patch-2.4.0-test9 linux/arch/ppc/8260_io/fcc_enet.c

Next file: linux/arch/ppc/8260_io/uart.c
Previous file: linux/arch/ppc/8260_io/enet.c
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.4.0-test8/linux/arch/ppc/8260_io/fcc_enet.c linux/arch/ppc/8260_io/fcc_enet.c
@@ -0,0 +1,1601 @@
+/*
+ * Fast Ethernet Controller (FCC) driver for Motorola MPC8260.
+ * Copyright (c) 2000 MontaVista Software, Inc.   Dan Malek (dmalek@jlc.net)
+ *
+ * This version of the driver is a combination of the 8xx fec and
+ * 8260 SCC Ethernet drivers.  People seem to be choosing common I/O
+ * configurations, so this driver will work on the EST8260 boards and
+ * others yet to be announced.
+ *
+ * Right now, I am very watseful with the buffers.  I allocate memory
+ * pages and then divide them into 2K frame buffers.  This way I know I
+ * have buffers large enough to hold one frame within one buffer descriptor.
+ * Once I get this working, I will use 64 or 128 byte CPM buffers, which
+ * will be much more memory efficient and will easily handle lots of
+ * small packets.
+ *
+ */
+
+#include <linux/config.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/string.h>
+#include <linux/ptrace.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/malloc.h>
+#include <linux/interrupt.h>
+#include <linux/pci.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <linux/spinlock.h>
+
+#include <asm/immap_8260.h>
+#include <asm/pgtable.h>
+#include <asm/mpc8260.h>
+#include <asm/irq.h>
+#include <asm/bitops.h>
+#include <asm/uaccess.h>
+#include <asm/cpm_8260.h>
+
+/* The transmitter timeout
+ */
+#define TX_TIMEOUT	(2*HZ)
+
+/* The number of Tx and Rx buffers.  These are allocated from the page
+ * pool.  The code may assume these are power of two, so it it best
+ * to keep them that size.
+ * We don't need to allocate pages for the transmitter.  We just use
+ * the skbuffer directly.
+ */
+#define FCC_ENET_RX_PAGES	16
+#define FCC_ENET_RX_FRSIZE	2048
+#define FCC_ENET_RX_FRPPG	(PAGE_SIZE / FCC_ENET_RX_FRSIZE)
+#define RX_RING_SIZE		(FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES)
+#define TX_RING_SIZE		16	/* Must be power of two */
+#define TX_RING_MOD_MASK	15	/*   for this to work */
+
+/* The FCC stores dest/src/type, data, and checksum for receive packets.
+ */
+#define PKT_MAXBUF_SIZE		1518
+#define PKT_MINBUF_SIZE		64
+
+/* Maximum input DMA size.  Must be a should(?) be a multiple of 4.
+*/
+#define PKT_MAXDMA_SIZE		1520
+
+/* Maximum input buffer size.  Must be a multiple of 32.
+*/
+#define PKT_MAXBLR_SIZE		1536
+
+static int fcc_enet_open(struct net_device *dev);
+static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
+static int fcc_enet_rx(struct net_device *dev);
+static void fcc_enet_mii(struct net_device *dev);
+static	void fcc_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
+static int fcc_enet_close(struct net_device *dev);
+static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev);
+static void set_multicast_list(struct net_device *dev);
+static void restart_fcc(struct net_device *dev);
+
+/* These will be configurable for the FCC choice.
+ * Multiple ports can be configured.  There is little choice among the
+ * I/O pins to the PHY, except the clocks.  We will need some board
+ * dependent clock selection.
+ * Why in the hell did I put these inside #ifdef's?  I dunno, maybe to
+ * help show what pins are used for each device.
+ */
+
+/* I/O Pin assignment for FCC1.  I don't yet know the best way to do this,
+ * but there is little variation among the choices.
+ */
+#define PA1_COL		((uint)0x00000001)
+#define PA1_CRS		((uint)0x00000002)
+#define PA1_TXER	((uint)0x00000004)
+#define PA1_TXEN	((uint)0x00000008)
+#define PA1_RXDV	((uint)0x00000010)
+#define PA1_RXER	((uint)0x00000020)
+#define PA1_TXDAT	((uint)0x00003c00)
+#define PA1_RXDAT	((uint)0x0003c000)
+#define PA1_PSORA0	(PA1_RXDAT | PA1_TXDAT)
+#define PA1_PSORA1	(PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \
+				PA1_RXDV | PA1_RXER)
+#define PA1_DIRA0	(PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV)
+#define PA1_DIRA1	(PA1_TXDAT | PA1_TXEN | PA1_TXER)
+
+/* CLK12 is receive, CLK11 is transmit.  These are board specific.
+*/
+#define PC_F1RXCLK	((uint)0x00000800)
+#define PC_F1TXCLK	((uint)0x00000400)
+#define CMX1_CLK_ROUTE	((uint)0x3e000000)
+#define CMX1_CLK_MASK	((uint)0xff000000)
+
+/* I/O Pin assignment for FCC2.  I don't yet know the best way to do this,
+ * but there is little variation among the choices.
+ */
+#define PB2_TXER	((uint)0x00000001)
+#define PB2_RXDV	((uint)0x00000002)
+#define PB2_TXEN	((uint)0x00000004)
+#define PB2_RXER	((uint)0x00000008)
+#define PB2_COL		((uint)0x00000010)
+#define PB2_CRS		((uint)0x00000020)
+#define PB2_TXDAT	((uint)0x000003c0)
+#define PB2_RXDAT	((uint)0x00003c00)
+#define PB2_PSORB0	(PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \
+				PB2_RXER | PB2_RXDV | PB2_TXER)
+#define PB2_PSORB1	(PB2_TXEN)
+#define PB2_DIRB0	(PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV)
+#define PB2_DIRB1	(PB2_TXDAT | PB2_TXEN | PB2_TXER)
+
+/* CLK13 is receive, CLK14 is transmit.  These are board dependent.
+*/
+#define PC_F2RXCLK	((uint)0x00001000)
+#define PC_F2TXCLK	((uint)0x00002000)
+#define CMX2_CLK_ROUTE	((uint)0x00250000)
+#define CMX2_CLK_MASK	((uint)0x00ff0000)
+
+/* I/O Pin assignment for FCC3.  I don't yet know the best way to do this,
+ * but there is little variation among the choices.
+ */
+#define PB3_RXDV	((uint)0x00004000)
+#define PB3_RXER	((uint)0x00008000)
+#define PB3_TXER	((uint)0x00010000)
+#define PB3_TXEN	((uint)0x00020000)
+#define PB3_COL		((uint)0x00040000)
+#define PB3_CRS		((uint)0x00080000)
+#define PB3_TXDAT	((uint)0x0f000000)
+#define PB3_RXDAT	((uint)0x00f00000)
+#define PB3_PSORB0	(PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \
+				PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN)
+#define PB3_PSORB1	(0)
+#define PB3_DIRB0	(PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV)
+#define PB3_DIRB1	(PB3_TXDAT | PB3_TXEN | PB3_TXER)
+
+/* CLK15 is receive, CLK16 is transmit.  These are board dependent.
