patch-2.4.0-test9 linux/drivers/md/raid1.c

Next file: linux/drivers/md/raid5.c
Previous file: linux/drivers/md/raid0.c
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.4.0-test8/linux/drivers/md/raid1.c linux/drivers/md/raid1.c
@@ -0,0 +1,1897 @@
+/*
+ * raid1.c : Multiple Devices driver for Linux
+ *
+ * Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
+ *
+ * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
+ *
+ * RAID-1 management functions.
+ *
+ * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
+ *
+ * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
+ * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2, or (at your option)
+ * any later version.
+ *
+ * You should have received a copy of the GNU General Public License
+ * (for example /usr/src/linux/COPYING); if not, write to the Free
+ * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#include <linux/module.h>
+#include <linux/malloc.h>
+#include <linux/raid/raid1.h>
+#include <asm/atomic.h>
+
+#define MAJOR_NR MD_MAJOR
+#define MD_DRIVER
+#define MD_PERSONALITY
+
+#define MAX_WORK_PER_DISK 128
+
+/*
+ * The following can be used to debug the driver
+ */
+#define RAID1_DEBUG	0
+
+#if RAID1_DEBUG
+#define PRINTK(x...)   printk(x)
+#define inline
+#define __inline__
+#else
+#define PRINTK(x...)  do { } while (0)
+#endif
+
+
+static mdk_personality_t raid1_personality;
+static md_spinlock_t retry_list_lock = MD_SPIN_LOCK_UNLOCKED;
+struct raid1_bh *raid1_retry_list = NULL, **raid1_retry_tail;
+
+static struct buffer_head *raid1_alloc_bh(raid1_conf_t *conf, int cnt)
+{
+	/* return a linked list of "cnt" struct buffer_heads.
+	 * don't take any off the free list unless we know we can
+	 * get all we need, otherwise we could deadlock
+	 */
+	struct buffer_head *bh=NULL;
+
+	while(cnt) {
+		struct buffer_head *t;
+		md_spin_lock_irq(&conf->device_lock);
+		if (conf->freebh_cnt >= cnt)
+			while (cnt) {
+				t = conf->freebh;
+				conf->freebh = t->b_next;
+				t->b_next = bh;
+				bh = t;
+				t->b_state = 0;
+				conf->freebh_cnt--;
+				cnt--;
+			}
+		md_spin_unlock_irq(&conf->device_lock);
+		if (cnt == 0)
+			break;
+		t = (struct buffer_head *)kmalloc(sizeof(struct buffer_head), GFP_BUFFER);
+		if (t) {
+			memset(t, 0, sizeof(*t));
+			t->b_next = bh;
+			bh = t;
+			cnt--;
+		} else {
+			PRINTK("waiting for %d bh\n", cnt);
+			wait_event(conf->wait_buffer, conf->freebh_cnt >= cnt);
+		}
+	}
+	return bh;
+}
+
+static inline void raid1_free_bh(raid1_conf_t *conf, struct buffer_head *bh)
+{
+	md_spin_lock_irq(&conf->device_lock);
+	while (bh) {
+		struct buffer_head *t = bh;
+		bh=bh->b_next;
+		if (t->b_pprev == NULL)
+			kfree(t);
+		else {
+			t->b_next= conf->freebh;
+			conf->freebh = t;
+			conf->freebh_cnt++;
+		}
+	}
+	md_spin_unlock_irq(&conf->device_lock);
+	wake_up(&conf->wait_buffer);
+}
+
+static int raid1_grow_bh(raid1_conf_t *conf, int cnt)
+{
+	/* allocate cnt buffer_heads, possibly less if kalloc fails */
+	int i = 0;
+
+	while (i < cnt) {
+		struct buffer_head *bh;
+		bh = kmalloc(sizeof(*bh), GFP_KERNEL);
+		if (!bh) break;
+		memset(bh, 0, sizeof(*bh));
+
+		md_spin_lock_irq(&conf->device_lock);
+		bh->b_pprev = &conf->freebh;
+		bh->b_next = conf->freebh;
+		conf->freebh = bh;
+		conf->freebh_cnt++;
+		md_spin_unlock_irq(&conf->device_lock);
+
+		i++;
+	}
+	return i;
+}
+
+static int raid1_shrink_bh(raid1_conf_t *conf, int cnt)
+{
+	/* discard cnt buffer_heads, if we can find them */
+	int i = 0;
+
+	md_spin_lock_irq(&conf->device_lock);
+	while ((i < cnt) && conf->freebh) {
+		struct buffer_head *bh = conf->freebh;
+		conf->freebh = bh->b_next;
+		kfree(bh);
+		i++;
+		conf->freebh_cnt--;
+	}
+	md_spin_unlock_irq(&conf->device_lock);
+	return i;
+}
+		
+
+static struct raid1_bh *raid1_alloc_r1bh(raid1_conf_t *conf)
+{
+	struct raid1_bh *r1_bh = NULL;
+
+	do {
+		md_spin_lock_irq(&conf->device_lock);
+		if (conf->freer1) {
+			r1_bh = conf->freer1;
+			conf->freer1 = r1_bh->next_r1;
+			r1_bh->next_r1 = NULL;
+			r1_bh->state = 0;
+			r1_bh->bh_req.b_state = 0;
+		}
+		md_spin_unlock_irq(&conf->device_lock);
+		if (r1_bh)
+			return r1_bh;
+		r1_bh = (struct raid1_bh *) kmalloc(sizeof(struct raid1_bh),
+					GFP_BUFFER);
+		if (r1_bh) {
+			memset(r1_bh, 0, sizeof(*r1_bh));
+			return r1_bh;
+		}
+		wait_event(conf->wait_buffer, conf->freer1);
+	} while (1);
+}
+
+static inline void raid1_free_r1bh(struct raid1_bh *r1_bh)
+{
+	struct buffer_head *bh = r1_bh->mirror_bh_list;
+	raid1_conf_t *conf = mddev_to_conf(r1_bh->mddev);
+
+	r1_bh->mirror_bh_list = NULL;
+
+	if (test_bit(R1BH_PreAlloc, &r1_bh->state)) {
+		md_spin_lock_irq(&conf->device_lock);
+		r1_bh->next_r1 = conf->freer1;
+		conf->freer1 = r1_bh;
+		md_spin_unlock_irq(&conf->device_lock);
+	} else {
+		kfree(r1_bh);
+	}
+	raid1_free_bh(conf, bh);
+}
+
+static int raid1_grow_r1bh (raid1_conf_t *conf, int cnt)
+{
+	int i = 0;
+
+	while (i < cnt) {
+		struct raid1_bh *r1_bh;
+		r1_bh = (struct raid1_bh*)kmalloc(sizeof(*r1_bh), GFP_KERNEL);
+		if (!r1_bh)
+			break;
+		memset(r1_bh, 0, sizeof(*r1_bh));
+
+		md_spin_lock_irq(&conf->device_lock);
+		set_bit(R1BH_PreAlloc, &r1_bh->state);
+		r1_bh->next_r1 = conf->freer1;
+		conf->freer1 = r1_bh;
+		md_spin_unlock_irq(&conf->device_lock);
+
+		i++;
+	}
+	return i;
+}
+
+static void raid1_shrink_r1bh(raid1_conf_t *conf)
+{
+	md_spin_lock_irq(&conf->device_lock);
+	while (conf->freer1) {
+		struct raid1_bh *r1_bh = conf->freer1;
+		conf->freer1 = r1_bh->next_r1;
+		kfree(r1_bh);
+	}
+	md_spin_unlock_irq(&conf->device_lock);
+}
+
+
+
+static inline void raid1_free_buf(struct raid1_bh *r1_bh)
+{
+	struct buffer_head *bh = r1_bh->mirror_bh_list;
+	raid1_conf_t *conf = mddev_to_conf(r1_bh->mddev);
+	r1_bh->mirror_bh_list = NULL;
+	
+	md_spin_lock_irq(&conf->device_lock);
+	r1_bh->next_r1 = conf->freebuf;
+	conf->freebuf = r1_bh;
+	md_spin_unlock_irq(&conf->device_lock);
+	raid1_free_bh(conf, bh);
+}
+
+static struct raid1_bh *raid1_alloc_buf(raid1_conf_t *conf)
+{
+	struct raid1_bh *r1_bh;
+
+	md_spin_lock_irq(&conf->device_lock);
+	wait_event_lock_irq(conf->wait_buffer, conf->freebuf, conf->device_lock);
+	r1_bh = conf->freebuf;
+	conf->freebuf = r1_bh->next_r1;
+	r1_bh->next_r1= NULL;
+	md_spin_unlock_irq(&conf->device_lock);
+
+	return r1_bh;
+}
+
+static int raid1_grow_buffers (raid1_conf_t *conf, int cnt)
+{
+	int i = 0;
+
+	md_spin_lock_irq(&conf->device_lock);
+	while (i < cnt) {
+		struct raid1_bh *r1_bh;
+		struct page *page;
+
+		page = alloc_page(GFP_KERNEL);
+		if (!page)
+			break;
+
+		r1_bh = (struct raid1_bh *) kmalloc(sizeof(*r1_bh), GFP_KERNEL);
+		if (!r1_bh) {
+			__free_page(page);
+			break;
+		}
+		memset(r1_bh, 0, sizeof(*r1_bh));
+		r1_bh->bh_req.b_page = page;
+		r1_bh->bh_req.b_data = page_address(page);
+		r1_bh->next_r1 = conf->freebuf;
+		conf->freebuf = r1_bh;
+		i++;
+	}
+	md_spin_unlock_irq(&conf->device_lock);
+	return i;
+}
+
+static void raid1_shrink_buffers (raid1_conf_t *conf)
+{
+	md_spin_lock_irq(&conf->device_lock);
+	while (conf->freebuf) {
+		struct raid1_bh *r1_bh = conf->freebuf;
+		conf->freebuf = r1_bh->next_r1;
+		__free_page(r1_bh->bh_req.b_page);
+		kfree(r1_bh);
+	}
+	md_spin_unlock_irq(&conf->device_lock);
+}
+
+static int raid1_map (mddev_t *mddev, kdev_t *rdev, unsigned long size)
+{
+	raid1_conf_t *conf = mddev_to_conf(mddev);
+	int i, disks = MD_SB_DISKS;
+
+	/*
+	 * Later we do read balancing on the read side 
+	 * now we use the first available disk.
