patch-2.4.0-test9 linux/arch/ppc/8260_io/fcc_enet.c
Next file: linux/arch/ppc/8260_io/uart.c
Previous file: linux/arch/ppc/8260_io/enet.c
Back to the patch index
Back to the overall index
- Lines: 1602
- Date:
Tue Sep 19 08:31:53 2000
- Orig file:
v2.4.0-test8/linux/arch/ppc/8260_io/fcc_enet.c
- Orig date:
Wed Dec 31 16:00:00 1969
diff -u --recursive --new-file v2.4.0-test8/linux/arch/ppc/8260_io/fcc_enet.c linux/arch/ppc/8260_io/fcc_enet.c
@@ -0,0 +1,1601 @@
+/*
+ * Fast Ethernet Controller (FCC) driver for Motorola MPC8260.
+ * Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net)
+ *
+ * This version of the driver is a combination of the 8xx fec and
+ * 8260 SCC Ethernet drivers. People seem to be choosing common I/O
+ * configurations, so this driver will work on the EST8260 boards and
+ * others yet to be announced.
+ *
+ * Right now, I am very watseful with the buffers. I allocate memory
+ * pages and then divide them into 2K frame buffers. This way I know I
+ * have buffers large enough to hold one frame within one buffer descriptor.
+ * Once I get this working, I will use 64 or 128 byte CPM buffers, which
+ * will be much more memory efficient and will easily handle lots of
+ * small packets.
+ *
+ */
+
+#include <linux/config.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/string.h>
+#include <linux/ptrace.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/malloc.h>
+#include <linux/interrupt.h>
+#include <linux/pci.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <linux/spinlock.h>
+
+#include <asm/immap_8260.h>
+#include <asm/pgtable.h>
+#include <asm/mpc8260.h>
+#include <asm/irq.h>
+#include <asm/bitops.h>
+#include <asm/uaccess.h>
+#include <asm/cpm_8260.h>
+
+/* The transmitter timeout
+ */
+#define TX_TIMEOUT (2*HZ)
+
+/* The number of Tx and Rx buffers. These are allocated from the page
+ * pool. The code may assume these are power of two, so it it best
+ * to keep them that size.
+ * We don't need to allocate pages for the transmitter. We just use
+ * the skbuffer directly.
+ */
+#define FCC_ENET_RX_PAGES 16
+#define FCC_ENET_RX_FRSIZE 2048
+#define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE)
+#define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES)
+#define TX_RING_SIZE 16 /* Must be power of two */
+#define TX_RING_MOD_MASK 15 /* for this to work */
+
+/* The FCC stores dest/src/type, data, and checksum for receive packets.
+ */
+#define PKT_MAXBUF_SIZE 1518
+#define PKT_MINBUF_SIZE 64
+
+/* Maximum input DMA size. Must be a should(?) be a multiple of 4.
+*/
+#define PKT_MAXDMA_SIZE 1520
+
+/* Maximum input buffer size. Must be a multiple of 32.
+*/
+#define PKT_MAXBLR_SIZE 1536
+
+static int fcc_enet_open(struct net_device *dev);
+static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
+static int fcc_enet_rx(struct net_device *dev);
+static void fcc_enet_mii(struct net_device *dev);
+static void fcc_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
+static int fcc_enet_close(struct net_device *dev);
+static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev);
+static void set_multicast_list(struct net_device *dev);
+static void restart_fcc(struct net_device *dev);
+
+/* These will be configurable for the FCC choice.
+ * Multiple ports can be configured. There is little choice among the
+ * I/O pins to the PHY, except the clocks. We will need some board
+ * dependent clock selection.
+ * Why in the hell did I put these inside #ifdef's? I dunno, maybe to
+ * help show what pins are used for each device.
+ */
+
+/* I/O Pin assignment for FCC1. I don't yet know the best way to do this,
+ * but there is little variation among the choices.
+ */
+#define PA1_COL ((uint)0x00000001)
+#define PA1_CRS ((uint)0x00000002)
+#define PA1_TXER ((uint)0x00000004)
+#define PA1_TXEN ((uint)0x00000008)
+#define PA1_RXDV ((uint)0x00000010)
+#define PA1_RXER ((uint)0x00000020)
+#define PA1_TXDAT ((uint)0x00003c00)
+#define PA1_RXDAT ((uint)0x0003c000)
+#define PA1_PSORA0 (PA1_RXDAT | PA1_TXDAT)
+#define PA1_PSORA1 (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \
+ PA1_RXDV | PA1_RXER)
+#define PA1_DIRA0 (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV)
+#define PA1_DIRA1 (PA1_TXDAT | PA1_TXEN | PA1_TXER)
+
+/* CLK12 is receive, CLK11 is transmit. These are board specific.
+*/
+#define PC_F1RXCLK ((uint)0x00000800)
+#define PC_F1TXCLK ((uint)0x00000400)
+#define CMX1_CLK_ROUTE ((uint)0x3e000000)
+#define CMX1_CLK_MASK ((uint)0xff000000)
+
+/* I/O Pin assignment for FCC2. I don't yet know the best way to do this,
+ * but there is little variation among the choices.
+ */
+#define PB2_TXER ((uint)0x00000001)
+#define PB2_RXDV ((uint)0x00000002)
+#define PB2_TXEN ((uint)0x00000004)
+#define PB2_RXER ((uint)0x00000008)
+#define PB2_COL ((uint)0x00000010)
+#define PB2_CRS ((uint)0x00000020)
+#define PB2_TXDAT ((uint)0x000003c0)
+#define PB2_RXDAT ((uint)0x00003c00)
+#define PB2_PSORB0 (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \
+ PB2_RXER | PB2_RXDV | PB2_TXER)
+#define PB2_PSORB1 (PB2_TXEN)
+#define PB2_DIRB0 (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV)
+#define PB2_DIRB1 (PB2_TXDAT | PB2_TXEN | PB2_TXER)
+
+/* CLK13 is receive, CLK14 is transmit. These are board dependent.
+*/
+#define PC_F2RXCLK ((uint)0x00001000)
+#define PC_F2TXCLK ((uint)0x00002000)
+#define CMX2_CLK_ROUTE ((uint)0x00250000)
+#define CMX2_CLK_MASK ((uint)0x00ff0000)
+
+/* I/O Pin assignment for FCC3. I don't yet know the best way to do this,
+ * but there is little variation among the choices.