+*/
+#define PC_F3RXCLK	((uint)0x00004000)
+#define PC_F3TXCLK	((uint)0x00008000)
+#define CMX3_CLK_ROUTE	((uint)0x00003700)
+#define CMX3_CLK_MASK	((uint)0x0000ff00)
+
+/* MII status/control serial interface.
+*/
+#define PC_MDIO		((uint)0x00400000)
+#define PC_MDCK		((uint)0x00200000)
+
+/* A table of information for supporting FCCs.  This does two things.
+ * First, we know how many FCCs we have and they are always externally
+ * numbered from zero.  Second, it holds control register and I/O
+ * information that could be different among board designs.
+ */
+typedef struct fcc_info {
+	uint	fc_fccnum;
+	uint	fc_cpmblock;
+	uint	fc_cpmpage;
+	uint	fc_proff;
+	uint	fc_interrupt;
+	uint	fc_trxclocks;
+	uint	fc_clockroute;
+	uint	fc_clockmask;
+	uint	fc_mdio;
+	uint	fc_mdck;
+} fcc_info_t;
+
+static fcc_info_t fcc_ports[] = {
+#ifdef CONFIG_FCC1_ENET
+	{ 0, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1,
+		(PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK,
+		PC_MDIO, PC_MDCK },
+#endif
+#ifdef CONFIG_FCC2_ENET
+	{ 1, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2,
+		(PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK,
+		PC_MDIO, PC_MDCK },
+#endif
+#ifdef CONFIG_FCC3_ENET
+	{ 2, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3,
+		(PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK,
+		PC_MDIO, PC_MDCK },
+#endif
+};
+
+/* The FCC buffer descriptors track the ring buffers.  The rx_bd_base and
+ * tx_bd_base always point to the base of the buffer descriptors.  The
+ * cur_rx and cur_tx point to the currently available buffer.
+ * The dirty_tx tracks the current buffer that is being sent by the
+ * controller.  The cur_tx and dirty_tx are equal under both completely
+ * empty and completely full conditions.  The empty/ready indicator in
+ * the buffer descriptor determines the actual condition.
+ */
+struct fcc_enet_private {
+	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
+	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
+	ushort	skb_cur;
+	ushort	skb_dirty;
+
+	/* CPM dual port RAM relative addresses.
+	*/
+	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */
+	cbd_t	*tx_bd_base;
+	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */
+	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */
+	volatile fcc_t	*fccp;
+	volatile fcc_enet_t	*ep;
+	struct	net_device_stats stats;
+	uint	tx_full;
+	spinlock_t lock;
+	uint	phy_address;
+	uint	phy_type;
+	uint	phy_duplex;
+	fcc_info_t	*fip;
+};
+
+static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
+	volatile immap_t *immap);
+static void init_fcc_startup(fcc_info_t *fip, struct net_device *dev);
+static void init_fcc_ioports(fcc_info_t *fip, volatile iop8260_t *io,
+	volatile immap_t *immap);
+static void init_fcc_param(fcc_info_t *fip, struct net_device *dev,
+	volatile immap_t *immap);
+
+/* MII processing.  We keep this as simple as possible.  Requests are
+ * placed on the list (if there is room).  When the request is finished
+ * by the MII, an optional function may be called.
+ */
+typedef struct mii_list {
+	uint	mii_regval;
+	void	(*mii_func)(uint val, struct net_device *dev);
+	struct	mii_list *mii_next;
+} mii_list_t;
+
+#define		NMII	20
+mii_list_t	mii_cmds[NMII];
+mii_list_t	*mii_free;
+mii_list_t	*mii_head;
+mii_list_t	*mii_tail;
+
+static	int	phyaddr;
+static	uint	phytype;
+
+static int	mii_queue(int request, void (*func)(uint, struct net_device *));
+static void	mii_startup_cmds(void);
+static uint	mii_send_receive(fcc_info_t *fip, uint cmd);
+
+/* Make MII read/write commands for the FCC.
+*/
+
+#define mk_mii_phyaddr(ADDR)	(0x60020000 | ((ADDR) << 23) | (2 << 18))
+
+#define mk_mii_read(REG)	(0x60020000 | ((phyaddr << 23) | \
+						(REG & 0x1f) << 18))
+
+#define mk_mii_write(REG, VAL)	(0x50020000 | ((phyaddr << 23) | \
+						(REG & 0x1f) << 18) | \
+						(VAL & 0xffff))
+
+
+static int
+fcc_enet_open(struct net_device *dev)
+{
+	netif_start_queue(dev);
+	return 0;					/* Always succeed */
+}
+
+static int
+fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+	struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
+	volatile cbd_t	*bdp;
+
+
+	/* Fill in a Tx ring entry */
+	bdp = cep->cur_tx;
+
+#ifndef final_version
+	if (bdp->cbd_sc & BD_ENET_TX_READY) {
+		/* Ooops.  All transmit buffers are full.  Bail out.
+		 * This should not happen, since cep->tx_full should be set.
+		 */
+		printk("%s: tx queue full!.\n", dev->name);
+		return 1;
+	}
+#endif
+
+	/* Clear all of the status flags.
+	 */
+	bdp->cbd_sc &= ~BD_ENET_TX_STATS;
+
+	/* If the frame is short, tell CPM to pad it.
+	*/
+	if (skb->len <= ETH_ZLEN)
+		bdp->cbd_sc |= BD_ENET_TX_PAD;
+	else
+		bdp->cbd_sc &= ~BD_ENET_TX_PAD;
+
+	/* Set buffer length and buffer pointer.
+	*/
+	bdp->cbd_datlen = skb->len;
+	bdp->cbd_bufaddr = __pa(skb->data);
+
+	/* Save skb pointer.
+	*/
+	cep->tx_skbuff[cep->skb_cur] = skb;
+
+	cep->stats.tx_bytes += skb->len;
+	cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
+
+	spin_lock_irq(&cep->lock);
+
+	/* Send it on its way.  Tell CPM its ready, interrupt when done,
+	 * its the last BD of the frame, and to put the CRC on the end.
+	 */
+	bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
+
+#if 0
+	/* Errata says don't do this.
+	*/
+	cep->fccp->fcc_ftodr = 0x8000;
+#endif
+	dev->trans_start = jiffies;
+
+	/* If this was the last BD in the ring, start at the beginning again.