+	 */
+
+	for (i = 0; i < disks; i++) {
+		if (conf->mirrors[i].operational) {
+			*rdev = conf->mirrors[i].dev;
+			return (0);
+		}
+	}
+
+	printk (KERN_ERR "raid1_map(): huh, no more operational devices?\n");
+	return (-1);
+}
+
+static void raid1_reschedule_retry (struct raid1_bh *r1_bh)
+{
+	unsigned long flags;
+	mddev_t *mddev = r1_bh->mddev;
+	raid1_conf_t *conf = mddev_to_conf(mddev);
+
+	md_spin_lock_irqsave(&retry_list_lock, flags);
+	if (raid1_retry_list == NULL)
+		raid1_retry_tail = &raid1_retry_list;
+	*raid1_retry_tail = r1_bh;
+	raid1_retry_tail = &r1_bh->next_r1;
+	r1_bh->next_r1 = NULL;
+	md_spin_unlock_irqrestore(&retry_list_lock, flags);
+	md_wakeup_thread(conf->thread);
+}
+
+
+static void inline io_request_done(unsigned long sector, raid1_conf_t *conf, int phase)
+{
+	unsigned long flags;
+	spin_lock_irqsave(&conf->segment_lock, flags);
+	if (sector < conf->start_active)
+		conf->cnt_done--;
+	else if (sector >= conf->start_future && conf->phase == phase)
+		conf->cnt_future--;
+	else if (!--conf->cnt_pending)
+		wake_up(&conf->wait_ready);
+
+	spin_unlock_irqrestore(&conf->segment_lock, flags);
+}
+
+static void inline sync_request_done (unsigned long sector, raid1_conf_t *conf)
+{
+	unsigned long flags;
+	spin_lock_irqsave(&conf->segment_lock, flags);
+	if (sector >= conf->start_ready)
+		--conf->cnt_ready;
+	else if (sector >= conf->start_active) {
+		if (!--conf->cnt_active) {
+			conf->start_active = conf->start_ready;
+			wake_up(&conf->wait_done);
+		}
+	}
+	spin_unlock_irqrestore(&conf->segment_lock, flags);
+}
+
+/*
+ * raid1_end_bh_io() is called when we have finished servicing a mirrored
+ * operation and are ready to return a success/failure code to the buffer
+ * cache layer.
+ */
+static void raid1_end_bh_io (struct raid1_bh *r1_bh, int uptodate)
+{
+	struct buffer_head *bh = r1_bh->master_bh;
+
+	io_request_done(bh->b_rsector, mddev_to_conf(r1_bh->mddev),
+			test_bit(R1BH_SyncPhase, &r1_bh->state));
+
+	bh->b_end_io(bh, uptodate);
+	raid1_free_r1bh(r1_bh);
+}
+void raid1_end_request (struct buffer_head *bh, int uptodate)
+{
+	struct raid1_bh * r1_bh = (struct raid1_bh *)(bh->b_private);
+
+	/*
+	 * this branch is our 'one mirror IO has finished' event handler:
+	 */
+	if (!uptodate)
+		md_error (mddev_to_kdev(r1_bh->mddev), bh->b_dev);
+	else
+		/*
+		 * Set R1BH_Uptodate in our master buffer_head, so that
+		 * we will return a good error code for to the higher
+		 * levels even if IO on some other mirrored buffer fails.
+		 *
+		 * The 'master' represents the complex operation to 
+		 * user-side. So if something waits for IO, then it will
+		 * wait for the 'master' buffer_head.
+		 */
+		set_bit (R1BH_Uptodate, &r1_bh->state);
+
+	/*
+	 * We split up the read and write side, imho they are 
+	 * conceptually different.
+	 */
+
+	if ( (r1_bh->cmd == READ) || (r1_bh->cmd == READA) ) {
+		/*
+		 * we have only one buffer_head on the read side
+		 */
+		
+		if (uptodate) {
+			raid1_end_bh_io(r1_bh, uptodate);
+			return;
+		}
+		/*
+		 * oops, read error:
+		 */
+		printk(KERN_ERR "raid1: %s: rescheduling block %lu\n", 
+			 partition_name(bh->b_dev), bh->b_blocknr);
+		raid1_reschedule_retry(r1_bh);
+		return;
+	}
+
+	/*
+	 * WRITE:
+	 *
+	 * Let's see if all mirrored write operations have finished 
+	 * already.
+	 */
+
+	if (atomic_dec_and_test(&r1_bh->remaining))
+		raid1_end_bh_io(r1_bh, test_bit(R1BH_Uptodate, &r1_bh->state));
+}
+
+/*
+ * This routine returns the disk from which the requested read should
+ * be done. It bookkeeps the last read position for every disk
+ * in array and when new read requests come, the disk which last
+ * position is nearest to the request, is chosen.
+ *
+ * TODO: now if there are 2 mirrors in the same 2 devices, performance
+ * degrades dramatically because position is mirror, not device based.
+ * This should be changed to be device based. Also atomic sequential
+ * reads should be somehow balanced.
+ */
+
+static int raid1_read_balance (raid1_conf_t *conf, struct buffer_head *bh)
+{
+	int new_disk = conf->last_used;
+	const int sectors = bh->b_size >> 9;
+	const unsigned long this_sector = bh->b_rsector;
+	int disk = new_disk;
+	unsigned long new_distance;
+	unsigned long current_distance;
+	
+	/*
+	 * Check if it is sane at all to balance
+	 */
+	
+	if (conf->resync_mirrors)
+		goto rb_out;
+	
+	if (conf->working_disks < 2) {
+		int i = 0;
+		
+		while( !conf->mirrors[new_disk].operational &&
+				(i < MD_SB_DISKS) ) {
+			new_disk = conf->mirrors[new_disk].next;
+			i++;
+		}
+		
+		if (i >= MD_SB_DISKS) {
+			/*
+			 * This means no working disk was found
+			 * Nothing much to do, lets not change anything
+			 * and hope for the best...