+ */
+#define PB3_RXDV ((uint)0x00004000)
+#define PB3_RXER ((uint)0x00008000)
+#define PB3_TXER ((uint)0x00010000)
+#define PB3_TXEN ((uint)0x00020000)
+#define PB3_COL ((uint)0x00040000)
+#define PB3_CRS ((uint)0x00080000)
+#define PB3_TXDAT ((uint)0x0f000000)
+#define PB3_RXDAT ((uint)0x00f00000)
+#define PB3_PSORB0 (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \
+ PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN)
+#define PB3_PSORB1 (0)
+#define PB3_DIRB0 (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV)
+#define PB3_DIRB1 (PB3_TXDAT | PB3_TXEN | PB3_TXER)
+
+/* CLK15 is receive, CLK16 is transmit. These are board dependent.
+*/
+#define PC_F3RXCLK ((uint)0x00004000)
+#define PC_F3TXCLK ((uint)0x00008000)
+#define CMX3_CLK_ROUTE ((uint)0x00003700)
+#define CMX3_CLK_MASK ((uint)0x0000ff00)
+
+/* MII status/control serial interface.
+*/
+#define PC_MDIO ((uint)0x00400000)
+#define PC_MDCK ((uint)0x00200000)
+
+/* A table of information for supporting FCCs. This does two things.
+ * First, we know how many FCCs we have and they are always externally
+ * numbered from zero. Second, it holds control register and I/O
+ * information that could be different among board designs.
+ */
+typedef struct fcc_info {
+ uint fc_fccnum;
+ uint fc_cpmblock;
+ uint fc_cpmpage;
+ uint fc_proff;
+ uint fc_interrupt;
+ uint fc_trxclocks;
+ uint fc_clockroute;
+ uint fc_clockmask;
+ uint fc_mdio;
+ uint fc_mdck;
+} fcc_info_t;
+
+static fcc_info_t fcc_ports[] = {
+#ifdef CONFIG_FCC1_ENET
+ { 0, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1,
+ (PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK,
+ PC_MDIO, PC_MDCK },
+#endif
+#ifdef CONFIG_FCC2_ENET
+ { 1, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2,
+ (PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK,
+ PC_MDIO, PC_MDCK },
+#endif
+#ifdef CONFIG_FCC3_ENET
+ { 2, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3,
+ (PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK,
+ PC_MDIO, PC_MDCK },
+#endif
+};
+
+/* The FCC buffer descriptors track the ring buffers. The rx_bd_base and
+ * tx_bd_base always point to the base of the buffer descriptors. The
+ * cur_rx and cur_tx point to the currently available buffer.
+ * The dirty_tx tracks the current buffer that is being sent by the
+ * controller. The cur_tx and dirty_tx are equal under both completely
+ * empty and completely full conditions. The empty/ready indicator in
+ * the buffer descriptor determines the actual condition.
+ */
+struct fcc_enet_private {
+ /* The saved address of a sent-in-place packet/buffer, for skfree(). */
+ struct sk_buff* tx_skbuff[TX_RING_SIZE];
+ ushort skb_cur;
+ ushort skb_dirty;
+
+ /* CPM dual port RAM relative addresses.
+ */
+ cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
+ cbd_t *tx_bd_base;
+ cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
+ cbd_t *dirty_tx; /* The ring entries to be free()ed. */
+ volatile fcc_t *fccp;
+ volatile fcc_enet_t *ep;
+ struct net_device_stats stats;
+ uint tx_full;
+ spinlock_t lock;
+ uint phy_address;
+ uint phy_type;
+ uint phy_duplex;
+ fcc_info_t *fip;
+};
+
+static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
+ volatile immap_t *immap);
+static void init_fcc_startup(fcc_info_t *fip, struct net_device *dev);
+static void init_fcc_ioports(fcc_info_t *fip, volatile iop8260_t *io,
+ volatile immap_t *immap);
+static void init_fcc_param(fcc_info_t *fip, struct net_device *dev,
+ volatile immap_t *immap);
+
+/* MII processing. We keep this as simple as possible. Requests are
+ * placed on the list (if there is room). When the request is finished
+ * by the MII, an optional function may be called.
+ */
+typedef struct mii_list {
+ uint mii_regval;
+ void (*mii_func)(uint val, struct net_device *dev);
+ struct mii_list *mii_next;
+} mii_list_t;
+
+#define NMII 20
+mii_list_t mii_cmds[NMII];
+mii_list_t *mii_free;
+mii_list_t *mii_head;
+mii_list_t *mii_tail;
+
+static int phyaddr;
+static uint phytype;
+
+static int mii_queue(int request, void (*func)(uint, struct net_device *));
+static void mii_startup_cmds(void);
+static uint mii_send_receive(fcc_info_t *fip, uint cmd);
+
+/* Make MII read/write commands for the FCC.
+*/
+
+#define mk_mii_phyaddr(ADDR) (0x60020000 | ((ADDR) << 23) | (2 << 18))
+
+#define mk_mii_read(REG) (0x60020000 | ((phyaddr << 23) | \
+ (REG & 0x1f) << 18))
+
+#define mk_mii_write(REG, VAL) (0x50020000 | ((phyaddr << 23) | \
+ (REG & 0x1f) << 18) | \
+ (VAL & 0xffff))
+
+
+static int
+fcc_enet_open(struct net_device *dev)
+{
+ netif_start_queue(dev);
+ return 0; /* Always succeed */
+}
+
+static int
+fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+ struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
+ volatile cbd_t *bdp;
+
+
+ /* Fill in a Tx ring entry */
+ bdp = cep->cur_tx;
+
+#ifndef final_version
+ if (bdp->cbd_sc & BD_ENET_TX_READY) {
+ /* Ooops. All transmit buffers are full. Bail out.
+ * This should not happen, since cep->tx_full should be set.
+ */
+ printk("%s: tx queue full!.\n", dev->name);
+ return 1;
+ }
+#endif
+
+ /* Clear all of the status flags.
+ */
+ bdp->cbd_sc &= ~BD_ENET_TX_STATS;
+
+ /* If the frame is short, tell CPM to pad it.
+ */
+ if (skb->len <= ETH_ZLEN)
+ bdp->cbd_sc |= BD_ENET_TX_PAD;
+ else
+ bdp->cbd_sc &= ~BD_ENET_TX_PAD;
+
+ /* Set buffer length and buffer pointer.
+ */
+ bdp->cbd_datlen = skb->len;
+ bdp->cbd_bufaddr = __pa(skb->data);
+
+ /* Save skb pointer.
+ */
+ cep->tx_skbuff[cep->skb_cur] = skb;
+
+ cep->stats.tx_bytes += skb->len;
+ cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
+
+ spin_lock_irq(&cep->lock);
+
+ /* Send it on its way. Tell CPM its ready, interrupt when done,
+ * its the last BD of the frame, and to put the CRC on the end.
+ */
+ bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
+
+#if 0
+ /* Errata says don't do this.