+	*/
+	if (bdp->cbd_sc & BD_ENET_TX_WRAP)
+		bdp = cep->tx_bd_base;
+	else
+		bdp++;
+
+	if (bdp->cbd_sc & BD_ENET_TX_READY) {
+		netif_stop_queue(dev);
+		cep->tx_full = 1;
+	}
+
+	cep->cur_tx = (cbd_t *)bdp;
+
+	spin_unlock_irq(&cep->lock);
+
+	return 0;
+}
+
+
+static void
+fcc_enet_timeout(struct net_device *dev)
+{
+	struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
+
+	printk("%s: transmit timed out.\n", dev->name);
+	cep->stats.tx_errors++;
+#ifndef final_version
+	{
+		int	i;
+		cbd_t	*bdp;
+		printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n",
+		       cep->cur_tx, cep->tx_full ? " (full)" : "",
+		       cep->cur_rx);
+		bdp = cep->tx_bd_base;
+		printk(" Tx @base %p :\n", bdp);
+		for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
+			printk("%04x %04x %08x\n",
+			       bdp->cbd_sc,
+			       bdp->cbd_datlen,
+			       bdp->cbd_bufaddr);
+		bdp = cep->rx_bd_base;
+		printk(" Rx @base %p :\n", bdp);
+		for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
+			printk("%04x %04x %08x\n",
+			       bdp->cbd_sc,
+			       bdp->cbd_datlen,
+			       bdp->cbd_bufaddr);
+	}
+#endif
+	if (!cep->tx_full)
+		netif_wake_queue(dev);
+}
+
+/* The interrupt handler.
+ */
+static void
+fcc_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
+{
+	struct	net_device *dev = dev_id;
+	volatile struct	fcc_enet_private *cep;
+	volatile cbd_t	*bdp;
+	ushort	int_events;
+	int	must_restart;
+
+	cep = (struct fcc_enet_private *)dev->priv;
+
+	/* Get the interrupt events that caused us to be here.
+	*/
+	int_events = cep->fccp->fcc_fcce;
+	cep->fccp->fcc_fcce = int_events;
+	must_restart = 0;
+
+	/* Handle receive event in its own function.
+	*/
+	if (int_events & FCC_ENET_RXF)
+		fcc_enet_rx(dev_id);
+
+	/* Check for a transmit error.  The manual is a little unclear
+	 * about this, so the debug code until I get it figured out.  It
+	 * appears that if TXE is set, then TXB is not set.  However,
+	 * if carrier sense is lost during frame transmission, the TXE
+	 * bit is set, "and continues the buffer transmission normally."
+	 * I don't know if "normally" implies TXB is set when the buffer
+	 * descriptor is closed.....trial and error :-).
+	 */
+
+	/* Transmit OK, or non-fatal error.  Update the buffer descriptors.
+	*/
+	if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) {
+	    spin_lock(&cep->lock);
+	    bdp = cep->dirty_tx;
+	    while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
+		if ((bdp==cep->cur_tx) && (cep->tx_full == 0))
+		    break;
+
+		if (bdp->cbd_sc & BD_ENET_TX_HB)	/* No heartbeat */
+			cep->stats.tx_heartbeat_errors++;
+		if (bdp->cbd_sc & BD_ENET_TX_LC)	/* Late collision */
+			cep->stats.tx_window_errors++;
+		if (bdp->cbd_sc & BD_ENET_TX_RL)	/* Retrans limit */
+			cep->stats.tx_aborted_errors++;
+		if (bdp->cbd_sc & BD_ENET_TX_UN)	/* Underrun */
+			cep->stats.tx_fifo_errors++;
+		if (bdp->cbd_sc & BD_ENET_TX_CSL)	/* Carrier lost */
+			cep->stats.tx_carrier_errors++;
+
+
+		/* No heartbeat or Lost carrier are not really bad errors.
+		 * The others require a restart transmit command.
+		 */
+		if (bdp->cbd_sc &
+		    (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
+			must_restart = 1;
+			cep->stats.tx_errors++;
+		}
+
+		cep->stats.tx_packets++;
+
+		/* Deferred means some collisions occurred during transmit,
+		 * but we eventually sent the packet OK.
+		 */
+		if (bdp->cbd_sc & BD_ENET_TX_DEF)
+			cep->stats.collisions++;
+
+		/* Free the sk buffer associated with this last transmit.
+		*/
+		dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
+		cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
+
+		/* Update pointer to next buffer descriptor to be transmitted.
+		*/
+		if (bdp->cbd_sc & BD_ENET_TX_WRAP)
+			bdp = cep->tx_bd_base;
+		else
+			bdp++;
+
+		/* I don't know if we can be held off from processing these
+		 * interrupts for more than one frame time.  I really hope
+		 * not.  In such a case, we would now want to check the
+		 * currently available BD (cur_tx) and determine if any
+		 * buffers between the dirty_tx and cur_tx have also been
+		 * sent.  We would want to process anything in between that
+		 * does not have BD_ENET_TX_READY set.
+		 */
+
+		/* Since we have freed up a buffer, the ring is no longer
+		 * full.
+		 */
+		if (cep->tx_full) {
+			cep->tx_full = 0;
+			if (netif_queue_stopped(dev)) {
+				netif_wake_queue(dev);
+			}
+		}
+
+		cep->dirty_tx = (cbd_t *)bdp;
+	    }
+
+	    if (must_restart) {
+		volatile cpm8260_t *cp;
+
+		/* Some transmit errors cause the transmitter to shut
+		 * down.  We now issue a restart transmit.  Since the
+		 * errors close the BD and update the pointers, the restart
+		 * _should_ pick up without having to reset any of our
+		 * pointers either.
+		 */
+
+		cp = cpmp;
+		cp->cp_cpcr =
+		    mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock,
+		    		0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
+		while (cp->cp_cpcr & CPM_CR_FLG);
+	    }
+	    spin_unlock(&cep->lock);
+	}
+
+	/* Check for receive busy, i.e. packets coming but no place to
+	 * put them.
+	 */
+	if (int_events & FCC_ENET_BSY) {
+		cep->stats.rx_dropped++;
+	}
+	return;
+}
+
+/* During a receive, the cur_rx points to the current incoming buffer.
+ * When we update through the ring, if the next incoming buffer has
+ * not been given to the system, we just set the empty indicator,
+ * effectively tossing the packet.
+ */
+static int
+fcc_enet_rx(struct net_device *dev)
+{
+	struct	fcc_enet_private *cep;
+	volatile cbd_t	*bdp;
+	struct	sk_buff *skb;
+	ushort	pkt_len;
+
+	cep = (struct fcc_enet_private *)dev->priv;
+
+	/* First, grab all of the stats for the incoming packet.
+	 * These get messed up if we get called due to a busy condition.
+	 */
+	bdp = cep->cur_rx;
+
+for (;;) {
+	if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
+		break;
+		
+#ifndef final_version
+	/* Since we have allocated space to hold a complete frame, both
+	 * the first and last indicators should be set.
+	 */
+	if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
+		(BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
+			printk("CPM ENET: rcv is not first+last\n");
+#endif
+
+	/* Frame too long or too short.