+			 */
+			
+			new_disk = conf->last_used;
+		}
+		
+		goto rb_out;
+	}
+
+	/*
+	 * Don't touch anything for sequential reads.
+	 */
+
+	if (this_sector == conf->mirrors[new_disk].head_position)
+		goto rb_out;
+	
+	/*
+	 * If reads have been done only on a single disk
+	 * for a time, lets give another disk a change.
+	 * This is for kicking those idling disks so that
+	 * they would find work near some hotspot.
+	 */
+	
+	if (conf->sect_count >= conf->mirrors[new_disk].sect_limit) {
+		conf->sect_count = 0;
+		
+		while( new_disk != conf->mirrors[new_disk].next ) {
+			if ((conf->mirrors[new_disk].write_only) ||
+				(!conf->mirrors[new_disk].operational) )
+				continue;
+			
+			new_disk = conf->mirrors[new_disk].next;
+			break;
+		}
+		
+		goto rb_out;
+	}
+	
+	current_distance = abs(this_sector -
+				conf->mirrors[disk].head_position);
+	
+	/* Find the disk which is closest */
+	
+	while( conf->mirrors[disk].next != conf->last_used ) {
+		disk = conf->mirrors[disk].next;
+		
+		if ((conf->mirrors[disk].write_only) ||
+				(!conf->mirrors[disk].operational))
+			continue;
+		
+		new_distance = abs(this_sector -
+					conf->mirrors[disk].head_position);
+		
+		if (new_distance < current_distance) {
+			conf->sect_count = 0;
+			current_distance = new_distance;
+			new_disk = disk;
+		}
+	}
+
+rb_out:
+	conf->mirrors[new_disk].head_position = this_sector + sectors;
+
+	conf->last_used = new_disk;
+	conf->sect_count += sectors;
+
+	return new_disk;
+}
+
+static int raid1_make_request (mddev_t *mddev, int rw,
+			       struct buffer_head * bh)
+{
+	raid1_conf_t *conf = mddev_to_conf(mddev);
+	struct buffer_head *bh_req, *bhl;
+	struct raid1_bh * r1_bh;
+	int disks = MD_SB_DISKS;
+	int i, sum_bhs = 0, sectors;
+	struct mirror_info *mirror;
+
+	if (!buffer_locked(bh))
+		BUG();
+	
+/*
+ * make_request() can abort the operation when READA is being
+ * used and no empty request is available.
+ *
+ * Currently, just replace the command with READ/WRITE.
+ */
+	if (rw == READA)
+		rw = READ;
+
+	r1_bh = raid1_alloc_r1bh (conf);
+
+	spin_lock_irq(&conf->segment_lock);
+	wait_event_lock_irq(conf->wait_done,
+			bh->b_rsector < conf->start_active ||
+			bh->b_rsector >= conf->start_future,
+			conf->segment_lock);
+	if (bh->b_rsector < conf->start_active) 
+		conf->cnt_done++;
+	else {
+		conf->cnt_future++;
+		if (conf->phase)
+			set_bit(R1BH_SyncPhase, &r1_bh->state);
+	}
+	spin_unlock_irq(&conf->segment_lock);
+	
+	/*
+	 * i think the read and write branch should be separated completely,
+	 * since we want to do read balancing on the read side for example.
+	 * Alternative implementations? :) --mingo
+	 */
+
+	r1_bh->master_bh = bh;
+	r1_bh->mddev = mddev;
+	r1_bh->cmd = rw;
+
+	sectors = bh->b_size >> 9;
+	if (rw == READ) {
+		/*
+		 * read balancing logic:
+		 */
+		mirror = conf->mirrors + raid1_read_balance(conf, bh);
+
+		bh_req = &r1_bh->bh_req;
+		memcpy(bh_req, bh, sizeof(*bh));
+		bh_req->b_blocknr = bh->b_rsector * sectors;
+		bh_req->b_dev = mirror->dev;
+		bh_req->b_rdev = mirror->dev;
+	/*	bh_req->b_rsector = bh->n_rsector; */
+		bh_req->b_end_io = raid1_end_request;
+		bh_req->b_private = r1_bh;
+		generic_make_request (rw, bh_req);
+		return 0;
+	}
+
+	/*
+	 * WRITE:
+	 */
+
+	bhl = raid1_alloc_bh(conf, conf->raid_disks);
+	for (i = 0; i < disks; i++) {
+		struct buffer_head *mbh;
+		if (!conf->mirrors[i].operational) 
+			continue;
+ 
+	/*
+	 * We should use a private pool (size depending on NR_REQUEST),
+	 * to avoid writes filling up the memory with bhs
+	 *
+ 	 * Such pools are much faster than kmalloc anyways (so we waste
+ 	 * almost nothing by not using the master bh when writing and
+ 	 * win alot of cleanness) but for now we are cool enough. --mingo
+ 	 *
+	 * It's safe to sleep here, buffer heads cannot be used in a shared
+ 	 * manner in the write branch. Look how we lock the buffer at the
+ 	 * beginning of this function to grok the difference ;)
+	 */
+ 		mbh = bhl;
+		if (mbh == NULL) {
+			MD_BUG();
+			break;
+		}
+		bhl = mbh->b_next;
+		mbh->b_next = NULL;
+		mbh->b_this_page = (struct buffer_head *)1;
+		
+ 	/*
+ 	 * prepare mirrored mbh (fields ordered for max mem throughput):
+ 	 */
+		mbh->b_blocknr    = bh->b_rsector * sectors;
+		mbh->b_dev        = conf->mirrors[i].dev;
+		mbh->b_rdev	  = conf->mirrors[i].dev;
+		mbh->b_rsector	  = bh->b_rsector;
+		mbh->b_state      = (1<<BH_Req) | (1<<BH_Dirty) |
+						(1<<BH_Mapped) | (1<<BH_Lock);
+
+		atomic_set(&mbh->b_count, 1);
+ 		mbh->b_size       = bh->b_size;
+ 		mbh->b_page	  = bh->b_page;
+ 		mbh->b_data	  = bh->b_data;
+ 		mbh->b_list       = BUF_LOCKED;
+ 		mbh->b_end_io     = raid1_end_request;
+ 		mbh->b_private    = r1_bh;
+
+		mbh->b_next = r1_bh->mirror_bh_list;
+		r1_bh->mirror_bh_list = mbh;
+		sum_bhs++;
+	}
+	if (bhl) raid1_free_bh(conf,bhl);
+	md_atomic_set(&r1_bh->remaining, sum_bhs);
+
+	/*
+	 * We have to be a bit careful about the semaphore above, thats
+	 * why we start the requests separately. Since kmalloc() could
+	 * fail, sleep and make_request() can sleep too, this is the
+	 * safer solution. Imagine, end_request decreasing the semaphore
+	 * before we could have set it up ... We could play tricks with
+	 * the semaphore (presetting it and correcting at the end if
+	 * sum_bhs is not 'n' but we have to do end_request by hand if
+	 * all requests finish until we had a chance to set up the
+	 * semaphore correctly ... lots of races).