+ */
+ cep->fccp->fcc_ftodr = 0x8000;
+#endif
+ dev->trans_start = jiffies;
+
+ /* If this was the last BD in the ring, start at the beginning again.
+ */
+ if (bdp->cbd_sc & BD_ENET_TX_WRAP)
+ bdp = cep->tx_bd_base;
+ else
+ bdp++;
+
+ if (bdp->cbd_sc & BD_ENET_TX_READY) {
+ netif_stop_queue(dev);
+ cep->tx_full = 1;
+ }
+
+ cep->cur_tx = (cbd_t *)bdp;
+
+ spin_unlock_irq(&cep->lock);
+
+ return 0;
+}
+
+
+static void
+fcc_enet_timeout(struct net_device *dev)
+{
+ struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
+
+ printk("%s: transmit timed out.\n", dev->name);
+ cep->stats.tx_errors++;
+#ifndef final_version
+ {
+ int i;
+ cbd_t *bdp;
+ printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n",
+ cep->cur_tx, cep->tx_full ? " (full)" : "",
+ cep->cur_rx);
+ bdp = cep->tx_bd_base;
+ printk(" Tx @base %p :\n", bdp);
+ for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
+ printk("%04x %04x %08x\n",
+ bdp->cbd_sc,
+ bdp->cbd_datlen,
+ bdp->cbd_bufaddr);
+ bdp = cep->rx_bd_base;
+ printk(" Rx @base %p :\n", bdp);
+ for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
+ printk("%04x %04x %08x\n",
+ bdp->cbd_sc,
+ bdp->cbd_datlen,
+ bdp->cbd_bufaddr);
+ }
+#endif
+ if (!cep->tx_full)
+ netif_wake_queue(dev);
+}
+
+/* The interrupt handler.
+ */
+static void
+fcc_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
+{
+ struct net_device *dev = dev_id;
+ volatile struct fcc_enet_private *cep;
+ volatile cbd_t *bdp;
+ ushort int_events;
+ int must_restart;
+
+ cep = (struct fcc_enet_private *)dev->priv;
+
+ /* Get the interrupt events that caused us to be here.
+ */
+ int_events = cep->fccp->fcc_fcce;
+ cep->fccp->fcc_fcce = int_events;
+ must_restart = 0;
+
+ /* Handle receive event in its own function.
+ */
+ if (int_events & FCC_ENET_RXF)
+ fcc_enet_rx(dev_id);
+
+ /* Check for a transmit error. The manual is a little unclear
+ * about this, so the debug code until I get it figured out. It
+ * appears that if TXE is set, then TXB is not set. However,
+ * if carrier sense is lost during frame transmission, the TXE
+ * bit is set, "and continues the buffer transmission normally."
+ * I don't know if "normally" implies TXB is set when the buffer
+ * descriptor is closed.....trial and error :-).
+ */
+
+ /* Transmit OK, or non-fatal error. Update the buffer descriptors.
+ */
+ if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) {
+ spin_lock(&cep->lock);
+ bdp = cep->dirty_tx;
+ while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
+ if ((bdp==cep->cur_tx) && (cep->tx_full == 0))
+ break;
+
+ if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
+ cep->stats.tx_heartbeat_errors++;
+ if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
+ cep->stats.tx_window_errors++;
+ if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
+ cep->stats.tx_aborted_errors++;
+ if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
+ cep->stats.tx_fifo_errors++;
+ if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
+ cep->stats.tx_carrier_errors++;
+
+
+ /* No heartbeat or Lost carrier are not really bad errors.
+ * The others require a restart transmit command.
+ */
+ if (bdp->cbd_sc &
+ (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
+ must_restart = 1;
+ cep->stats.tx_errors++;
+ }
+
+ cep->stats.tx_packets++;
+
+ /* Deferred means some collisions occurred during transmit,
+ * but we eventually sent the packet OK.
+ */
+ if (bdp->cbd_sc & BD_ENET_TX_DEF)
+ cep->stats.collisions++;
+
+ /* Free the sk buffer associated with this last transmit.
+ */
+ dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
+ cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
+
+ /* Update pointer to next buffer descriptor to be transmitted.
+ */
+ if (bdp->cbd_sc & BD_ENET_TX_WRAP)
+ bdp = cep->tx_bd_base;
+ else
+ bdp++;
+
+ /* I don't know if we can be held off from processing these
+ * interrupts for more than one frame time. I really hope
+ * not. In such a case, we would now want to check the
+ * currently available BD (cur_tx) and determine if any
+ * buffers between the dirty_tx and cur_tx have also been
+ * sent. We would want to process anything in between that
+ * does not have BD_ENET_TX_READY set.
+ */
+
+ /* Since we have freed up a buffer, the ring is no longer
+ * full.
+ */
+ if (cep->tx_full) {
+ cep->tx_full = 0;
+ if (netif_queue_stopped(dev)) {
+ netif_wake_queue(dev);
+ }
+ }
+
+ cep->dirty_tx = (cbd_t *)bdp;
+ }
+
+ if (must_restart) {
+ volatile cpm8260_t *cp;
+
+ /* Some transmit errors cause the transmitter to shut
+ * down. We now issue a restart transmit. Since the
+ * errors close the BD and update the pointers, the restart
+ * _should_ pick up without having to reset any of our
+ * pointers either.
+ */
+
+ cp = cpmp;
+ cp->cp_cpcr =
+ mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock,
+ 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
+ while (cp->cp_cpcr & CPM_CR_FLG);
+ }
+ spin_unlock(&cep->lock);
+ }
+
+ /* Check for receive busy, i.e. packets coming but no place to
+ * put them.
+ */
+ if (int_events & FCC_ENET_BSY) {
+ cep->stats.rx_dropped++;
+ }
+ return;
+}
+
+/* During a receive, the cur_rx points to the current incoming buffer.
+ * When we update through the ring, if the next incoming buffer has
+ * not been given to the system, we just set the empty indicator,
+ * effectively tossing the packet.
+ */
+static int
+fcc_enet_rx(struct net_device *dev)
+{
+ struct fcc_enet_private *cep;
+ volatile cbd_t *bdp;
+ struct sk_buff *skb;
+ ushort pkt_len;
+
+ cep = (struct fcc_enet_private *)dev->priv;
+
+ /* First, grab all of the stats for the incoming packet.
+ * These get messed up if we get called due to a busy condition.
+ */
+ bdp = cep->cur_rx;
+
+for (;;) {
+ if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
+ break;
+
+#ifndef final_version
+ /* Since we have allocated space to hold a complete frame, both
+ * the first and last indicators should be set.
+ */
+ if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
+ (BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
+ printk("CPM ENET: rcv is not first+last\n");
+#endif
+
+ /* Frame too long or too short.