+	*/
+	if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
+		cep->stats.rx_length_errors++;
+	if (bdp->cbd_sc & BD_ENET_RX_NO)	/* Frame alignment */
+		cep->stats.rx_frame_errors++;
+	if (bdp->cbd_sc & BD_ENET_RX_CR)	/* CRC Error */
+		cep->stats.rx_crc_errors++;
+	if (bdp->cbd_sc & BD_ENET_RX_OV)	/* FIFO overrun */
+		cep->stats.rx_crc_errors++;
+
+	/* Report late collisions as a frame error.
+	 * On this error, the BD is closed, but we don't know what we
+	 * have in the buffer.  So, just drop this frame on the floor.
+	 */
+	if (bdp->cbd_sc & BD_ENET_RX_CL) {
+		cep->stats.rx_frame_errors++;
+	}
+	else {
+
+		/* Process the incoming frame.
+		*/
+		cep->stats.rx_packets++;
+		pkt_len = bdp->cbd_datlen;
+		cep->stats.rx_bytes += pkt_len;
+
+		/* This does 16 byte alignment, much more than we need.
+		 * The packet length includes FCS, but we don't want to
+		 * include that when passing upstream as it messes up
+		 * bridging applications.
+		 */
+		skb = dev_alloc_skb(pkt_len-4);
+
+		if (skb == NULL) {
+			printk("%s: Memory squeeze, dropping packet.\n", dev->name);
+			cep->stats.rx_dropped++;
+		}
+		else {
+			skb->dev = dev;
+			skb_put(skb,pkt_len-4);	/* Make room */
+			eth_copy_and_sum(skb,
+				(unsigned char *)__va(bdp->cbd_bufaddr),
+				pkt_len-4, 0);
+			skb->protocol=eth_type_trans(skb,dev);
+			netif_rx(skb);
+		}
+	}
+
+	/* Clear the status flags for this buffer.
+	*/
+	bdp->cbd_sc &= ~BD_ENET_RX_STATS;
+
+	/* Mark the buffer empty.
+	*/
+	bdp->cbd_sc |= BD_ENET_RX_EMPTY;
+
+	/* Update BD pointer to next entry.
+	*/
+	if (bdp->cbd_sc & BD_ENET_RX_WRAP)
+		bdp = cep->rx_bd_base;
+	else
+		bdp++;
+
+   }
+	cep->cur_rx = (cbd_t *)bdp;
+
+	return 0;
+}
+
+static int
+fcc_enet_close(struct net_device *dev)
+{
+	/* Don't know what to do yet.
+	*/
+	netif_stop_queue(dev);
+
+	return 0;
+}
+
+static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev)
+{
+	struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
+
+	return &cep->stats;
+}
+
+/* The MII is simulated from the 8xx FEC implementation.  The FCC
+ * is not responsible for the MII control/status interface.
+ */
+static void
+fcc_enet_mii(struct net_device *dev)
+{
+	struct	fcc_enet_private *fep;
+	mii_list_t	*mip;
+	uint		mii_reg;
+
+	fep = (struct fcc_enet_private *)dev->priv;
+#if 0
+	ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
+	mii_reg = ep->fec_mii_data;
+#endif
+	
+	if ((mip = mii_head) == NULL) {
+		printk("MII and no head!\n");
+		return;
+	}
+
+	if (mip->mii_func != NULL)
+		(*(mip->mii_func))(mii_reg, dev);
+
+	mii_head = mip->mii_next;
+	mip->mii_next = mii_free;
+	mii_free = mip;
+
+#if 0
+	if ((mip = mii_head) != NULL)
+		ep->fec_mii_data = mip->mii_regval;
+#endif
+}
+
+static int
+mii_queue(int regval, void (*func)(uint, struct net_device *))
+{
+	unsigned long	flags;
+	mii_list_t	*mip;
+	int		retval;
+
+	retval = 0;
+
+	save_flags(flags);
+	cli();
+
+	if ((mip = mii_free) != NULL) {
+		mii_free = mip->mii_next;
+		mip->mii_regval = regval;
+		mip->mii_func = func;
+		mip->mii_next = NULL;
+		if (mii_head) {
+			mii_tail->mii_next = mip;
+			mii_tail = mip;
+		}
+		else {
+			mii_head = mii_tail = mip;
+#if 0
+			(&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_mii_data = regval;
+#endif
+		}
+	}
+	else {
+		retval = 1;
+	}
+
+	restore_flags(flags);
+
+	return(retval);
+}
+
+static	volatile uint	full_duplex;
+
+static void
+mii_status(uint mii_reg, struct net_device *dev)
+{
+	volatile uint	prev_duplex;
+
+	if (((mii_reg >> 18) & 0x1f) == 1) {
+		/* status register.
+		*/
+		printk("fec: ");
+		if (mii_reg & 0x0004)
+			printk("link up");
+		else
+			printk("link down");
+
+		if (mii_reg & 0x0010)
+			printk(",remote fault");
+		if (mii_reg & 0x0020)
+			printk(",auto complete");
+		printk("\n");
+	}
+	if (((mii_reg >> 18) & 0x1f) == 0x14) {
+		/* Extended chip status register.
+		*/
+		prev_duplex = full_duplex;
+		printk("fec: ");
+		if (mii_reg & 0x0800)
+			printk("100 Mbps");
+		else
+			printk("10 Mbps");
+
+		if (mii_reg & 0x1000) {
+			printk(", Full-Duplex\n");
+			full_duplex = 1;
+		}
+		else {
+			printk(", Half-Duplex\n");
+			full_duplex = 0;
+		}
+#if 0
+		if (prev_duplex != full_duplex)
+			restart_fec(dev);
+#endif
+	}
+	if (((mii_reg >> 18) & 0x1f) == 31) {
+		/* QS6612 PHY Control/Status.
+		 * OK, now we have it all, so figure out what is going on.
