building distribution packag es
Rules for top-level makefile
Rules for maintaining version info files
Template for top-level makefile
Special style filter for Doxyg en

mymodule2

include

src

build

mymodule1.mk

dox.conf

mysoftwareusersguide.sxw

mysoftwareusersguide.pdf

myheader.h

User documentation
User documentation in another format

mymain.cc

mycode.cc

...

submodule1

submodule1.mk

A module

...

Makefile for the module

Config uration file for Doxyg en

Header file for the module

Source file for the module
Source file for the module

A sub-module
Makefile for the submodule

mysoftware Directory for software-specific headers

MagiCBuild
User's Guide Version 0.1 Using the build system

Variable Default Description

moddir $SRCDIR/$modpath Full path to module directory.

modsrcdir $moddir/src C and C++ source code

modincdir $moddir/include C and C++ headers. The header files are written to
this common directory, or if headersubdir
variable is defined in source modules, to a module
or software specific subdirectory defined with the
variable.

modcfgdir $moddir/config Configuration files to be installed

moddatadir $moddir/data Run-time data files to be installed

modbuilddir $moddir/build Additional build files

5.4.2. Output directories
All intermediate, temporary, and output files are written to a common output
directory tree, which is totally separate from the source tree.

Common output directories

These directories contain files common to all projects.

Variable Default Description

archdir $BUILDDIR/$PLATFORM
-$ARCH

Operating system and processor architecture specific
directory.

outputdir $archdir/$BUILDTYPE Output root directory

libdir $outputdir/lib Libraries

bindir $outputdir/bin Executable binaries

objdir $outputdir/obj Object files. Object files for each module and sub-
module (application or library) are contained in
respective subdirectories.

18

Figure 3: Output directory hierarchy for a simple project

$outputdir

bin

A binary executable
Directory for compiled binaries($bindir)

myprogram

lib ($libdir) Directory for compiled libraries
libmylibrary.a A library

deps

myprojectmymodule1deps.mk Dependencies for a module
obj

mymodule1

mymain.o

mysource.o

Object files

Dependency files ("make deps")

Object files for a specific module
An object file
An object file

dist

mysoftware0.1.1beta1.src.tar.bz2 A source distribution package
Source distribution packages

include ($incdir) Directory for compiled libraries
mysoftware

A header file
($distdir)

($objdir)

myheader.h

Header files for a specific software

MagiCBuild
Using the build system Version 0.1 User's Guide

Variable Default Description

mocdir $outputdir/moc Meta-object compiler output files for Qt projects.

incdir $outputdir/include Shared headers

sharedir $outputdir/share Shared files to be installed, such as configuration files
and data files.

docdir $outputdir/doc Documentation files to be installed. Documentation files
for each module (application or library) are contained in
respective subdirectories.

tmpdir $outputdir/tmp Temporary files

distdir $outputdir/dist Distribution packages created with "make dist".

Module specific output directories

The following variables specify module-specific output directories. The files are
placed in module-specific directories to avoid name clashes.

Variable Default Description

objmoddir $objdir/$modpath Object files for a module

docmoddir $docdir/$modpath Documentation files for a module

mocmoddir $mocdir/$modpath Meta-object compiler output files for a module

sharemoddir $sharedir/apps/$modname Shared directory for a project or module. This is
consistent with the Linux file hierarchy
standard.

cfgmoddir $sharemoddir/config Configuration files for a project or module

datamoddir $sharemoddir/data Data files for a project or module

5.5. Recursive makefiles
All makefiles can be recursive to compile their sub-modules. The recursion is done
by listing the submodules in the makemodules variable. The submodules are built
after the magictop.mk or magiccmp.mk is called from a top-level or module-level
makefile, respectively. These two types of recursive makefiles are detailed in
sections 5.6 and 5.7 below.

The common variables defined for both types of recursive makefiles are:

Variable name Description

makemodules Space-separated list of modules (or sub-module) to be built
recursively.

extra_targets Extra make targets to be built for the default target.

extra_dist_targets Extra make targets to be built for the dist target for making
distribution packages. This is often used to compile document
formats.

19

MagiCBuild
User's Guide Version 0.1 Using the build system

The general structure of recursive makefiles is illustrated in Figure 4 below.

For example, the following top-level makefile builds two modules recursively:

...
include $(SRCDIR)/build/magicdef.mk

Modules to build recursively
makemodules = module1 module2

###
Include build rules
###
include $(SRCDIR)/build/magictop.mk
...

5.5.1. Definitions for building distribution packages
The following definitions are needed to build source distribution packages. The
definitions list any "extra" files to be included in the package. Also all the
MagiCBuild files must be listed (this may change in a future version).