+ */
+ if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
+ cep->stats.rx_length_errors++;
+ if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
+ cep->stats.rx_frame_errors++;
+ if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
+ cep->stats.rx_crc_errors++;
+ if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
+ cep->stats.rx_crc_errors++;
+
+ /* Report late collisions as a frame error.
+ * On this error, the BD is closed, but we don't know what we
+ * have in the buffer. So, just drop this frame on the floor.
+ */
+ if (bdp->cbd_sc & BD_ENET_RX_CL) {
+ cep->stats.rx_frame_errors++;
+ }
+ else {
+
+ /* Process the incoming frame.
+ */
+ cep->stats.rx_packets++;
+ pkt_len = bdp->cbd_datlen;
+ cep->stats.rx_bytes += pkt_len;
+
+ /* This does 16 byte alignment, much more than we need.
+ * The packet length includes FCS, but we don't want to
+ * include that when passing upstream as it messes up
+ * bridging applications.
+ */
+ skb = dev_alloc_skb(pkt_len-4);
+
+ if (skb == NULL) {
+ printk("%s: Memory squeeze, dropping packet.\n", dev->name);
+ cep->stats.rx_dropped++;
+ }
+ else {
+ skb->dev = dev;
+ skb_put(skb,pkt_len-4); /* Make room */
+ eth_copy_and_sum(skb,
+ (unsigned char *)__va(bdp->cbd_bufaddr),
+ pkt_len-4, 0);
+ skb->protocol=eth_type_trans(skb,dev);
+ netif_rx(skb);
+ }
+ }
+
+ /* Clear the status flags for this buffer.
+ */
+ bdp->cbd_sc &= ~BD_ENET_RX_STATS;
+
+ /* Mark the buffer empty.
+ */
+ bdp->cbd_sc |= BD_ENET_RX_EMPTY;
+
+ /* Update BD pointer to next entry.
+ */
+ if (bdp->cbd_sc & BD_ENET_RX_WRAP)
+ bdp = cep->rx_bd_base;
+ else
+ bdp++;
+
+ }
+ cep->cur_rx = (cbd_t *)bdp;
+
+ return 0;
+}
+
+static int
+fcc_enet_close(struct net_device *dev)
+{
+ /* Don't know what to do yet.
+ */
+ netif_stop_queue(dev);
+
+ return 0;
+}
+
+static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev)
+{
+ struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
+
+ return &cep->stats;
+}
+
+/* The MII is simulated from the 8xx FEC implementation. The FCC
+ * is not responsible for the MII control/status interface.
+ */
+static void
+fcc_enet_mii(struct net_device *dev)
+{
+ struct fcc_enet_private *fep;
+ mii_list_t *mip;
+ uint mii_reg;
+
+ fep = (struct fcc_enet_private *)dev->priv;
+#if 0
+ ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
+ mii_reg = ep->fec_mii_data;
+#endif
+
+ if ((mip = mii_head) == NULL) {
+ printk("MII and no head!\n");
+ return;
+ }
+
+ if (mip->mii_func != NULL)
+ (*(mip->mii_func))(mii_reg, dev);
+
+ mii_head = mip->mii_next;
+ mip->mii_next = mii_free;
+ mii_free = mip;
+
+#if 0
+ if ((mip = mii_head) != NULL)
+ ep->fec_mii_data = mip->mii_regval;
+#endif
+}
+
+static int
+mii_queue(int regval, void (*func)(uint, struct net_device *))
+{
+ unsigned long flags;
+ mii_list_t *mip;
+ int retval;
+
+ retval = 0;
+
+ save_flags(flags);
+ cli();
+
+ if ((mip = mii_free) != NULL) {
+ mii_free = mip->mii_next;
+ mip->mii_regval = regval;
+ mip->mii_func = func;
+ mip->mii_next = NULL;
+ if (mii_head) {
+ mii_tail->mii_next = mip;
+ mii_tail = mip;
+ }
+ else {
+ mii_head = mii_tail = mip;
+#if 0
+ (&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_mii_data = regval;
+#endif
+ }
+ }
+ else {
+ retval = 1;
+ }
+
+ restore_flags(flags);
+
+ return(retval);
+}
+
+static volatile uint full_duplex;
+
+static void
+mii_status(uint mii_reg, struct net_device *dev)
+{
+ volatile uint prev_duplex;
+
+ if (((mii_reg >> 18) & 0x1f) == 1) {
+ /* status register.
+ */
+ printk("fec: ");
+ if (mii_reg & 0x0004)
+ printk("link up");
+ else
+ printk("link down");
+
+ if (mii_reg & 0x0010)
+ printk(",remote fault");
+ if (mii_reg & 0x0020)
+ printk(",auto complete");
+ printk("\n");
+ }
+ if (((mii_reg >> 18) & 0x1f) == 0x14) {
+ /* Extended chip status register.
+ */
+ prev_duplex = full_duplex;
+ printk("fec: ");
+ if (mii_reg & 0x0800)
+ printk("100 Mbps");
+ else
+ printk("10 Mbps");
+
+ if (mii_reg & 0x1000) {
+ printk(", Full-Duplex\n");
+ full_duplex = 1;
+ }
+ else {
+ printk(", Half-Duplex\n");
+ full_duplex = 0;
+ }
+#if 0
+ if (prev_duplex != full_duplex)
+ restart_fec(dev);
+#endif
+ }
+ if (((mii_reg >> 18) & 0x1f) == 31) {
+ /* QS6612 PHY Control/Status.
+ * OK, now we have it all, so figure out what is going on.
+ */
+ prev_duplex = full_duplex;
+ printk("fec: ");
+
+ mii_reg = (mii_reg >> 2) & 7;
+
+ if (mii_reg & 1)
+ printk("10 Mbps");
+ else
+ printk("100 Mbps");
+
+ if (mii_reg > 4) {
+ printk(", Full-Duplex\n");
+ full_duplex = 1;
+ }
+ else {
+ printk(", Half-Duplex\n");
+ full_duplex = 0;
+ }
+
+#if 0
+ if (prev_duplex != full_duplex)
+ restart_fec(dev);
+#endif
+ }
+}
+
+static uint phyno;
+
+static void
+mii_discover_phy3(uint mii_reg, struct net_device *dev)
+{
+ phytype <<= 16;
+ phytype |= (mii_reg & 0xffff);
+ printk("fec: Phy @ 0x%x, type 0x%08x\n", phyno, phytype);
+ mii_startup_cmds();
+}
+
+static void
+mii_discover_phy(uint mii_reg, struct net_device *dev)
+{
+ if (phyno < 32) {
+ if ((phytype = (mii_reg & 0xffff)) != 0xffff) {
+ phyaddr = phyno;
+ mii_queue(mk_mii_read(3), mii_discover_phy3);
+ }
+ else {
+ phyno++;
+ mii_queue(mk_mii_phyaddr(phyno), mii_discover_phy);
+ }
+ }
+ else {
+ printk("FEC: No PHY device found.\n");
+ }
+}
+
+static void
+mii_discover_phy_poll(fcc_info_t *fip)
+{
+ uint rv;
+ int i;
+
+ for (i=0; i<32; i++) {
+ rv = mii_send_receive(fip, mk_mii_phyaddr(i));
+ if ((phytype = (rv & 0xffff)) != 0xffff) {
+ phyaddr = i;
+ rv = mii_send_receive(fip, mk_mii_read(3));
+ phytype <<= 16;
+ phytype |= (rv & 0xffff);
+ printk("fec: Phy @ 0x%x, type 0x%08x\n", phyaddr, phytype);
+ }
+ }
+}
+
+static void
+mii_startup_cmds(void)
+{
+
+#if 1
+ /* Level One PHY.