+		 */
+		prev_duplex = full_duplex;
+		printk("fec: ");
+
+		mii_reg = (mii_reg >> 2) & 7;
+
+		if (mii_reg & 1)
+			printk("10 Mbps");
+		else
+			printk("100 Mbps");
+
+		if (mii_reg > 4) {
+			printk(", Full-Duplex\n");
+			full_duplex = 1;
+		}
+		else {
+			printk(", Half-Duplex\n");
+			full_duplex = 0;
+		}
+
+#if 0
+		if (prev_duplex != full_duplex)
+			restart_fec(dev);
+#endif
+	}
+}
+
+static	uint	phyno;
+
+static void
+mii_discover_phy3(uint mii_reg, struct net_device *dev)
+{
+	phytype <<= 16;
+	phytype |= (mii_reg & 0xffff);
+	printk("fec: Phy @ 0x%x, type 0x%08x\n", phyno, phytype);
+	mii_startup_cmds();
+}
+
+static void
+mii_discover_phy(uint mii_reg, struct net_device *dev)
+{
+	if (phyno < 32) {
+		if ((phytype = (mii_reg & 0xffff)) != 0xffff) {
+			phyaddr = phyno;
+			mii_queue(mk_mii_read(3), mii_discover_phy3);
+		}
+		else {
+			phyno++;
+			mii_queue(mk_mii_phyaddr(phyno), mii_discover_phy);
+		}
+	}
+	else {
+		printk("FEC: No PHY device found.\n");
+	}
+}
+
+static void
+mii_discover_phy_poll(fcc_info_t *fip)
+{
+	uint	rv;
+	int	i;
+
+	for (i=0; i<32; i++) {
+		rv = mii_send_receive(fip, mk_mii_phyaddr(i));
+		if ((phytype = (rv & 0xffff)) != 0xffff) {
+			phyaddr = i;
+			rv = mii_send_receive(fip, mk_mii_read(3));
+			phytype <<= 16;
+			phytype |= (rv & 0xffff);
+			printk("fec: Phy @ 0x%x, type 0x%08x\n", phyaddr, phytype);
+		}
+	}
+}
+
+static	void
+mii_startup_cmds(void)
+{
+
+#if 1
+	/* Level One PHY.
+	*/
+
+	/* Read status registers to clear any pending interrupt.
+	*/
+	mii_queue(mk_mii_read(1), mii_status);
+	mii_queue(mk_mii_read(18), mii_status);
+
+	/* Read extended chip status register.
+	*/
+	mii_queue(mk_mii_read(0x14), mii_status);
+
+	/* Set default operation of 100-TX....for some reason
+	 * some of these bits are set on power up, which is wrong.
+	 */
+	mii_queue(mk_mii_write(0x13, 0), NULL);
+
+	/* Enable Link status change interrupts.
+	*/
+	mii_queue(mk_mii_write(0x11, 0x0002), NULL);
+
+	/* Don't advertize Full duplex.
+	mii_queue(mk_mii_write(0x04, 0x0021), NULL);
+	*/
+#endif
+
+}
+
+/* This supports the mii_link interrupt below.
+ * We should get called three times.  Once for register 1, once for
+ * register 18, and once for register 20.
+ */
+static	uint mii_saved_reg1;
+
+static void
+mii_relink(uint mii_reg, struct net_device *dev)
+{
+	volatile uint	prev_duplex;
+	unsigned long	flags;
+
+	if (((mii_reg >> 18) & 0x1f) == 1) {
+		/* Just save the status register and get out.
+		*/
+		mii_saved_reg1 = mii_reg;
+		return;
+	}
+	if (((mii_reg >> 18) & 0x1f) == 18) {
+		/* Not much here, but has to be read to clear the
+		 * interrupt condition.
+		 */
+		if ((mii_reg & 0x8000) == 0)
+			printk("fec: re-link and no IRQ?\n");
+		if ((mii_reg & 0x4000) == 0)
+			printk("fec: no PHY power?\n");
+	}
+	if (((mii_reg >> 18) & 0x1f) == 20) {
+		/* Extended chip status register.
+		 * OK, now we have it all, so figure out what is going on.
+		 */
+		prev_duplex = full_duplex;
+		printk("fec: ");
+		if (mii_saved_reg1 & 0x0004)
+			printk("link up");
+		else
+			printk("link down");
+
+		if (mii_saved_reg1 & 0x0010)
+			printk(", remote fault");
+		if (mii_saved_reg1 & 0x0020)
+			printk(", auto complete");
+
+		if (mii_reg & 0x0800)
+			printk(", 100 Mbps");
+		else
+			printk(", 10 Mbps");
+
+		if (mii_reg & 0x1000) {
+			printk(", Full-Duplex\n");
+			full_duplex = 1;
+		}
+		else {
+			printk(", Half-Duplex\n");
+			full_duplex = 0;
+		}
+		if (prev_duplex != full_duplex) {
+			save_flags(flags);
+			cli();
+#if 0
+			restart_fec(dev);
+#endif
+			restore_flags(flags);
+		}
+	}
+	if (((mii_reg >> 18) & 0x1f) == 31) {
+		/* QS6612 PHY Control/Status.
+		 * OK, now we have it all, so figure out what is going on.
+		 */
+		prev_duplex = full_duplex;
+		printk("fec: ");
+		if (mii_saved_reg1 & 0x0004)
+			printk("link up");
+		else
+			printk("link down");
+
+		if (mii_saved_reg1 & 0x0010)
+			printk(", remote fault");
+		if (mii_saved_reg1 & 0x0020)
+			printk(", auto complete");
+
+		mii_reg = (mii_reg >> 2) & 7;
+
+		if (mii_reg & 1)
+			printk(", 10 Mbps");
+		else
+			printk(", 100 Mbps");
+
+		if (mii_reg > 4) {
+			printk(", Full-Duplex\n");
+			full_duplex = 1;
+		}
+		else {
+			printk(", Half-Duplex\n");
+			full_duplex = 0;
+		}
+
+#if 0
+		if (prev_duplex != full_duplex) {
+			save_flags(flags);
+			cli();
+			restart_fec(dev);
+			restore_flags(flags);
+		}
+#endif
+	}
+}
+
+/* Set or clear the multicast filter for this adaptor.
+ * Skeleton taken from sunlance driver.
+ * The CPM Ethernet implementation allows Multicast as well as individual
+ * MAC address filtering.  Some of the drivers check to make sure it is
+ * a group multicast address, and discard those that are not.  I guess I
+ * will do the same for now, but just remove the test if you want
+ * individual filtering as well (do the upper net layers want or support
+ * this kind of feature?).
+ */
+static void
+set_multicast_list(struct net_device *dev)
+{
+	struct	fcc_enet_private *cep;
+	struct	dev_mc_list *dmi;
+	u_char	*mcptr, *tdptr;
+	volatile fcc_enet_t *ep;
+	int	i, j;
+
+	cep = (struct fcc_enet_private *)dev->priv;
+
+return;
+	/* Get pointer to FCC area in parameter RAM.
+	*/
+	ep = (fcc_enet_t *)dev->base_addr;
+
+	if (dev->flags&IFF_PROMISC) {
+	  
+		/* Log any net taps. */
+		printk("%s: Promiscuous mode enabled.\n", dev->name);
+		cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO;
+	} else {
+
+		cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO;
+
+		if (dev->flags & IFF_ALLMULTI) {
+			/* Catch all multicast addresses, so set the
+			 * filter to all 1's.
+			 */
+			ep->fen_gaddrh = 0xffffffff;
+			ep->fen_gaddrl = 0xffffffff;
+		}
+		else {
+			/* Clear filter and add the addresses in the list.
+			*/
+			ep->fen_gaddrh = 0;
+			ep->fen_gaddrl = 0;
+
+			dmi = dev->mc_list;
+
+			for (i=0; i<dev->mc_count; i++) {
+				
+				/* Only support group multicast for now.