Variable Description

distdirs Directories containing material to be included in the distribution package. In
top-level makefiles, also the "build" directory containing MagiCBuild files
must be included. In module-level makefiles, the build directory must be
included only if it contains custom configuration files.

20

Figure 4: General structure of recursive makefiles

Module
or

sub-module

Module
or

sub-module

Recursive
Makefile

Definitions...

Modified definitions...

Custom build rules...

Include magicdef.mk

Include magictop.mk

build/magicdef.mk

build/magictop.mk
or magiccmp.mk

make <target>

or magiccmp.mk

Modules
or

sub-modules

Build
recursively

MagiCBuild
Using the build system Version 0.1 User's Guide

Variable Description

distfiles Files to be included in the distribution package. Full relative path to the files
must be given, relative to the directory of the makefile. In top-level makefile,
also the "configure" script must be included in the list, as well as the
"Makefile". In module-level makefiles, the makefile itself must be
included.
This list also typically contains a README.TXT file and any other
documentation files placed in the docs subdirectory.

buildfiles Files in the build subdirectory to be included in the distribution package.
The list must include all MagiCBuild files for the top-level makefile. The
user-defined conf-reqs.sh should also be included in this list, if it exists.
In module-level makefiles, the list typically contains dox.conf
configuration file for Doxygen documentation generator.

For example:

... basic definitions ...
##
Distribution files and directories
##

Extra directories to include in distribution package
distdirs = build docs

Files to include in distribution package
distfiles = README.TXT configure Makefile \

docs/magicbuild-usersguide.sxw \

Files in 'build' subdirectory, including custom ones
buildfiles = conf-reqs.sh \

magicdef.mk magiccmp.mk magicdist.mk \
magictop.mk magicver.mk \
install-magicbuild toDox.pl \
makefile.template

...

5.5.2. Custom targets
Although the build system defines internally most necessary targets, it is often
necessary to define custom targets, for example, if you need to compile software
written in programming language not supported by MagiCBuild.

For example, the following top-level makefile builds two modules recursively:

... basic definitions ...
include $(SRCDIR)/build/magicdef.mk

Any extra targets (see below)
extra_targets = hello

Extra targets for building distribution package (see below)
extra_dist_targets = my_dist_target

21

MagiCBuild
User's Guide Version 0.1 Using the build system

###
Include build rules
###
include $(SRCDIR)/build/magictop.mk

###
Extra targets
###
hello:
 echo "Hello, world!"

Do extra stuff for building distribution package
my_dist_target: $(distdir)/my_doc_file.pdf

$(distdir)/my_doc_file.pdf: $(docdir)/my_doc_file.ps
pstopdf $< $@

The custom targets are called from magictop.mk (for top-level makefiles) or
magiccmp.mk (for module-level makefiles).

5.6. Top-level makefile
The top-level makefile is a recursive makefile that is located at the top-level
directory of the source directory tree. It is used to build all top-level modules of the
software.

The top-level makefile is always named as "Makefile", to allow automatic
recognition by the GNU Make without need to specify a file name. When
MagiCBuild is installed to a software project with install-magicbuild program,
the program creates a top-level makefile template as Makefile.template. You
just need to rename this template as "Makefile" and modify it for your software.

Module-level makefiles have the following structure:

1. Define project parameters

2. Call magicdef.mk

3. Define recursive compilation parameters

4. Call magictop.mk

5. Define custom targets

The structure of a top-level makefile is illustrated in the Figure 5 below.

See Section 5.5 Recursive makefiles above for general information about recursive
makefiles. Also the custom build rules are explained in that section.

22

MagiCBuild
Using the build system Version 0.1 User's Guide

Basic definitions

The following definitions are necessary for the top-level makefile

##
Define default root directory of the source tree
##
export SRCDIR ?= .

##
Package and version info
##
export packagename = mypackage
export vermajor = 0
export verminor = 1
export verbuild = 1
export versuffix = beta

The package name and version numbers are used for building distribution packages.

Invoking build framework

After all the definitions above have been done, you can call the build framework.
First, call magicdef.mk to make all the necessary definitions, and then
magictop.mk to make the recursive build.

...
##
Include build framework
##
include $(SRCDIR)/build/magicdef.mk

Modules to build recursively
makemodules = module1 module2

##

23

Figure 5: General structure of a top-level makefile

Top-level
Makefile

Definitions...

Modified definitions...

Custom build rules...

Include magicdef.mk

Include magictop.mk

build/magicdef.mk

build/magictop.mk

make <target>

Modules to be built...

MagiCBuild
User's Guide Version 0.1 Using the build system

Include build rules
##
include $(SRCDIR)/build/magictop.mk

You can add your custom targets after this, as described in section.