+ */
+
+ /* Read status registers to clear any pending interrupt.
+ */
+ mii_queue(mk_mii_read(1), mii_status);
+ mii_queue(mk_mii_read(18), mii_status);
+
+ /* Read extended chip status register.
+ */
+ mii_queue(mk_mii_read(0x14), mii_status);
+
+ /* Set default operation of 100-TX....for some reason
+ * some of these bits are set on power up, which is wrong.
+ */
+ mii_queue(mk_mii_write(0x13, 0), NULL);
+
+ /* Enable Link status change interrupts.
+ */
+ mii_queue(mk_mii_write(0x11, 0x0002), NULL);
+
+ /* Don't advertize Full duplex.
+ mii_queue(mk_mii_write(0x04, 0x0021), NULL);
+ */
+#endif
+
+}
+
+/* This supports the mii_link interrupt below.
+ * We should get called three times. Once for register 1, once for
+ * register 18, and once for register 20.
+ */
+static uint mii_saved_reg1;
+
+static void
+mii_relink(uint mii_reg, struct net_device *dev)
+{
+ volatile uint prev_duplex;
+ unsigned long flags;
+
+ if (((mii_reg >> 18) & 0x1f) == 1) {
+ /* Just save the status register and get out.
+ */
+ mii_saved_reg1 = mii_reg;
+ return;
+ }
+ if (((mii_reg >> 18) & 0x1f) == 18) {
+ /* Not much here, but has to be read to clear the
+ * interrupt condition.
+ */
+ if ((mii_reg & 0x8000) == 0)
+ printk("fec: re-link and no IRQ?\n");
+ if ((mii_reg & 0x4000) == 0)
+ printk("fec: no PHY power?\n");
+ }
+ if (((mii_reg >> 18) & 0x1f) == 20) {
+ /* Extended chip status register.
+ * OK, now we have it all, so figure out what is going on.
+ */
+ prev_duplex = full_duplex;
+ printk("fec: ");
+ if (mii_saved_reg1 & 0x0004)
+ printk("link up");
+ else
+ printk("link down");
+
+ if (mii_saved_reg1 & 0x0010)
+ printk(", remote fault");
+ if (mii_saved_reg1 & 0x0020)
+ printk(", auto complete");
+
+ if (mii_reg & 0x0800)
+ printk(", 100 Mbps");
+ else
+ printk(", 10 Mbps");
+
+ if (mii_reg & 0x1000) {
+ printk(", Full-Duplex\n");
+ full_duplex = 1;
+ }
+ else {
+ printk(", Half-Duplex\n");
+ full_duplex = 0;
+ }
+ if (prev_duplex != full_duplex) {
+ save_flags(flags);
+ cli();
+#if 0
+ restart_fec(dev);
+#endif
+ restore_flags(flags);
+ }
+ }
+ if (((mii_reg >> 18) & 0x1f) == 31) {
+ /* QS6612 PHY Control/Status.
+ * OK, now we have it all, so figure out what is going on.
+ */
+ prev_duplex = full_duplex;
+ printk("fec: ");
+ if (mii_saved_reg1 & 0x0004)
+ printk("link up");
+ else
+ printk("link down");
+
+ if (mii_saved_reg1 & 0x0010)
+ printk(", remote fault");
+ if (mii_saved_reg1 & 0x0020)
+ printk(", auto complete");
+
+ mii_reg = (mii_reg >> 2) & 7;
+
+ if (mii_reg & 1)
+ printk(", 10 Mbps");
+ else
+ printk(", 100 Mbps");
+
+ if (mii_reg > 4) {
+ printk(", Full-Duplex\n");
+ full_duplex = 1;
+ }
+ else {
+ printk(", Half-Duplex\n");
+ full_duplex = 0;
+ }
+
+#if 0
+ if (prev_duplex != full_duplex) {
+ save_flags(flags);
+ cli();
+ restart_fec(dev);
+ restore_flags(flags);
+ }
+#endif
+ }
+}
+
+/* Set or clear the multicast filter for this adaptor.
+ * Skeleton taken from sunlance driver.
+ * The CPM Ethernet implementation allows Multicast as well as individual
+ * MAC address filtering. Some of the drivers check to make sure it is
+ * a group multicast address, and discard those that are not. I guess I
+ * will do the same for now, but just remove the test if you want
+ * individual filtering as well (do the upper net layers want or support
+ * this kind of feature?).
+ */
+static void
+set_multicast_list(struct net_device *dev)
+{
+ struct fcc_enet_private *cep;
+ struct dev_mc_list *dmi;
+ u_char *mcptr, *tdptr;
+ volatile fcc_enet_t *ep;
+ int i, j;
+
+ cep = (struct fcc_enet_private *)dev->priv;
+
+return;
+ /* Get pointer to FCC area in parameter RAM.
+ */
+ ep = (fcc_enet_t *)dev->base_addr;
+
+ if (dev->flags&IFF_PROMISC) {
+
+ /* Log any net taps. */
+ printk("%s: Promiscuous mode enabled.\n", dev->name);
+ cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO;
+ } else {
+
+ cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO;
+
+ if (dev->flags & IFF_ALLMULTI) {
+ /* Catch all multicast addresses, so set the
+ * filter to all 1's.
+ */
+ ep->fen_gaddrh = 0xffffffff;
+ ep->fen_gaddrl = 0xffffffff;
+ }
+ else {
+ /* Clear filter and add the addresses in the list.
+ */
+ ep->fen_gaddrh = 0;
+ ep->fen_gaddrl = 0;
+
+ dmi = dev->mc_list;
+
+ for (i=0; i<dev->mc_count; i++) {
+
+ /* Only support group multicast for now.