+				*/
+				if (!(dmi->dmi_addr[0] & 1))
+					continue;
+
+				/* The address in dmi_addr is LSB first,
+				 * and taddr is MSB first.  We have to
+				 * copy bytes MSB first from dmi_addr.
+				 */
+				mcptr = (u_char *)dmi->dmi_addr + 5;
+				tdptr = (u_char *)&ep->fen_taddrh;
+				for (j=0; j<6; j++)
+					*tdptr++ = *mcptr--;
+
+				/* Ask CPM to run CRC and set bit in
+				 * filter mask.
+				 */
+				cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage,
+						cep->fip->fc_cpmblock, 0x0c,
+						CPM_CR_SET_GADDR) | CPM_CR_FLG;
+				udelay(10);
+				while (cpmp->cp_cpcr & CPM_CR_FLG);
+			}
+		}
+	}
+}
+
+/* Initialize the CPM Ethernet on FCC.
+ */
+int __init fec_enet_init(void)
+{
+	struct net_device *dev;
+	struct fcc_enet_private *cep;
+	fcc_info_t	*fip;
+	int	i, np;
+	volatile	immap_t		*immap;
+	volatile	iop8260_t	*io;
+
+	immap = (immap_t *)IMAP_ADDR;	/* and to internal registers */
+	io = &immap->im_ioport;
+
+	np = sizeof(fcc_ports) / sizeof(fcc_info_t);
+	fip = fcc_ports;
+
+	while (np-- > 0) {
+
+		/* Allocate some private information.
+		*/
+		cep = (struct fcc_enet_private *)
+					kmalloc(sizeof(*cep), GFP_KERNEL);
+		__clear_user(cep,sizeof(*cep));
+		spin_lock_init(&cep->lock);
+		cep->fip = fip;
+
+		/* Create an Ethernet device instance.
+		*/
+		dev = init_etherdev(0, 0);
+		dev->priv = cep;
+
+		init_fcc_shutdown(fip, cep, immap);
+		init_fcc_ioports(fip, io, immap);
+		init_fcc_param(fip, dev, immap);
+
+		dev->base_addr = (unsigned long)(cep->ep);
+
+		/* The CPM Ethernet specific entries in the device
+		 * structure.
+		 */
+		dev->open = fcc_enet_open;
+		dev->hard_start_xmit = fcc_enet_start_xmit;
+		dev->tx_timeout = fcc_enet_timeout;
+		dev->watchdog_timeo = TX_TIMEOUT;
+		dev->stop = fcc_enet_close;
+		dev->get_stats = fcc_enet_get_stats;
+		dev->set_multicast_list = set_multicast_list;
+
+		init_fcc_startup(fip, dev);
+
+		printk("%s: FCC ENET Version 0.2, ", dev->name);
+		for (i=0; i<5; i++)
+			printk("%02x:", dev->dev_addr[i]);
+		printk("%02x\n", dev->dev_addr[5]);
+
+		/* This is just a hack for now that works only on the EST
+		 * board, or anything else that has MDIO/CK configured.
+		 * It is mainly to test the MII software clocking.
+		 */
+		mii_discover_phy_poll(fip);
+
+		fip++;
+	}
+
+	return 0;
+}
+
+/* Make sure the device is shut down during initialization.
+*/
+static void __init
+init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
+						volatile immap_t *immap)
+{
+	volatile	fcc_enet_t	*ep;
+	volatile	fcc_t		*fccp;
+
+	/* Get pointer to FCC area in parameter RAM.
+	*/
+	ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]);
+
+	/* And another to the FCC register area.
+	*/
+	fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]);
+	cep->fccp = fccp;		/* Keep the pointers handy */
+	cep->ep = ep;
+
+	/* Disable receive and transmit in case someone left it running.
+	*/
+	fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
+}
+
+/* Initialize the I/O pins for the FCC Ethernet.
+*/
+static void __init
+init_fcc_ioports(fcc_info_t *fip, volatile iop8260_t *io,
+						volatile immap_t *immap)
+{
+
+	/* FCC1 pins are on port A/C.  FCC2/3 are port B/C.
+	*/
+	if (fip->fc_proff == PROFF_FCC1) {
+		/* Configure port A and C pins for FCC1 Ethernet.
+		 */
+		io->iop_pdira &= ~PA1_DIRA0;
+		io->iop_pdira |= PA1_DIRA1;
+		io->iop_psora &= ~PA1_PSORA0;
+		io->iop_psora |= PA1_PSORA1;
+		io->iop_ppara |= (PA1_DIRA0 | PA1_DIRA1);
+	}
+	if (fip->fc_proff == PROFF_FCC2) {
+		/* Configure port B and C pins for FCC Ethernet.
+		 */
+		io->iop_pdirb &= ~PB2_DIRB0;
+		io->iop_pdirb |= PB2_DIRB1;
+		io->iop_psorb &= ~PB2_PSORB0;
+		io->iop_psorb |= PB2_PSORB1;
+		io->iop_pparb |= (PB2_DIRB0 | PB2_DIRB1);
+	}
+	if (fip->fc_proff == PROFF_FCC3) {
+		/* Configure port B and C pins for FCC Ethernet.
+		 */
+		io->iop_pdirb &= ~PB3_DIRB0;
+		io->iop_pdirb |= PB3_DIRB1;
+		io->iop_psorb &= ~PB3_PSORB0;
+		io->iop_psorb |= PB3_PSORB1;
+		io->iop_pparb |= (PB3_DIRB0 | PB3_DIRB1);
+	}
+
+	/* Port C has clocks......
+	*/
+	io->iop_psorc &= ~(fip->fc_trxclocks);
+	io->iop_pdirc &= ~(fip->fc_trxclocks);
+	io->iop_pparc |= fip->fc_trxclocks;
+
+	/* ....and the MII serial clock/data.
+	*/
+	io->iop_pdatc |= (fip->fc_mdio | fip->fc_mdck);
+	io->iop_podrc |= fip->fc_mdio;
+	io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck);
+	io->iop_pparc &= ~(fip->fc_mdio | fip->fc_mdck);
+
+	/* Configure Serial Interface clock routing.
+	 * First, clear all FCC bits to zero,
+	 * then set the ones we want.
+	 */
+	immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask);
+	immap->im_cpmux.cmx_fcr |= fip->fc_clockroute;
+}
+
+static void __init
+init_fcc_param(fcc_info_t *fip, struct net_device *dev,
+						volatile immap_t *immap)
+{
+	unsigned char	*eap;
+	unsigned long	mem_addr;
+	bd_t		*bd;
+	int		i, j;
+	struct		fcc_enet_private *cep;
+	volatile	fcc_enet_t	*ep;
+	volatile	cbd_t		*bdp;
+	volatile	cpm8260_t	*cp;
+
+	cep = (struct fcc_enet_private *)(dev->priv);
+	ep = cep->ep;
+	cp = cpmp;
+
+	bd = (bd_t *)__res;
+
+	/* Zero the whole thing.....I must have missed some individually.