5.7. Module-level makefiles
Module-level makefiles are very much like the top-level makefiles, except that they
do not have the overall package definitions.

The name of a makefile of a module matches the module name. For example, if the
module is located in subdirectory "mymodule", the makefile must be named
"mymodule.mk". The binary executable or library compiled from the module will
also have the same name by default.

Module-level makefiles have the following structure:

6. Define module parameters

7. Call magicdef.mk

8. Define compilation parameters

9. Call magiccmp.mk

10.Define custom targets

These are illustrated in the Figure 6 below.

The module parameters and compilation parameters are defined in subsections
below.

See Section 5.5 Recursive makefiles above for general information about recursive
makefiles. Also the custom build rules are explained in that section.

24

Figure 6: General structure of module-level makefiles.

Module-level
Makefile

Definitions...

Modified definitions...

Custom build rules...

Include magicdef.mk

Include magiccmp.mk

build/magicdef.mk

build/magiccmp.mk

make <target>

MagiCBuild
Using the build system Version 0.1 User's Guide

5.7.1. Module parameters
The following parameters can be defined in a module-level makefile.

Variable Default Description

modname - Name of the module (MANDATORY)

modpath $modname Path to the module directory, relative to the top-level source
directory. This must be defined if the module is a second or
lower level sub-module.

modtarget $modname Target basename for binaries and libraries.

compile_library 0 Is the module a library?

makedox

0

Should Doxygen documentation be generated? This requires
having a dox.conf configuration file in the build
subdirectory of the module.

modversionfile Version info file for the module

modversionheader Version C or C++ header file for the module

For example:

###
Module parameters
###
modname = mymodule
modpath = somemodule/submodule/anotherlevel/mymodule
modtarget = mybinary

###
Include build framework definitions
###
include $(SRCDIR)/build/magicdef.mk

In the above example, the "mymodule" is a 4th level submodule, so its path has to be
defined with modpath.

5.7.2. Compilation parameters for C++
Compilation parameters are defined usually after calling magicdef.mk. The
following definitions can be made:

Variable Description

sources List of source files in src subdirectory. The directory name should not be
included in the names.

headers List of header files in include subdirectory. The directory name should not
be included in the names, unless the headers are contained in a subdirectory.

libdeps List of library dependecies. The libraries are listed with their short name, for
example, "dl" refers to the library libdl. The library names will be passed
to the linker as '-l<name>", for example, "-ldl".

25

MagiCBuild
User's Guide Version 0.1 Using the build system

Variable Description

headersubdir Subdirectory of the include subdirectory containing the header files,
making it possible to include the headers with "#include
<headersubdir/myheader.h>". If the headersubdir is not given, all
the headers will be written to a common include directory (such as /
usr/include), which may result in file name clashes.

For example:

...
###
Compilation parameters
###

Source files in "src" subdirectory
sources = mymain.cc mysource.cc

Header files in "include/mysoftware" subdirectory
headers = myheader.h

Software-specific include directory
headersubdir = mysoftware

###
Include build rules
###
include $(SRCDIR)/build/magiccmp.mk

26

MagiCBuild
Known problems and limitations Version 0.1 User's Guide

Chapter 6 Known problems and limitations

6.1. Problems
MagiCBuild has the following known problems:

• The build system prints some shell execution errors with "make" command.

• The cleanup with "make clean" is incomplete in some cases.

6.2. Limitations
MagiCBuild has the following general limitations:

• Only C++ language supported

• MagiCBuild and its installation script can not be installed system-wide (to /
usr/bin, etc.)

Configuration system

The configuration system, as defined in the configure script, has the following
limitations:

• Options for the configure script are very limited. Especially the options
for following features are missing:

- Extra libraries and library and include file search paths

- Enabling and disabling software components

- Enabling debug build

- Adding prefixes and suffixes to compiled binaries

• Configuration file (config.mk) is written to the source tree, not to the
output tree, which would be nicer. As it is written to source tree, it is not
possible to maintain multiple configurations simultaneously, for example,
for debug and release builds. It would be possible to write it to the output
tree, but the build system would not know where it was written. This could
be solved by making the user define some environment variables, but we
want to avoid that.

27

MagiCBuild
User's Guide Version 0.1 Known problems and limitations

• Requiring a specific or minimum version number of required software is
currently not supported for any of the predefined requirement checks

• C++ features are not checked

• A C++ header file should be generated to offer definitions to programs

Build system

• Dependencies are not determined internally, but they must be determined
by running "make deps".

• All header files are currently copied to output directory and installed,
regardless if they are private (such as those for compiling binary modules)
or actually intended to be shared (such as those that provide an API to
libraries).