+ */
+ if (!(dmi->dmi_addr[0] & 1))
+ continue;
+
+ /* The address in dmi_addr is LSB first,
+ * and taddr is MSB first. We have to
+ * copy bytes MSB first from dmi_addr.
+ */
+ mcptr = (u_char *)dmi->dmi_addr + 5;
+ tdptr = (u_char *)&ep->fen_taddrh;
+ for (j=0; j<6; j++)
+ *tdptr++ = *mcptr--;
+
+ /* Ask CPM to run CRC and set bit in
+ * filter mask.
+ */
+ cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage,
+ cep->fip->fc_cpmblock, 0x0c,
+ CPM_CR_SET_GADDR) | CPM_CR_FLG;
+ udelay(10);
+ while (cpmp->cp_cpcr & CPM_CR_FLG);
+ }
+ }
+ }
+}
+
+/* Initialize the CPM Ethernet on FCC.
+ */
+int __init fec_enet_init(void)
+{
+ struct net_device *dev;
+ struct fcc_enet_private *cep;
+ fcc_info_t *fip;
+ int i, np;
+ volatile immap_t *immap;
+ volatile iop8260_t *io;
+
+ immap = (immap_t *)IMAP_ADDR; /* and to internal registers */
+ io = &immap->im_ioport;
+
+ np = sizeof(fcc_ports) / sizeof(fcc_info_t);
+ fip = fcc_ports;
+
+ while (np-- > 0) {
+
+ /* Allocate some private information.
+ */
+ cep = (struct fcc_enet_private *)
+ kmalloc(sizeof(*cep), GFP_KERNEL);
+ __clear_user(cep,sizeof(*cep));
+ spin_lock_init(&cep->lock);
+ cep->fip = fip;
+
+ /* Create an Ethernet device instance.
+ */
+ dev = init_etherdev(0, 0);
+ dev->priv = cep;
+
+ init_fcc_shutdown(fip, cep, immap);
+ init_fcc_ioports(fip, io, immap);
+ init_fcc_param(fip, dev, immap);
+
+ dev->base_addr = (unsigned long)(cep->ep);
+
+ /* The CPM Ethernet specific entries in the device
+ * structure.
+ */
+ dev->open = fcc_enet_open;
+ dev->hard_start_xmit = fcc_enet_start_xmit;
+ dev->tx_timeout = fcc_enet_timeout;
+ dev->watchdog_timeo = TX_TIMEOUT;
+ dev->stop = fcc_enet_close;
+ dev->get_stats = fcc_enet_get_stats;
+ dev->set_multicast_list = set_multicast_list;
+
+ init_fcc_startup(fip, dev);
+
+ printk("%s: FCC ENET Version 0.2, ", dev->name);
+ for (i=0; i<5; i++)
+ printk("%02x:", dev->dev_addr[i]);
+ printk("%02x\n", dev->dev_addr[5]);
+
+ /* This is just a hack for now that works only on the EST
+ * board, or anything else that has MDIO/CK configured.
+ * It is mainly to test the MII software clocking.
+ */
+ mii_discover_phy_poll(fip);
+
+ fip++;
+ }
+
+ return 0;
+}
+
+/* Make sure the device is shut down during initialization.
+*/
+static void __init
+init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
+ volatile immap_t *immap)
+{
+ volatile fcc_enet_t *ep;
+ volatile fcc_t *fccp;
+
+ /* Get pointer to FCC area in parameter RAM.
+ */
+ ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]);
+
+ /* And another to the FCC register area.
+ */
+ fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]);
+ cep->fccp = fccp; /* Keep the pointers handy */
+ cep->ep = ep;
+
+ /* Disable receive and transmit in case someone left it running.
+ */
+ fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
+}
+
+/* Initialize the I/O pins for the FCC Ethernet.
+*/
+static void __init
+init_fcc_ioports(fcc_info_t *fip, volatile iop8260_t *io,
+ volatile immap_t *immap)
+{
+
+ /* FCC1 pins are on port A/C. FCC2/3 are port B/C.
+ */
+ if (fip->fc_proff == PROFF_FCC1) {
+ /* Configure port A and C pins for FCC1 Ethernet.
+ */
+ io->iop_pdira &= ~PA1_DIRA0;
+ io->iop_pdira |= PA1_DIRA1;
+ io->iop_psora &= ~PA1_PSORA0;
+ io->iop_psora |= PA1_PSORA1;
+ io->iop_ppara |= (PA1_DIRA0 | PA1_DIRA1);
+ }
+ if (fip->fc_proff == PROFF_FCC2) {
+ /* Configure port B and C pins for FCC Ethernet.
+ */
+ io->iop_pdirb &= ~PB2_DIRB0;
+ io->iop_pdirb |= PB2_DIRB1;
+ io->iop_psorb &= ~PB2_PSORB0;
+ io->iop_psorb |= PB2_PSORB1;
+ io->iop_pparb |= (PB2_DIRB0 | PB2_DIRB1);
+ }
+ if (fip->fc_proff == PROFF_FCC3) {
+ /* Configure port B and C pins for FCC Ethernet.
+ */
+ io->iop_pdirb &= ~PB3_DIRB0;
+ io->iop_pdirb |= PB3_DIRB1;
+ io->iop_psorb &= ~PB3_PSORB0;
+ io->iop_psorb |= PB3_PSORB1;
+ io->iop_pparb |= (PB3_DIRB0 | PB3_DIRB1);
+ }
+
+ /* Port C has clocks......
+ */
+ io->iop_psorc &= ~(fip->fc_trxclocks);
+ io->iop_pdirc &= ~(fip->fc_trxclocks);
+ io->iop_pparc |= fip->fc_trxclocks;
+
+ /* ....and the MII serial clock/data.
+ */
+ io->iop_pdatc |= (fip->fc_mdio | fip->fc_mdck);
+ io->iop_podrc |= fip->fc_mdio;
+ io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck);
+ io->iop_pparc &= ~(fip->fc_mdio | fip->fc_mdck);
+
+ /* Configure Serial Interface clock routing.
+ * First, clear all FCC bits to zero,
+ * then set the ones we want.
+ */
+ immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask);
+ immap->im_cpmux.cmx_fcr |= fip->fc_clockroute;
+}
+
+static void __init
+init_fcc_param(fcc_info_t *fip, struct net_device *dev,
+ volatile immap_t *immap)
+{
+ unsigned char *eap;
+ unsigned long mem_addr;
+ bd_t *bd;
+ int i, j;
+ struct fcc_enet_private *cep;
+ volatile fcc_enet_t *ep;
+ volatile cbd_t *bdp;
+ volatile cpm8260_t *cp;
+
+ cep = (struct fcc_enet_private *)(dev->priv);
+ ep = cep->ep;
+ cp = cpmp;
+
+ bd = (bd_t *)__res;
+
+ /* Zero the whole thing.....I must have missed some individually.