+	 * It works when I do this.
+	 */
+	memset((char *)ep, 0, sizeof(fcc_enet_t));
+
+	/* Allocate space for the buffer descriptors in the DP ram.
+	 * These are relative offsets in the DP ram address space.
+	 * Initialize base addresses for the buffer descriptors.
+	 */
+#if 0
+	/* I really want to do this, but for some reason it doesn't
+	 * work with the data cache enabled, so I allocate from the
+	 * main memory instead.
+	 */
+	i = m8260_cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
+	ep->fen_genfcc.fcc_rbase = (uint)&immap->im_dprambase[i];
+	cep->rx_bd_base = (cbd_t *)&immap->im_dprambase[i];
+
+	i = m8260_cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
+	ep->fen_genfcc.fcc_tbase = (uint)&immap->im_dprambase[i];
+	cep->tx_bd_base = (cbd_t *)&immap->im_dprambase[i];
+#else
+	cep->rx_bd_base = (cbd_t *)m8260_cpm_hostalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
+	ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base);
+	cep->tx_bd_base = (cbd_t *)m8260_cpm_hostalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
+	ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base);
+#endif
+
+	cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
+	cep->cur_rx = cep->rx_bd_base;
+
+	ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
+	ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
+
+	/* Set maximum bytes per receive buffer.
+	 * It must be a multiple of 32.
+	 */
+	ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE;
+
+	/* Allocate space in the reserved FCC area of DPRAM for the
+	 * internal buffers.  No one uses this space (yet), so we
+	 * can do this.  Later, we will add resource management for
+	 * this area.
+	 */
+	mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128);
+	ep->fen_genfcc.fcc_riptr = mem_addr;
+	ep->fen_genfcc.fcc_tiptr = mem_addr+32;
+	ep->fen_padptr = mem_addr+64;
+	memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32);
+	
+	ep->fen_genfcc.fcc_rbptr = 0;
+	ep->fen_genfcc.fcc_tbptr = 0;
+	ep->fen_genfcc.fcc_rcrc = 0;
+	ep->fen_genfcc.fcc_tcrc = 0;
+	ep->fen_genfcc.fcc_res1 = 0;
+	ep->fen_genfcc.fcc_res2 = 0;
+
+	ep->fen_camptr = 0;	/* CAM isn't used in this driver */
+
+	/* Set CRC preset and mask.
+	*/
+	ep->fen_cmask = 0xdebb20e3;
+	ep->fen_cpres = 0xffffffff;
+
+	ep->fen_crcec = 0;	/* CRC Error counter */
+	ep->fen_alec = 0;	/* alignment error counter */
+	ep->fen_disfc = 0;	/* discard frame counter */
+	ep->fen_retlim = 15;	/* Retry limit threshold */
+	ep->fen_pper = 0;	/* Normal persistence */
+
+	/* Clear hash filter tables.
+	*/
+	ep->fen_gaddrh = 0;
+	ep->fen_gaddrl = 0;
+	ep->fen_iaddrh = 0;
+	ep->fen_iaddrl = 0;
+
+	/* Clear the Out-of-sequence TxBD.
+	*/
+	ep->fen_tfcstat = 0;
+	ep->fen_tfclen = 0;
+	ep->fen_tfcptr = 0;
+
+	ep->fen_mflr = PKT_MAXBUF_SIZE;   /* maximum frame length register */
+	ep->fen_minflr = PKT_MINBUF_SIZE;  /* minimum frame length register */
+
+	/* Set Ethernet station address.
+	 *
+	 * This is supplied in the board information structure, so we
+	 * copy that into the controller.
+	 * So, far we have only been given one Ethernet address. We make
+	 * it unique by setting a few bits in the upper byte of the
+	 * non-static part of the address.
+	 */
+	eap = (unsigned char *)&(ep->fen_paddrh);
+	for (i=5; i>=0; i--) {
+		if (i == 3) {
+			dev->dev_addr[i] = bd->bi_enetaddr[i];
+			dev->dev_addr[i] |= (1 << (7 - fip->fc_fccnum));
+			*eap++ = dev->dev_addr[i];
+		}
+		else {
+			*eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
+		}
+	}
+
+	ep->fen_taddrh = 0;
+	ep->fen_taddrm = 0;
+	ep->fen_taddrl = 0;
+
+	ep->fen_maxd1 = PKT_MAXDMA_SIZE;	/* maximum DMA1 length */
+	ep->fen_maxd2 = PKT_MAXDMA_SIZE;	/* maximum DMA2 length */
+
+	/* Clear stat counters, in case we ever enable RMON.
+	*/
+	ep->fen_octc = 0;
+	ep->fen_colc = 0;
+	ep->fen_broc = 0;
+	ep->fen_mulc = 0;
+	ep->fen_uspc = 0;
+	ep->fen_frgc = 0;
+	ep->fen_ospc = 0;
+	ep->fen_jbrc = 0;
+	ep->fen_p64c = 0;
+	ep->fen_p65c = 0;
+	ep->fen_p128c = 0;
+	ep->fen_p256c = 0;
+	ep->fen_p512c = 0;
+	ep->fen_p1024c = 0;
+
+	ep->fen_rfthr = 0;	/* Suggested by manual */
+	ep->fen_rfcnt = 0;
+	ep->fen_cftype = 0;
+
+	/* Now allocate the host memory pages and initialize the
+	 * buffer descriptors.
+	 */
+	bdp = cep->tx_bd_base;
+	for (i=0; i<TX_RING_SIZE; i++) {
+
+		/* Initialize the BD for every fragment in the page.
+		*/
+		bdp->cbd_sc = 0;
+		bdp->cbd_datlen = 0;
+		bdp->cbd_bufaddr = 0;
+		bdp++;
+	}
+
+	/* Set the last buffer to wrap.
+	*/
+	bdp--;
+	bdp->cbd_sc |= BD_SC_WRAP;
+
+	bdp = cep->rx_bd_base;
+	for (i=0; i<FCC_ENET_RX_PAGES; i++) {
+
+		/* Allocate a page.
+		*/
+		mem_addr = __get_free_page(GFP_KERNEL);
+
+		/* Initialize the BD for every fragment in the page.
+		*/
+		for (j=0; j<FCC_ENET_RX_FRPPG; j++) {
+			bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
+			bdp->cbd_datlen = 0;
+			bdp->cbd_bufaddr = __pa(mem_addr);
+			mem_addr += FCC_ENET_RX_FRSIZE;
+			bdp++;
+		}
+	}
+
+	/* Set the last buffer to wrap.
+	*/
+	bdp--;
+	bdp->cbd_sc |= BD_SC_WRAP;
+
+	/* Let's re-initialize the channel now.  We have to do it later
+	 * than the manual describes because we have just now finished
+	 * the BD initialization.