+	 */
+	bh = r1_bh->mirror_bh_list;
+	while(bh) {
+		struct buffer_head *bh2 = bh;
+		bh = bh->b_next;
+		generic_make_request(rw, bh2);
+	}
+	return (0);
+}
+
+static int raid1_status (char *page, mddev_t *mddev)
+{
+	raid1_conf_t *conf = mddev_to_conf(mddev);
+	int sz = 0, i;
+	
+	sz += sprintf (page+sz, " [%d/%d] [", conf->raid_disks,
+						 conf->working_disks);
+	for (i = 0; i < conf->raid_disks; i++)
+		sz += sprintf (page+sz, "%s",
+			conf->mirrors[i].operational ? "U" : "_");
+	sz += sprintf (page+sz, "]");
+	return sz;
+}
+
+static void unlink_disk (raid1_conf_t *conf, int target)
+{
+	int disks = MD_SB_DISKS;
+	int i;
+
+	for (i = 0; i < disks; i++)
+		if (conf->mirrors[i].next == target)
+			conf->mirrors[i].next = conf->mirrors[target].next;
+}
+
+#define LAST_DISK KERN_ALERT \
+"raid1: only one disk left and IO error.\n"
+
+#define NO_SPARE_DISK KERN_ALERT \
+"raid1: no spare disk left, degrading mirror level by one.\n"
+
+#define DISK_FAILED KERN_ALERT \
+"raid1: Disk failure on %s, disabling device. \n" \
+"	Operation continuing on %d devices\n"
+
+#define START_SYNCING KERN_ALERT \
+"raid1: start syncing spare disk.\n"
+
+#define ALREADY_SYNCING KERN_INFO \
+"raid1: syncing already in progress.\n"
+
+static void mark_disk_bad (mddev_t *mddev, int failed)
+{
+	raid1_conf_t *conf = mddev_to_conf(mddev);
+	struct mirror_info *mirror = conf->mirrors+failed;
+	mdp_super_t *sb = mddev->sb;
+
+	mirror->operational = 0;
+	unlink_disk(conf, failed);
+	mark_disk_faulty(sb->disks+mirror->number);
+	mark_disk_nonsync(sb->disks+mirror->number);
+	mark_disk_inactive(sb->disks+mirror->number);
+	sb->active_disks--;
+	sb->working_disks--;
+	sb->failed_disks++;
+	mddev->sb_dirty = 1;
+	md_wakeup_thread(conf->thread);
+	conf->working_disks--;
+	printk (DISK_FAILED, partition_name (mirror->dev),
+				 conf->working_disks);
+}
+
+static int raid1_error (mddev_t *mddev, kdev_t dev)
+{
+	raid1_conf_t *conf = mddev_to_conf(mddev);
+	struct mirror_info * mirrors = conf->mirrors;
+	int disks = MD_SB_DISKS;
+	int i;
+
+	if (conf->working_disks == 1) {
+		/*
+		 * Uh oh, we can do nothing if this is our last disk, but
+		 * first check if this is a queued request for a device
+		 * which has just failed.
+		 */
+		for (i = 0; i < disks; i++) {
+			if (mirrors[i].dev==dev && !mirrors[i].operational)
+				return 0;
+		}
+		printk (LAST_DISK);
+	} else {
+		/*
+		 * Mark disk as unusable
+		 */
+		for (i = 0; i < disks; i++) {
+			if (mirrors[i].dev==dev && mirrors[i].operational) {
+				mark_disk_bad(mddev, i);
+				break;
+			}
+		}
+	}
+	return 0;
+}
+
+#undef LAST_DISK
+#undef NO_SPARE_DISK
+#undef DISK_FAILED
+#undef START_SYNCING
+
+/*
+ * Insert the spare disk into the drive-ring
+ */
+static void link_disk(raid1_conf_t *conf, struct mirror_info *mirror)
+{
+	int j, next;
+	int disks = MD_SB_DISKS;
+	struct mirror_info *p = conf->mirrors;
+
+	for (j = 0; j < disks; j++, p++)
+		if (p->operational && !p->write_only) {
+			next = p->next;
+			p->next = mirror->raid_disk;
+			mirror->next = next;
+			return;
+		}
+
+	printk("raid1: bug: no read-operational devices\n");
+}
+
+static void print_raid1_conf (raid1_conf_t *conf)
+{
+	int i;
+	struct mirror_info *tmp;
+
+	printk("RAID1 conf printout:\n");
+	if (!conf) {
+		printk("(conf==NULL)\n");
+		return;
+	}
+	printk(" --- wd:%d rd:%d nd:%d\n", conf->working_disks,
+			 conf->raid_disks, conf->nr_disks);
+
+	for (i = 0; i < MD_SB_DISKS; i++) {
+		tmp = conf->mirrors + i;
+		printk(" disk %d, s:%d, o:%d, n:%d rd:%d us:%d dev:%s\n",
+			i, tmp->spare,tmp->operational,
+			tmp->number,tmp->raid_disk,tmp->used_slot,
+			partition_name(tmp->dev));
+	}
+}
+
+static int raid1_diskop(mddev_t *mddev, mdp_disk_t **d, int state)
+{
+	int err = 0;
+	int i, failed_disk=-1, spare_disk=-1, removed_disk=-1, added_disk=-1;
+	raid1_conf_t *conf = mddev->private;
+	struct mirror_info *tmp, *sdisk, *fdisk, *rdisk, *adisk;
+	mdp_super_t *sb = mddev->sb;
+	mdp_disk_t *failed_desc, *spare_desc, *added_desc;
+
+	print_raid1_conf(conf);
+	md_spin_lock_irq(&conf->device_lock);
+	/*
+	 * find the disk ...
+	 */
+	switch (state) {
+
+	case DISKOP_SPARE_ACTIVE:
+
+		/*
+		 * Find the failed disk within the RAID1 configuration ...
+		 * (this can only be in the first conf->working_disks part)
+		 */
+		for (i = 0; i < conf->raid_disks; i++) {
+			tmp = conf->mirrors + i;
+			if ((!tmp->operational && !tmp->spare) ||
+					!tmp->used_slot) {
+				failed_disk = i;
+				break;
+			}
+		}
+		/*
+		 * When we activate a spare disk we _must_ have a disk in
+		 * the lower (active) part of the array to replace. 
+		 */
+		if ((failed_disk == -1) || (failed_disk >= conf->raid_disks)) {
+			MD_BUG();
+			err = 1;
+			goto abort;
+		}
+		/* fall through */
+
+	case DISKOP_SPARE_WRITE:
+	case DISKOP_SPARE_INACTIVE:
+
+		/*
+		 * Find the spare disk ... (can only be in the 'high'
+		 * area of the array)
+		 */
+		for (i = conf->raid_disks; i < MD_SB_DISKS; i++) {
+			tmp = conf->mirrors + i;
+			if (tmp->spare && tmp->number == (*d)->number) {
+				spare_disk = i;
+				break;
+			}
+		}
+		if (spare_disk == -1) {
+			MD_BUG();
+			err = 1;
+			goto abort;
+		}
+		break;
+
+	case DISKOP_HOT_REMOVE_DISK:
+
+		for (i = 0; i < MD_SB_DISKS; i++) {
+			tmp = conf->mirrors + i;
+			if (tmp->used_slot && (tmp->number == (*d)->number)) {
+				if (tmp->operational) {
+					err = -EBUSY;
+					goto abort;
+				}
+				removed_disk = i;
+				break;
+			}
+		}
+		if (removed_disk == -1) {
+			MD_BUG();
+			err = 1;
+			goto abort;
+		}
+		break;
+
+	case DISKOP_HOT_ADD_DISK:
+
+		for (i = conf->raid_disks; i < MD_SB_DISKS; i++) {
+			tmp = conf->mirrors + i;
+			if (!tmp->used_slot) {
+				added_disk = i;
+				break;
+			}
+		}
+		if (added_disk == -1) {
+			MD_BUG();
+			err = 1;
+			goto abort;
+		}
+		break;
+	}
+
+	switch (state) {
+	/*
+	 * Switch the spare disk to write-only mode:
+	 */
+	case DISKOP_SPARE_WRITE:
+		sdisk = conf->mirrors + spare_disk;
+		sdisk->operational = 1;
+		sdisk->write_only = 1;
+		break;
+	/*
+	 * Deactivate a spare disk:
+	 */
+	case DISKOP_SPARE_INACTIVE:
+		sdisk = conf->mirrors + spare_disk;
+		sdisk->operational = 0;
+		sdisk->write_only = 0;
+		break;
+	/*
+	 * Activate (mark read-write) the (now sync) spare disk,
+	 * which means we switch it's 'raid position' (->raid_disk)
+	 * with the failed disk. (only the first 'conf->nr_disks'
+	 * slots are used for 'real' disks and we must preserve this
+	 * property)
+	 */
+	case DISKOP_SPARE_ACTIVE:
+
+		sdisk = conf->mirrors + spare_disk;
+		fdisk = conf->mirrors + failed_disk;
+
+		spare_desc = &sb->disks[sdisk->number];
+		failed_desc = &sb->disks[fdisk->number];
+
+		if (spare_desc != *d) {
+			MD_BUG();
+			err = 1;
+			goto abort;
+		}
+
+		if (spare_desc->raid_disk != sdisk->raid_disk) {
+			MD_BUG();
+			err = 1;
+			goto abort;
+		}
+			
+		if (sdisk->raid_disk != spare_disk) {
+			MD_BUG();
+			err = 1;
+			goto abort;
+		}
+
+		if (failed_desc->raid_disk != fdisk->raid_disk) {
+			MD_BUG();
+			err = 1;
+			goto abort;
+		}
+
+		if (fdisk->raid_disk != failed_disk) {
+			MD_BUG();
+			err = 1;
+			goto abort;
+		}
+
+		/*
+		 * do the switch finally
+		 */
+		xchg_values(*spare_desc, *failed_desc);
+		xchg_values(*fdisk, *sdisk);
+
+		/*
+		 * (careful, 'failed' and 'spare' are switched from now on)
+		 *
+		 * we want to preserve linear numbering and we want to
+		 * give the proper raid_disk number to the now activated
+		 * disk. (this means we switch back these values)
+		 */
+	
+		xchg_values(spare_desc->raid_disk, failed_desc->raid_disk);
+		xchg_values(sdisk->raid_disk, fdisk->raid_disk);
+		xchg_values(spare_desc->number, failed_desc->number);
+		xchg_values(sdisk->number, fdisk->number);
+
+		*d = failed_desc;
+
+		if (sdisk->dev == MKDEV(0,0))
+			sdisk->used_slot = 0;
+		/*
+		 * this really activates the spare.