+ * It works when I do this.
+ */
+ memset((char *)ep, 0, sizeof(fcc_enet_t));
+
+ /* Allocate space for the buffer descriptors in the DP ram.
+ * These are relative offsets in the DP ram address space.
+ * Initialize base addresses for the buffer descriptors.
+ */
+#if 0
+ /* I really want to do this, but for some reason it doesn't
+ * work with the data cache enabled, so I allocate from the
+ * main memory instead.
+ */
+ i = m8260_cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
+ ep->fen_genfcc.fcc_rbase = (uint)&immap->im_dprambase[i];
+ cep->rx_bd_base = (cbd_t *)&immap->im_dprambase[i];
+
+ i = m8260_cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
+ ep->fen_genfcc.fcc_tbase = (uint)&immap->im_dprambase[i];
+ cep->tx_bd_base = (cbd_t *)&immap->im_dprambase[i];
+#else
+ cep->rx_bd_base = (cbd_t *)m8260_cpm_hostalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
+ ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base);
+ cep->tx_bd_base = (cbd_t *)m8260_cpm_hostalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
+ ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base);
+#endif
+
+ cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
+ cep->cur_rx = cep->rx_bd_base;
+
+ ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
+ ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
+
+ /* Set maximum bytes per receive buffer.
+ * It must be a multiple of 32.
+ */
+ ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE;
+
+ /* Allocate space in the reserved FCC area of DPRAM for the
+ * internal buffers. No one uses this space (yet), so we
+ * can do this. Later, we will add resource management for
+ * this area.
+ */
+ mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128);
+ ep->fen_genfcc.fcc_riptr = mem_addr;
+ ep->fen_genfcc.fcc_tiptr = mem_addr+32;
+ ep->fen_padptr = mem_addr+64;
+ memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32);
+
+ ep->fen_genfcc.fcc_rbptr = 0;
+ ep->fen_genfcc.fcc_tbptr = 0;
+ ep->fen_genfcc.fcc_rcrc = 0;
+ ep->fen_genfcc.fcc_tcrc = 0;
+ ep->fen_genfcc.fcc_res1 = 0;
+ ep->fen_genfcc.fcc_res2 = 0;
+
+ ep->fen_camptr = 0; /* CAM isn't used in this driver */
+
+ /* Set CRC preset and mask.
+ */
+ ep->fen_cmask = 0xdebb20e3;
+ ep->fen_cpres = 0xffffffff;
+
+ ep->fen_crcec = 0; /* CRC Error counter */
+ ep->fen_alec = 0; /* alignment error counter */
+ ep->fen_disfc = 0; /* discard frame counter */
+ ep->fen_retlim = 15; /* Retry limit threshold */
+ ep->fen_pper = 0; /* Normal persistence */
+
+ /* Clear hash filter tables.
+ */
+ ep->fen_gaddrh = 0;
+ ep->fen_gaddrl = 0;
+ ep->fen_iaddrh = 0;
+ ep->fen_iaddrl = 0;
+
+ /* Clear the Out-of-sequence TxBD.
+ */
+ ep->fen_tfcstat = 0;
+ ep->fen_tfclen = 0;
+ ep->fen_tfcptr = 0;
+
+ ep->fen_mflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
+ ep->fen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
+
+ /* Set Ethernet station address.
+ *
+ * This is supplied in the board information structure, so we
+ * copy that into the controller.
+ * So, far we have only been given one Ethernet address. We make
+ * it unique by setting a few bits in the upper byte of the
+ * non-static part of the address.
+ */
+ eap = (unsigned char *)&(ep->fen_paddrh);
+ for (i=5; i>=0; i--) {
+ if (i == 3) {
+ dev->dev_addr[i] = bd->bi_enetaddr[i];
+ dev->dev_addr[i] |= (1 << (7 - fip->fc_fccnum));
+ *eap++ = dev->dev_addr[i];
+ }
+ else {
+ *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
+ }
+ }
+
+ ep->fen_taddrh = 0;
+ ep->fen_taddrm = 0;
+ ep->fen_taddrl = 0;
+
+ ep->fen_maxd1 = PKT_MAXDMA_SIZE; /* maximum DMA1 length */
+ ep->fen_maxd2 = PKT_MAXDMA_SIZE; /* maximum DMA2 length */
+
+ /* Clear stat counters, in case we ever enable RMON.
+ */
+ ep->fen_octc = 0;
+ ep->fen_colc = 0;
+ ep->fen_broc = 0;
+ ep->fen_mulc = 0;
+ ep->fen_uspc = 0;
+ ep->fen_frgc = 0;
+ ep->fen_ospc = 0;
+ ep->fen_jbrc = 0;
+ ep->fen_p64c = 0;
+ ep->fen_p65c = 0;
+ ep->fen_p128c = 0;
+ ep->fen_p256c = 0;
+ ep->fen_p512c = 0;
+ ep->fen_p1024c = 0;
+
+ ep->fen_rfthr = 0; /* Suggested by manual */
+ ep->fen_rfcnt = 0;
+ ep->fen_cftype = 0;
+
+ /* Now allocate the host memory pages and initialize the
+ * buffer descriptors.
+ */
+ bdp = cep->tx_bd_base;
+ for (i=0; i<TX_RING_SIZE; i++) {
+
+ /* Initialize the BD for every fragment in the page.
+ */
+ bdp->cbd_sc = 0;
+ bdp->cbd_datlen = 0;
+ bdp->cbd_bufaddr = 0;
+ bdp++;
+ }
+
+ /* Set the last buffer to wrap.
+ */
+ bdp--;
+ bdp->cbd_sc |= BD_SC_WRAP;
+
+ bdp = cep->rx_bd_base;
+ for (i=0; i<FCC_ENET_RX_PAGES; i++) {
+
+ /* Allocate a page.
+ */
+ mem_addr = __get_free_page(GFP_KERNEL);
+
+ /* Initialize the BD for every fragment in the page.
+ */
+ for (j=0; j<FCC_ENET_RX_FRPPG; j++) {
+ bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
+ bdp->cbd_datlen = 0;
+ bdp->cbd_bufaddr = __pa(mem_addr);
+ mem_addr += FCC_ENET_RX_FRSIZE;
+ bdp++;
+ }
+ }
+
+ /* Set the last buffer to wrap.
+ */
+ bdp--;
+ bdp->cbd_sc |= BD_SC_WRAP;
+
+ /* Let's re-initialize the channel now. We have to do it later
+ * than the manual describes because we have just now finished
+ * the BD initialization.