28

MagiCBuild
GNU Free Documentation License Version 0.1 User's Guide

Chapter 7 GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same
sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is
published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim,
or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in
the notice that says that the Document is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover
Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is
available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is

29

MagiCBuild
User's Guide Version 0.1 GNU Free Documentation License

suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input
format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title
Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in
parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned
below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section
when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document.
These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this
License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than
100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-
readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided

30

MagiCBuild
GNU Free Documentation License Version 0.1 User's Guide

that you release the Modified Version under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous
versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the
Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version
under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license
notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and
likewise the network locations given in the Document for previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the
section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the
equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by
various parties--for example, statements of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to
the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or
to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

31

MagiCBuild
User's Guide Version 0.1 GNU Free Documentation License

You may combine the Document with other documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced
with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section
Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications".
You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the
individual copies of this License in the various documents with a single copy that is included in the collection, provided that
you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume
of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to
limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one
half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of
section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you
may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to
Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any
other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

32

MagiCBuild
GNU Free Documentation License Version 0.1 User's Guide

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time.
Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered
version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of
that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by
the Free Software Foundation.

33

MagiCBuild
User's Guide Version 0.1 GNU Free Documentation License

Alphabetical Index
$HOME 16
$INSTALLDIR 15
$MKCONFIG 13
$SRCDIR 12, 17p.

A
ARCH 15, 18

B
Bash 11
bindir 18
build/conf-reqs.sh 11p., 16
build/config.mk 11
BUILDDIR 15, 18
buildfiles 21
BUILDTYPE 16, 18
bz2 6, 8
BZip2 6, 15

C
C++ 4p., 11, 13, 16, 18, 25, 27p.
C++ compiler 11, 13, 16
check_for_libjpeg 12
check_for_qt 11, 16
clean 4, 9, 15, 27
Cleaning up 4
compile_library 25
conf-reqs.sh 11p., 16, 21
config.mk 13, 15, 27
configuration files 18pp.
Configuration tool 4
configure 4, 7p., 10p., 15, 21, 27
Copyright 2, 29pp.
custom check 12
custom configuration 12p., 20
custom targets 15, 21p., 24
CXX 16
CXX_PATH 16

D
Data files 18p.
debug build 27
Dependencies 9, 15p., 28
distdir 19, 22
distdirs 20p.
distfiles 21
distribution directory 6
distribution package 4, 6, 11, 14p., 20pp.
distribution packages 4, 19p.
docdir 19, 22
Documentation 2, 5, 19, 29, 33
Doxygen 4, 21, 25

E
Enabling and disabling 27
Executable binaries 18
export 11, 13, 23

extra_dist_targets 19, 21
EXTRA_INCLUDE_DIRS 16
EXTRA_LIB_DIRS 16
EXTRA_LIBS 16
extra_targets 19, 21

G
GCC 16
GNU Autoconf 4
GNU Free Documentation License 2, 5, 29, 33
GNU General Public License 29
GNU Lesser General Public License 5
GNU Make 4, 22
GNU Make 3.79.1 or newer 5
GNU Tar 6, 8
GNU/Linux 5
grpbuilddir 17
grpdocdir 17
grpincdir 17

H
headers 4, 8, 18p., 25p.

I
incdir 19
install 6pp., 15, 21p.
INSTALLDIR 15p.
Installing 4, 6, 9

L
LGPL 5
libdeps 25
libdir 18
Libraries 10, 18
limitations 4p., 27

M
magiccmp.mk 7, 19, 21p., 24, 26
magicdef.mk 7, 16, 20pp.
magictop.mk 7, 19pp.
makedox 25
makemodules 19p., 23
Meta-object compiler 19
mocdir 19
modname 19, 25
modpath 18p., 25
modtarget 25
module directory 18, 25
Module-level makefiles 20pp., 24
modversionfile 25
modversionheader 25

O
objdir 18p.
Object files 4, 15, 18p.
output directory 4, 9, 16, 18
Output root directory 18

34

MagiCBuild
GNU Free Documentation License Version 0.1 User's Guide

output tree 4, 27
outputdir 18p.

P
PLATFORM 15, 18
prefixes and suffixes 27
problems 27, 33

Q
QTDIR 16

R
recursive makefiles 19p., 22, 24

S
sharedir 19
source code 4, 6, 8, 15, 18
source tree 4, 9, 11, 17p., 23, 27
sources 9, 25p.

SRCDIR 12, 15, 17p., 20pp.

T
tar 6, 8
Temporary files 19
tmpdir 19
top-level makefile 6, 20pp.
top-level source directory 9, 25

U
uninstall 10, 15
uninstalling 4

V
Version info file 25

W
WRITE_CUSTOM_CONFIG 13

35