+		 */
+		fdisk->spare = 0;
+		fdisk->write_only = 0;
+		link_disk(conf, fdisk);
+
+		/*
+		 * if we activate a spare, we definitely replace a
+		 * non-operational disk slot in the 'low' area of
+		 * the disk array.
+		 */
+
+		conf->working_disks++;
+
+		break;
+
+	case DISKOP_HOT_REMOVE_DISK:
+		rdisk = conf->mirrors + removed_disk;
+
+		if (rdisk->spare && (removed_disk < conf->raid_disks)) {
+			MD_BUG();	
+			err = 1;
+			goto abort;
+		}
+		rdisk->dev = MKDEV(0,0);
+		rdisk->used_slot = 0;
+		conf->nr_disks--;
+		break;
+
+	case DISKOP_HOT_ADD_DISK:
+		adisk = conf->mirrors + added_disk;
+		added_desc = *d;
+
+		if (added_disk != added_desc->number) {
+			MD_BUG();	
+			err = 1;
+			goto abort;
+		}
+
+		adisk->number = added_desc->number;
+		adisk->raid_disk = added_desc->raid_disk;
+		adisk->dev = MKDEV(added_desc->major,added_desc->minor);
+
+		adisk->operational = 0;
+		adisk->write_only = 0;
+		adisk->spare = 1;
+		adisk->used_slot = 1;
+		adisk->head_position = 0;
+		conf->nr_disks++;
+
+		break;
+
+	default:
+		MD_BUG();	
+		err = 1;
+		goto abort;
+	}
+abort:
+	md_spin_unlock_irq(&conf->device_lock);
+	if (state == DISKOP_SPARE_ACTIVE || state == DISKOP_SPARE_INACTIVE)
+		/* should move to "END_REBUILD" when such exists */
+		raid1_shrink_buffers(conf);
+
+	print_raid1_conf(conf);
+	return err;
+}
+
+
+#define IO_ERROR KERN_ALERT \
+"raid1: %s: unrecoverable I/O read error for block %lu\n"
+
+#define REDIRECT_SECTOR KERN_ERR \
+"raid1: %s: redirecting sector %lu to another mirror\n"
+
+/*
+ * This is a kernel thread which:
+ *
+ *	1.	Retries failed read operations on working mirrors.
+ *	2.	Updates the raid superblock when problems encounter.
+ *	3.	Performs writes following reads for array syncronising.
+ */
+static void end_sync_write(struct buffer_head *bh, int uptodate);
+static void end_sync_read(struct buffer_head *bh, int uptodate);
+
+static void raid1d (void *data)
+{
+	struct raid1_bh *r1_bh;
+	struct buffer_head *bh;
+	unsigned long flags;
+	mddev_t *mddev;
+	kdev_t dev;
+
+
+	for (;;) {
+		md_spin_lock_irqsave(&retry_list_lock, flags);
+		r1_bh = raid1_retry_list;
+		if (!r1_bh)
+			break;
+		raid1_retry_list = r1_bh->next_r1;
+		md_spin_unlock_irqrestore(&retry_list_lock, flags);
+
+		mddev = r1_bh->mddev;
+		if (mddev->sb_dirty) {
+			printk(KERN_INFO "dirty sb detected, updating.\n");
+			mddev->sb_dirty = 0;
+			md_update_sb(mddev);
+		}
+		bh = &r1_bh->bh_req;
+		switch(r1_bh->cmd) {
+		case SPECIAL:
+			/* have to allocate lots of bh structures and
+			 * schedule writes
+			 */
+			if (test_bit(R1BH_Uptodate, &r1_bh->state)) {
+				int i, sum_bhs = 0;
+				int disks = MD_SB_DISKS;
+				struct buffer_head *bhl, *mbh;
+				raid1_conf_t *conf;
+				int sectors = bh->b_size >> 9;
+				
+				conf = mddev_to_conf(mddev);
+				bhl = raid1_alloc_bh(conf, conf->raid_disks); /* don't really need this many */
+				for (i = 0; i < disks ; i++) {
+					if (!conf->mirrors[i].operational)
+						continue;
+					if (i==conf->last_used)
+						/* we read from here, no need to write */
+						continue;
+					if (i < conf->raid_disks
+					    && !conf->resync_mirrors)
+						/* don't need to write this,
+						 * we are just rebuilding */
+						continue;
+					mbh = bhl;
+					if (!mbh) {
+						MD_BUG();
+						break;
+					}
+					bhl = mbh->b_next;
+					mbh->b_this_page = (struct buffer_head *)1;
+
+						
+				/*
+				 * prepare mirrored bh (fields ordered for max mem throughput):
+				 */
+					mbh->b_blocknr    = bh->b_blocknr;
+					mbh->b_dev        = conf->mirrors[i].dev;
+					mbh->b_rdev	  = conf->mirrors[i].dev;
+					mbh->b_rsector	  = bh->b_blocknr * sectors;
+					mbh->b_state      = (1<<BH_Req) | (1<<BH_Dirty) |
+						(1<<BH_Mapped) | (1<<BH_Lock);
+					atomic_set(&mbh->b_count, 1);
+					mbh->b_size       = bh->b_size;
+					mbh->b_page	  = bh->b_page;
+					mbh->b_data	  = bh->b_data;
+					mbh->b_list       = BUF_LOCKED;
+					mbh->b_end_io     = end_sync_write;
+					mbh->b_private    = r1_bh;
+
+					mbh->b_next = r1_bh->mirror_bh_list;
+					r1_bh->mirror_bh_list = mbh;
+
+					sum_bhs++;
+				}
+				md_atomic_set(&r1_bh->remaining, sum_bhs);
+				if (bhl) raid1_free_bh(conf, bhl);
+				mbh = r1_bh->mirror_bh_list;
+				while (mbh) {
+					struct buffer_head *bh1 = mbh;
+					mbh = mbh->b_next;
+					generic_make_request(WRITE, bh1);
+					md_sync_acct(bh1->b_rdev, bh1->b_size/512);
+				}
+			} else {
+				dev = bh->b_dev;
+				raid1_map (mddev, &bh->b_dev, bh->b_size >> 9);
+				if (bh->b_dev == dev) {
+					printk (IO_ERROR, partition_name(bh->b_dev), bh->b_blocknr);
+					md_done_sync(mddev, bh->b_size>>10, 0);
+				} else {
+					printk (REDIRECT_SECTOR,
+						partition_name(bh->b_dev), bh->b_blocknr);
+					bh->b_rdev = bh->b_dev;
+					generic_make_request(READ, bh);
+				}
+			}
+
+			break;
+		case READ:
+		case READA:
+			dev = bh->b_dev;
+		
+			raid1_map (mddev, &bh->b_dev, bh->b_size >> 9);
+			if (bh->b_dev == dev) {
+				printk (IO_ERROR, partition_name(bh->b_dev), bh->b_blocknr);
+				raid1_end_bh_io(r1_bh, 0);
+			} else {
+				printk (REDIRECT_SECTOR,
+					partition_name(bh->b_dev), bh->b_blocknr);
+				bh->b_rdev = bh->b_dev;
+				generic_make_request (r1_bh->cmd, bh);
+			}
+			break;
+		}
+	}
+	md_spin_unlock_irqrestore(&retry_list_lock, flags);
+}
+#undef IO_ERROR
+#undef REDIRECT_SECTOR
+
+/*
+ * Private kernel thread to reconstruct mirrors after an unclean
+ * shutdown.