+ */
+ cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c,
+ CPM_CR_INIT_TRX) | CPM_CR_FLG;
+ while (cp->cp_cpcr & CPM_CR_FLG);
+
+ cep->skb_cur = cep->skb_dirty = 0;
+}
+
+/* Let 'er rip.
+*/
+static void __init
+init_fcc_startup(fcc_info_t *fip, struct net_device *dev)
+{
+ volatile fcc_t *fccp;
+ struct fcc_enet_private *cep;
+
+ cep = (struct fcc_enet_private *)(dev->priv);
+ fccp = cep->fccp;
+
+ fccp->fcc_fcce = 0xffff; /* Clear any pending events */
+
+ /* Enable interrupts for transmit error, complete frame
+ * received, and any transmit buffer we have also set the
+ * interrupt flag.
+ */
+ fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
+
+ /* Install our interrupt handler.
+ */
+ if (request_8xxirq(fip->fc_interrupt, fcc_enet_interrupt, 0,
+ "fenet", dev) < 0)
+ printk("Can't get FCC IRQ %d\n", fip->fc_interrupt);
+
+ /* Set GFMR to enable Ethernet operating mode.
+ */
+ fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
+
+ /* Set sync/delimiters.
+ */
+ fccp->fcc_fdsr = 0xd555;
+
+ /* Set protocol specific processing mode for Ethernet.
+ * This has to be adjusted for Full Duplex operation after we can
+ * determine how to detect that.
+ */
+ fccp->fcc_fpsmr = FCC_PSMR_ENCRC;
+
+ /* And last, enable the transmit and receive processing.
+ */
+ fccp->fcc_gfmr |= (FCC_GFMR_ENR | FCC_GFMR_ENT);
+}
+
+/* MII command/status interface.
+ * I'm not going to describe all of the details. You can find the
+ * protocol definition in many other places, including the data sheet
+ * of most PHY parts.
+ * I wonder what "they" were thinking (maybe weren't) when they leave
+ * the I2C in the CPM but I have to toggle these bits......
+ */
+static uint
+mii_send_receive(fcc_info_t *fip, uint cmd)
+{
+ unsigned long flags;
+ uint retval;
+ int read_op, i;
+ volatile immap_t *immap;
+ volatile iop8260_t *io;
+
+ immap = (immap_t *)IMAP_ADDR;
+ io = &immap->im_ioport;
+
+ /* When we get here, both clock and data are high, outputs.
+ * Output is open drain.
+ * Data transitions on high->low clock, is valid on low->high clock.
+ * Spec says edge transitions no closer than 160 nSec, minimum clock
+ * cycle 400 nSec. I could only manage about 500 nSec edges with
+ * an XOR loop, so I won't worry about delays yet.
+ * I disable interrupts during bit flipping to ensure atomic
+ * updates of the registers. I do lots of interrupt disable/enable
+ * to ensure we don't hang out too long with interrupts disabled.
+ */
+
+ /* First, crank out 32 1-bits as preamble.
+ * This is 64 transitions to clock the bits, with clock/data
+ * left high.
+ */
+ save_flags(flags);
+ cli();
+ for (i=0; i<64; i++) {
+ io->iop_pdatc ^= fip->fc_mdck;
+ udelay(0);
+ }
+ restore_flags(flags);
+
+ read_op = ((cmd & 0xf0000000) == 0x60000000);
+
+ /* We return the command word on a write op, or the command portion
+ * plus the new data on a read op. This is what the 8xx FEC does,
+ * and it allows the functions to simply look at the returned value
+ * and know the PHY/register as well.
+ */
+ if (read_op)
+ retval = cmd;
+ else
+ retval = (cmd >> 16);
+
+ /* Clock out the first 16 MS bits of the command.
+ */
+ save_flags(flags);
+ cli();
+ for (i=0; i<16; i++) {
+ io->iop_pdatc &= ~(fip->fc_mdck);
+ if (cmd & 0x80000000)
+ io->iop_pdatc |= fip->fc_mdio;
+ else
+ io->iop_pdatc &= ~(fip->fc_mdio);
+ cmd <<= 1;
+ io->iop_pdatc |= fip->fc_mdck;
+ udelay(0);
+ }
+
+ /* Do the turn-around. If read op, we make the IO and input.
+ * If write op, do the 1/0 thing.
+ */
+ io->iop_pdatc &= ~(fip->fc_mdck);
+ if (read_op)
+ io->iop_pdirc &= ~(fip->fc_mdio);
+ else
+ io->iop_pdatc |= fip->fc_mdio;
+ io->iop_pdatc |= fip->fc_mdck;
+
+ /* I do this mainly to get just a little delay.
+ */
+ restore_flags(flags);
+ save_flags(flags);
+ cli();
+ io->iop_pdatc &= ~(fip->fc_mdck);
+ io->iop_pdirc &= ~(fip->fc_mdio);
+ io->iop_pdatc |= fip->fc_mdck;
+
+ restore_flags(flags);
+ save_flags(flags);
+ cli();
+
+ /* For read, clock in 16 bits. For write, clock out
+ * rest of command.
+ */
+ if (read_op) {
+ io->iop_pdatc &= ~(fip->fc_mdck);
+ udelay(0);
+ for (i=0; i<16; i++) {
+ io->iop_pdatc |= fip->fc_mdck;
+ udelay(0);
+ retval <<= 1;
+ if (io->iop_pdatc & fip->fc_mdio)
+ retval |= 1;
+ io->iop_pdatc &= ~(fip->fc_mdck);
+ udelay(0);
+ }
+ }
+ else {
+ for (i=0; i<16; i++) {
+ io->iop_pdatc &= ~(fip->fc_mdck);
+ if (cmd & 0x80000000)
+ io->iop_pdatc |= fip->fc_mdio;
+ else
+ io->iop_pdatc &= ~(fip->fc_mdio);
+ cmd <<= 1;
+ io->iop_pdatc |= fip->fc_mdck;
+ udelay(0);
+ }
+ io->iop_pdatc &= ~(fip->fc_mdck);
+ }
+ restore_flags(flags);
+
+ /* Some diagrams show two 1 bits for "idle". I don't know if
+ * this is really necessary or if it was just to indicate nothing
+ * is going to happen for a while.
+ * Make the data pin an output, set the data high, and clock it.
+ */
+ save_flags(flags);
+ cli();
+ io->iop_pdatc |= fip->fc_mdio;
+ io->iop_pdirc |= fip->fc_mdio;
+ for (i=0; i<3; i++)
+ io->iop_pdatc ^= fip->fc_mdck;
+ restore_flags(flags);
+
+ /* We exit with the same conditions as entry.
+ */
+ return(retval);
+}
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)