+	 */
+	cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c,
+			CPM_CR_INIT_TRX) | CPM_CR_FLG;
+	while (cp->cp_cpcr & CPM_CR_FLG);
+
+	cep->skb_cur = cep->skb_dirty = 0;
+}
+
+/* Let 'er rip.
+*/
+static void __init
+init_fcc_startup(fcc_info_t *fip, struct net_device *dev)
+{
+	volatile fcc_t	*fccp;
+	struct fcc_enet_private *cep;
+
+	cep = (struct fcc_enet_private *)(dev->priv);
+	fccp = cep->fccp;
+
+	fccp->fcc_fcce = 0xffff;	/* Clear any pending events */
+
+	/* Enable interrupts for transmit error, complete frame
+	 * received, and any transmit buffer we have also set the
+	 * interrupt flag.
+	 */
+	fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
+
+	/* Install our interrupt handler.
+	*/
+	if (request_8xxirq(fip->fc_interrupt, fcc_enet_interrupt, 0,
+							"fenet", dev) < 0)
+		printk("Can't get FCC IRQ %d\n", fip->fc_interrupt);
+
+	/* Set GFMR to enable Ethernet operating mode.
+	 */
+	fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
+
+	/* Set sync/delimiters.
+	*/
+	fccp->fcc_fdsr = 0xd555;
+
+	/* Set protocol specific processing mode for Ethernet.
+	 * This has to be adjusted for Full Duplex operation after we can
+	 * determine how to detect that.
+	 */
+	fccp->fcc_fpsmr = FCC_PSMR_ENCRC;
+
+	/* And last, enable the transmit and receive processing.
+	*/
+	fccp->fcc_gfmr |= (FCC_GFMR_ENR | FCC_GFMR_ENT);
+}
+
+/* MII command/status interface.
+ * I'm not going to describe all of the details.  You can find the
+ * protocol definition in many other places, including the data sheet
+ * of most PHY parts.
+ * I wonder what "they" were thinking (maybe weren't) when they leave
+ * the I2C in the CPM but I have to toggle these bits......
+ */
+static uint
+mii_send_receive(fcc_info_t *fip, uint cmd)
+{
+	unsigned long	flags;
+	uint		retval;
+	int		read_op, i;
+	volatile	immap_t		*immap;
+	volatile	iop8260_t	*io;
+
+	immap = (immap_t *)IMAP_ADDR;
+	io = &immap->im_ioport;
+
+	/* When we get here, both clock and data are high, outputs.
+	 * Output is open drain.
+	 * Data transitions on high->low clock, is valid on low->high clock.
+	 * Spec says edge transitions no closer than 160 nSec, minimum clock
+	 * cycle 400 nSec.  I could only manage about 500 nSec edges with
+	 * an XOR loop, so I won't worry about delays yet.
+	 * I disable interrupts during bit flipping to ensure atomic
+	 * updates of the registers.  I do lots of interrupt disable/enable
+	 * to ensure we don't hang out too long with interrupts disabled.
+	 */
+	
+	/* First, crank out 32 1-bits as preamble.
+	 * This is 64 transitions to clock the bits, with clock/data
+	 * left high.
+	 */
+	save_flags(flags);
+	cli();
+	for (i=0; i<64; i++) {
+		io->iop_pdatc ^= fip->fc_mdck;
+		udelay(0);
+	}
+	restore_flags(flags);
+
+	read_op = ((cmd & 0xf0000000) == 0x60000000);
+
+	/* We return the command word on a write op, or the command portion
+	 * plus the new data on a read op.  This is what the 8xx FEC does,
+	 * and it allows the functions to simply look at the returned value
+	 * and know the PHY/register as well.
+	 */
+	if (read_op)
+		retval = cmd;
+	else
+		retval = (cmd >> 16);
+
+	/* Clock out the first 16 MS bits of the command.
+	*/
+	save_flags(flags);
+	cli();
+	for (i=0; i<16; i++) {
+		io->iop_pdatc &= ~(fip->fc_mdck);
+		if (cmd & 0x80000000)
+			io->iop_pdatc |= fip->fc_mdio;
+		else
+			io->iop_pdatc &= ~(fip->fc_mdio);
+		cmd <<= 1;
+		io->iop_pdatc |= fip->fc_mdck;
+		udelay(0);
+	}
+
+	/* Do the turn-around.  If read op, we make the IO and input.
+	 * If write op, do the 1/0 thing.
+	 */
+	io->iop_pdatc &= ~(fip->fc_mdck);
+	if (read_op)
+		io->iop_pdirc &= ~(fip->fc_mdio);
+	else
+		io->iop_pdatc |= fip->fc_mdio;
+	io->iop_pdatc |= fip->fc_mdck;
+
+	/* I do this mainly to get just a little delay.
+	*/
+	restore_flags(flags);
+	save_flags(flags);
+	cli();
+	io->iop_pdatc &= ~(fip->fc_mdck);
+	io->iop_pdirc &= ~(fip->fc_mdio);
+	io->iop_pdatc |= fip->fc_mdck;
+
+	restore_flags(flags);
+	save_flags(flags);
+	cli();
+
+	/* For read, clock in 16 bits.  For write, clock out
+	 * rest of command.
+	 */
+	if (read_op) {
+		io->iop_pdatc &= ~(fip->fc_mdck);
+		udelay(0);
+		for (i=0; i<16; i++) {
+			io->iop_pdatc |= fip->fc_mdck;
+			udelay(0);
+			retval <<= 1;
+			if (io->iop_pdatc & fip->fc_mdio)
+				retval |= 1;
+			io->iop_pdatc &= ~(fip->fc_mdck);
+			udelay(0);
+		}
+	}
+	else {
+		for (i=0; i<16; i++) {
+			io->iop_pdatc &= ~(fip->fc_mdck);
+			if (cmd & 0x80000000)
+				io->iop_pdatc |= fip->fc_mdio;
+			else
+				io->iop_pdatc &= ~(fip->fc_mdio);
+			cmd <<= 1;
+			io->iop_pdatc |= fip->fc_mdck;
+			udelay(0);
+		}
+		io->iop_pdatc &= ~(fip->fc_mdck);
+	}
+	restore_flags(flags);
+
+	/* Some diagrams show two 1 bits for "idle".  I don't know if
+	 * this is really necessary or if it was just to indicate nothing
+	 * is going to happen for a while.
+	 * Make the data pin an output, set the data high, and clock it.
+	 */
+	save_flags(flags);
+	cli();
+	io->iop_pdatc |= fip->fc_mdio;
+	io->iop_pdirc |= fip->fc_mdio;
+	for (i=0; i<3; i++)
+		io->iop_pdatc ^= fip->fc_mdck;
+	restore_flags(flags);
+
+	/* We exit with the same conditions as entry.
+	*/
+	return(retval);
+}

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)