+ */
+static void raid1syncd (void *data)
+{
+	raid1_conf_t *conf = data;
+	mddev_t *mddev = conf->mddev;
+
+	if (!conf->resync_mirrors)
+		return;
+	if (conf->resync_mirrors == 2)
+		return;
+	down(&mddev->recovery_sem);
+	if (!md_do_sync(mddev, NULL)) {
+		/*
+		 * Only if everything went Ok.
+		 */
+		conf->resync_mirrors = 0;
+	}
+
+	/* If reconstruction was interrupted, we need to close the "active" and "pending"
+	 * holes.
+	 * we know that there are no active rebuild requests, os cnt_active == cnt_ready ==0
+	 */
+	/* this is really needed when recovery stops too... */
+	spin_lock_irq(&conf->segment_lock);
+	conf->start_active = conf->start_pending;
+	conf->start_ready = conf->start_pending;
+	wait_event_lock_irq(conf->wait_ready, !conf->cnt_pending, conf->segment_lock);
+	conf->start_active =conf->start_ready = conf->start_pending = conf->start_future;
+	conf->start_future = mddev->sb->size+1;
+	conf->cnt_pending = conf->cnt_future;
+	conf->cnt_future = 0;
+	conf->phase = conf->phase ^1;
+	wait_event_lock_irq(conf->wait_ready, !conf->cnt_pending, conf->segment_lock);
+	conf->start_active = conf->start_ready = conf->start_pending = conf->start_future = 0;
+	conf->phase = 0;
+	conf->cnt_future = conf->cnt_done;;
+	conf->cnt_done = 0;
+	spin_unlock_irq(&conf->segment_lock);
+	wake_up(&conf->wait_done);
+
+	up(&mddev->recovery_sem);
+	raid1_shrink_buffers(conf);
+}
+
+/*
+ * perform a "sync" on one "block"
+ *
+ * We need to make sure that no normal I/O request - particularly write
+ * requests - conflict with active sync requests.
+ * This is achieved by conceptually dividing the device space into a
+ * number of sections:
+ *  DONE: 0 .. a-1     These blocks are in-sync
+ *  ACTIVE: a.. b-1    These blocks may have active sync requests, but
+ *                     no normal IO requests
+ *  READY: b .. c-1    These blocks have no normal IO requests - sync
+ *                     request may be happening
+ *  PENDING: c .. d-1  These blocks may have IO requests, but no new
+ *                     ones will be added
+ *  FUTURE:  d .. end  These blocks are not to be considered yet. IO may
+ *                     be happening, but not sync
+ *
+ * We keep a
+ *   phase    which flips (0 or 1) each time d moves and
+ * a count of:
+ *   z =  active io requests in FUTURE since d moved - marked with
+ *        current phase
+ *   y =  active io requests in FUTURE before d moved, or PENDING -
+ *        marked with previous phase
+ *   x =  active sync requests in READY
+ *   w =  active sync requests in ACTIVE
+ *   v =  active io requests in DONE
+ *
+ * Normally, a=b=c=d=0 and z= active io requests
+ *   or a=b=c=d=END and v= active io requests
+ * Allowed changes to a,b,c,d:
+ * A:  c==d &&  y==0 -> d+=window, y=z, z=0, phase=!phase
+ * B:  y==0 -> c=d
+ * C:   b=c, w+=x, x=0
+ * D:  w==0 -> a=b
+ * E: a==b==c==d==end -> a=b=c=d=0, z=v, v=0
+ *
+ * At start of sync we apply A.
+ * When y reaches 0, we apply B then A then being sync requests
+ * When sync point reaches c-1, we wait for y==0, and W==0, and
+ * then apply apply B then A then D then C.
+ * Finally, we apply E
+ *
+ * The sync request simply issues a "read" against a working drive
+ * This is marked so that on completion the raid1d thread is woken to
+ * issue suitable write requests
+ */
+
+static int raid1_sync_request (mddev_t *mddev, unsigned long block_nr)
+{
+	raid1_conf_t *conf = mddev_to_conf(mddev);
+	struct mirror_info *mirror;
+	struct raid1_bh *r1_bh;
+	struct buffer_head *bh;
+	int bsize;
+
+	spin_lock_irq(&conf->segment_lock);
+	if (!block_nr) {
+		/* initialize ...*/
+		int buffs;
+		conf->start_active = 0;
+		conf->start_ready = 0;
+		conf->start_pending = 0;
+		conf->start_future = 0;
+		conf->phase = 0;
+		/* we want enough buffers to hold twice the window of 128*/
+		buffs = 128 *2 / (PAGE_SIZE>>9);
+		buffs = raid1_grow_buffers(conf, buffs);
+		if (buffs < 2)
+			goto nomem;
+		
+		conf->window = buffs*(PAGE_SIZE>>9)/2;
+		conf->cnt_future += conf->cnt_done+conf->cnt_pending;
+		conf->cnt_done = conf->cnt_pending = 0;
+		if (conf->cnt_ready || conf->cnt_active)
+			MD_BUG();
+	}
+	while ((block_nr<<1) >= conf->start_pending) {
+		PRINTK("wait .. sect=%lu start_active=%d ready=%d pending=%d future=%d, cnt_done=%d active=%d ready=%d pending=%d future=%d\n",
+			block_nr<<1, conf->start_active, conf->start_ready, conf->start_pending, conf->start_future,
+			conf->cnt_done, conf->cnt_active, conf->cnt_ready, conf->cnt_pending, conf->cnt_future);
+		wait_event_lock_irq(conf->wait_done,
+					!conf->cnt_active,
+					conf->segment_lock);
+		wait_event_lock_irq(conf->wait_ready,
+					!conf->cnt_pending,
+					conf->segment_lock);
+		conf->start_active = conf->start_ready;
+		conf->start_ready = conf->start_pending;
+		conf->start_pending = conf->start_future;
+		conf->start_future = conf->start_future+conf->window;
+		// Note: falling off the end is not a problem
+		conf->phase = conf->phase ^1;
+		conf->cnt_active = conf->cnt_ready;
+		conf->cnt_ready = 0;
+		conf->cnt_pending = conf->cnt_future;
+		conf->cnt_future = 0;
+		wake_up(&conf->wait_done);
+	}
+	conf->cnt_ready++;
+	spin_unlock_irq(&conf->segment_lock);
+		
+
+	/* If reconstructing, and >1 working disc,
+	 * could dedicate one to rebuild and others to
+	 * service read requests ..
+	 */
+	mirror = conf->mirrors+conf->last_used;
+	
+	r1_bh = raid1_alloc_buf (conf);
+	r1_bh->master_bh = NULL;
+	r1_bh->mddev = mddev;
+	r1_bh->cmd = SPECIAL;
+	bh = &r1_bh->bh_req;
+
+	bh->b_blocknr = block_nr;
+	bsize = 1024;
+	while (!(bh->b_blocknr & 1) && bsize < PAGE_SIZE
+			&& (bh->b_blocknr+2)*(bsize>>10) < mddev->sb->size) {
+		bh->b_blocknr >>= 1;
+		bsize <<= 1;
+	}
+	bh->b_size = bsize;
+	bh->b_list = BUF_LOCKED;
+	bh->b_dev = mirror->dev;
+	bh->b_rdev = mirror->dev;
+	bh->b_state = (1<<BH_Req) | (1<<BH_Mapped);
+	if (!bh->b_page)
+		BUG();
+	if (!bh->b_data)
+		BUG();
+	if (bh->b_data != page_address(bh->b_page))
+		BUG();
+	bh->b_end_io = end_sync_read;
+	bh->b_private = r1_bh;
+	bh->b_rsector = block_nr<<1;
+	init_waitqueue_head(&bh->b_wait);
+
+	generic_make_request(READ, bh);
+	md_sync_acct(bh->b_rdev, bh->b_size/512);
+
+	return (bsize >> 10);
+
+nomem:
+	raid1_shrink_buffers(conf);
+	spin_unlock_irq(&conf->segment_lock);
+	return -ENOMEM;
+}
+
+static void end_sync_read(struct buffer_head *bh, int uptodate)
+{
+	struct raid1_bh * r1_bh = (struct raid1_bh *)(bh->b_private);
+
+	/* we have read a block, now it needs to be re-written,
+	 * or re-read if the read failed.
+	 * We don't do much here, just schedule handling by raid1d
+	 */
+	if (!uptodate)
+		md_error (mddev_to_kdev(r1_bh->mddev), bh->b_dev);
+	else
+		set_bit(R1BH_Uptodate, &r1_bh->state);
+	raid1_reschedule_retry(r1_bh);
+}
+
+static void end_sync_write(struct buffer_head *bh, int uptodate)
+{
+ 	struct raid1_bh * r1_bh = (struct raid1_bh *)(bh->b_private);
+	
+	if (!uptodate)
+ 		md_error (mddev_to_kdev(r1_bh->mddev), bh->b_dev);
+	if (atomic_dec_and_test(&r1_bh->remaining)) {
+		mddev_t *mddev = r1_bh->mddev;
+ 		unsigned long sect = bh->b_blocknr * (bh->b_size>>9);
+		int size = bh->b_size;
+		raid1_free_buf(r1_bh);
+		sync_request_done(sect, mddev_to_conf(mddev));
+		md_done_sync(mddev,size>>10, uptodate);
+	}
+}
+
+/*
+ * This will catch the scenario in which one of the mirrors was
+ * mounted as a normal device rather than as a part of a raid set.
+ *
+ * check_consistency is very personality-dependent, eg. RAID5 cannot
+ * do this check, it uses another method.
+ */
+static int __check_consistency (mddev_t *mddev, int row)
+{
+	raid1_conf_t *conf = mddev_to_conf(mddev);
+	int disks = MD_SB_DISKS;
+	kdev_t dev;
+	struct buffer_head *bh = NULL;
+	int i, rc = 0;
+	char *buffer = NULL;
+
+	for (i = 0; i < disks; i++) {
+		printk("(checking disk %d)\n",i);
+		if (!conf->mirrors[i].operational)
+			continue;
+		printk("(really checking disk %d)\n",i);
+		dev = conf->mirrors[i].dev;
+		set_blocksize(dev, 4096);
+		if ((bh = bread(dev, row / 4, 4096)) == NULL)
+			break;
+		if (!buffer) {
+			buffer = (char *) __get_free_page(GFP_KERNEL);
+			if (!buffer)
+				break;
+			memcpy(buffer, bh->b_data, 4096);
+		} else if (memcmp(buffer, bh->b_data, 4096)) {
+			rc = 1;
+			break;
+		}
+		bforget(bh);
+		fsync_dev(dev);
+		invalidate_buffers(dev);
+		bh = NULL;
+	}
+	if (buffer)
+		free_page((unsigned long) buffer);
+	if (bh) {
+		dev = bh->b_dev;
+		bforget(bh);
+		fsync_dev(dev);
+		invalidate_buffers(dev);
+	}
+	return rc;
+}
+
+static int check_consistency (mddev_t *mddev)
+{
+	if (__check_consistency(mddev, 0))
+/*
+ * we do not do this currently, as it's perfectly possible to
+ * have an inconsistent array when it's freshly created. Only
+ * newly written data has to be consistent.
+ */
+		return 0;
+
+	return 0;
+}
+
+#define INVALID_LEVEL KERN_WARNING \
+"raid1: md%d: raid level not set to mirroring (%d)\n"
+
+#define NO_SB KERN_ERR \
+"raid1: disabled mirror %s (couldn't access raid superblock)\n"
+
+#define ERRORS KERN_ERR \
+"raid1: disabled mirror %s (errors detected)\n"
+
+#define NOT_IN_SYNC KERN_ERR \
+"raid1: disabled mirror %s (not in sync)\n"
+
+#define INCONSISTENT KERN_ERR \
+"raid1: disabled mirror %s (inconsistent descriptor)\n"
+
+#define ALREADY_RUNNING KERN_ERR \
+"raid1: disabled mirror %s (mirror %d already operational)\n"
+
+#define OPERATIONAL KERN_INFO \
+"raid1: device %s operational as mirror %d\n"
+
+#define MEM_ERROR KERN_ERR \
+"raid1: couldn't allocate memory for md%d\n"
+
+#define SPARE KERN_INFO \
+"raid1: spare disk %s\n"
+
+#define NONE_OPERATIONAL KERN_ERR \
+"raid1: no operational mirrors for md%d\n"
+
+#define RUNNING_CKRAID KERN_ERR \
+"raid1: detected mirror differences -- running resync\n"
+
+#define ARRAY_IS_ACTIVE KERN_INFO \
+"raid1: raid set md%d active with %d out of %d mirrors\n"
+
+#define THREAD_ERROR KERN_ERR \
+"raid1: couldn't allocate thread for md%d\n"
+
+#define START_RESYNC KERN_WARNING \
+"raid1: raid set md%d not clean; reconstructing mirrors\n"
+
+static int raid1_run (mddev_t *mddev)
+{
+	raid1_conf_t *conf;
+	int i, j, disk_idx;
+	struct mirror_info *disk;
+	mdp_super_t *sb = mddev->sb;
+	mdp_disk_t *descriptor;
+	mdk_rdev_t *rdev;
+	struct md_list_head *tmp;
+	int start_recovery = 0;
+
+	MOD_INC_USE_COUNT;
+
+	if (sb->level != 1) {
+		printk(INVALID_LEVEL, mdidx(mddev), sb->level);
+		goto out;
+	}
+	/*
+	 * copy the already verified devices into our private RAID1
+	 * bookkeeping area. [whatever we allocate in raid1_run(),
+	 * should be freed in raid1_stop()]
+	 */
+
+	conf = kmalloc(sizeof(raid1_conf_t), GFP_KERNEL);
+	mddev->private = conf;
+	if (!conf) {
+		printk(MEM_ERROR, mdidx(mddev));
+		goto out;
+	}
+	memset(conf, 0, sizeof(*conf));
+
+	ITERATE_RDEV(mddev,rdev,tmp) {
+		if (rdev->faulty) {
+			printk(ERRORS, partition_name(rdev->dev));
+		} else {
+			if (!rdev->sb) {
+				MD_BUG();
+				continue;
+			}
+		}
+		if (rdev->desc_nr == -1) {
+			MD_BUG();
+			continue;
+		}
+		descriptor = &sb->disks[rdev->desc_nr];
+		disk_idx = descriptor->raid_disk;
+		disk = conf->mirrors + disk_idx;
+
+		if (disk_faulty(descriptor)) {
+			disk->number = descriptor->number;
+			disk->raid_disk = disk_idx;
+			disk->dev = rdev->dev;
+			disk->sect_limit = MAX_WORK_PER_DISK;
+			disk->operational = 0;
+			disk->write_only = 0;
+			disk->spare = 0;
+			disk->used_slot = 1;
+			disk->head_position = 0;
+			continue;
+		}
+		if (disk_active(descriptor)) {
+			if (!disk_sync(descriptor)) {
+				printk(NOT_IN_SYNC,
+					partition_name(rdev->dev));
+				continue;
+			}
+			if ((descriptor->number > MD_SB_DISKS) ||
+					 (disk_idx > sb->raid_disks)) {
+
+				printk(INCONSISTENT,
+					partition_name(rdev->dev));
+				continue;
+			}
+			if (disk->operational) {
+				printk(ALREADY_RUNNING,
+					partition_name(rdev->dev),
+					disk_idx);
+				continue;
+			}
+			printk(OPERATIONAL, partition_name(rdev->dev),
+ 					disk_idx);
+			disk->number = descriptor->number;
+			disk->raid_disk = disk_idx;
+			disk->dev = rdev->dev;
+			disk->sect_limit = MAX_WORK_PER_DISK;
+			disk->operational = 1;
+			disk->write_only = 0;
+			disk->spare = 0;
+			disk->used_slot = 1;
+			disk->head_position = 0;
+			conf->working_disks++;
+		} else {
+		/*
+		 * Must be a spare disk ..
+		 */
+			printk(SPARE, partition_name(rdev->dev));
+			disk->number = descriptor->number;
+			disk->raid_disk = disk_idx;
+			disk->dev = rdev->dev;
+			disk->sect_limit = MAX_WORK_PER_DISK;
+			disk->operational = 0;
+			disk->write_only = 0;
+			disk->spare = 1;
+			disk->used_slot = 1;
+			disk->head_position = 0;
+		}
+	}
+	conf->raid_disks = sb->raid_disks;
+	conf->nr_disks = sb->nr_disks;
+	conf->mddev = mddev;
+	conf->device_lock = MD_SPIN_LOCK_UNLOCKED;
+
+	conf->segment_lock = MD_SPIN_LOCK_UNLOCKED;
+	init_waitqueue_head(&conf->wait_buffer);
+	init_waitqueue_head(&conf->wait_done);
+	init_waitqueue_head(&conf->wait_ready);
+
+	if (!conf->working_disks) {
+		printk(NONE_OPERATIONAL, mdidx(mddev));
+		goto out_free_conf;
+	}
+
+
+	/* pre-allocate some buffer_head structures.
+	 * As a minimum, 1 r1bh and raid_disks buffer_heads
+	 * would probably get us by in tight memory situations,
+	 * but a few more is probably a good idea.
+	 * For now, try 16 r1bh and 16*raid_disks bufferheads
+	 * This will allow at least 16 concurrent reads or writes
+	 * even if kmalloc starts failing
+	 */
+	if (raid1_grow_r1bh(conf, 16) < 16 ||
+	    raid1_grow_bh(conf, 16*conf->raid_disks)< 16*conf->raid_disks) {
+		printk(MEM_ERROR, mdidx(mddev));
+		goto out_free_conf;
+	}
+
+	for (i = 0; i < MD_SB_DISKS; i++) {
+		
+		descriptor = sb->disks+i;
+		disk_idx = descriptor->raid_disk;
+		disk = conf->mirrors + disk_idx;
+
+		if (disk_faulty(descriptor) && (disk_idx < conf->raid_disks) &&
+				!disk->used_slot) {
+
+			disk->number = descriptor->number;
+			disk->raid_disk = disk_idx;
+			disk->dev = MKDEV(0,0);
+
+			disk->operational = 0;
+			disk->write_only = 0;
+			disk->spare = 0;
+			disk->used_slot = 1;
+			disk->head_position = 0;
+		}
+	}
+
+	/*
+	 * find the first working one and use it as a starting point
+	 * to read balancing.
+	 */
+	for (j = 0; !conf->mirrors[j].operational; j++)
+		/* nothing */;
+	conf->last_used = j;
+
+	/*
+	 * initialize the 'working disks' list.
+	 */
+	for (i = conf->raid_disks - 1; i >= 0; i--) {
+		if (conf->mirrors[i].operational) {
+			conf->mirrors[i].next = j;
+			j = i;
+		}
+	}
+
+	if (conf->working_disks != sb->raid_disks) {
+		printk(KERN_ALERT "raid1: md%d, not all disks are operational -- trying to recover array\n", mdidx(mddev));
+		start_recovery = 1;
+	}
+
+	if (!start_recovery && (sb->state & (1 << MD_SB_CLEAN))) {
+		/*
+		 * we do sanity checks even if the device says
+		 * it's clean ...
+		 */
+		if (check_consistency(mddev)) {
+			printk(RUNNING_CKRAID);
+			sb->state &= ~(1 << MD_SB_CLEAN);
+		}
+	}
+
+	{
+		const char * name = "raid1d";
+
+		conf->thread = md_register_thread(raid1d, conf, name);
+		if (!conf->thread) {
+			printk(THREAD_ERROR, mdidx(mddev));
+			goto out_free_conf;
+		}
+	}
+
+	if (!start_recovery && !(sb->state & (1 << MD_SB_CLEAN))) {
+		const char * name = "raid1syncd";
+
+		conf->resync_thread = md_register_thread(raid1syncd, conf,name);
+		if (!conf->resync_thread) {
+			printk(THREAD_ERROR, mdidx(mddev));
+			goto out_free_conf;
+		}
+
+		printk(START_RESYNC, mdidx(mddev));
+		conf->resync_mirrors = 1;
+		md_wakeup_thread(conf->resync_thread);
+	}
+
+	/*
+	 * Regenerate the "device is in sync with the raid set" bit for
+	 * each device.
+	 */
+	for (i = 0; i < MD_SB_DISKS; i++) {
+		mark_disk_nonsync(sb->disks+i);
+		for (j = 0; j < sb->raid_disks; j++) {
+			if (!conf->mirrors[j].operational)
+				continue;
+			if (sb->disks[i].number == conf->mirrors[j].number)
+				mark_disk_sync(sb->disks+i);
+		}
+	}
+	sb->active_disks = conf->working_disks;
+
+	if (start_recovery)
+		md_recover_arrays();
+
+
+	printk(ARRAY_IS_ACTIVE, mdidx(mddev), sb->active_disks, sb->raid_disks);
+	/*
+	 * Ok, everything is just fine now
+	 */
+	return 0;
+
+out_free_conf:
+	raid1_shrink_r1bh(conf);
+	raid1_shrink_bh(conf, conf->freebh_cnt);
+	raid1_shrink_buffers(conf);
+	kfree(conf);
+	mddev->private = NULL;
+out:
+	MOD_DEC_USE_COUNT;
+	return -EIO;
+}
+
+#undef INVALID_LEVEL
+#undef NO_SB
+#undef ERRORS
+#undef NOT_IN_SYNC
+#undef INCONSISTENT
+#undef ALREADY_RUNNING
+#undef OPERATIONAL
+#undef SPARE
+#undef NONE_OPERATIONAL
+#undef RUNNING_CKRAID
+#undef ARRAY_IS_ACTIVE
+
+static int raid1_stop_resync (mddev_t *mddev)
+{
+	raid1_conf_t *conf = mddev_to_conf(mddev);
+
+	if (conf->resync_thread) {
+		if (conf->resync_mirrors) {
+			conf->resync_mirrors = 2;
+			md_interrupt_thread(conf->resync_thread);
+
+			printk(KERN_INFO "raid1: mirror resync was not fully finished, restarting next time.\n");
+			return 1;
+		}
+		return 0;
+	}
+	return 0;
+}
+
+static int raid1_restart_resync (mddev_t *mddev)
+{
+	raid1_conf_t *conf = mddev_to_conf(mddev);
+
+	if (conf->resync_mirrors) {
+		if (!conf->resync_thread) {
+			MD_BUG();
+			return 0;
+		}
+		conf->resync_mirrors = 1;
+		md_wakeup_thread(conf->resync_thread);
+		return 1;
+	}
+	return 0;
+}
+
+static int raid1_stop (mddev_t *mddev)
+{
+	raid1_conf_t *conf = mddev_to_conf(mddev);
+
+	md_unregister_thread(conf->thread);
+	if (conf->resync_thread)
+		md_unregister_thread(conf->resync_thread);
+	raid1_shrink_r1bh(conf);
+	raid1_shrink_bh(conf, conf->freebh_cnt);
+	raid1_shrink_buffers(conf);
+	kfree(conf);
+	mddev->private = NULL;
+	MOD_DEC_USE_COUNT;
+	return 0;
+}
+
+static mdk_personality_t raid1_personality=
+{
+	name:		"raid1",
+	make_request:	raid1_make_request,
+	run:		raid1_run,
+	stop:		raid1_stop,
+	status:		raid1_status,
+	error_handler:	raid1_error,
+	diskop:		raid1_diskop,
+	stop_resync:	raid1_stop_resync,
+	restart_resync:	raid1_restart_resync,
+	sync_request:	raid1_sync_request
+};
+
+int raid1_init (void)
+{
+	return register_md_personality (RAID1, &raid1_personality);
+}
+
+#ifdef MODULE
+int init_module (void)
+{
+	return raid1_init();
+}
+
+void cleanup_module (void)
+{
+	unregister_md_personality (RAID1);
+}
+#endif

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)