patch-2.4.0-test8 linux/Documentation/cachetlb.txt

Next file: linux/Documentation/digiboard.txt
Previous file: linux/Documentation/DMA-mapping.txt
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.4.0-test7/linux/Documentation/cachetlb.txt linux/Documentation/cachetlb.txt
@@ -0,0 +1,319 @@
+		Cache and TLB Flushing
+		     Under Linux
+
+	    David S. Miller <davem@redhat.com>
+
+This document describes the cache/tlb flushing interfaces called
+by the Linux VM subsystem.  It enumerates over each interface,
+describes it's intended purpose, and what side effect is expected
+after the interface is invoked.
+
+The side effects described below are stated for a uniprocessor
+implementation, and what is to happen on that single processor.  The
+SMP cases are a simple extension, in that you just extend the
+definition such that the side effect for a particular interface occurs
+on all processors in the system.  Don't let this scare you into
+thinking SMP cache/tlb flushing must be so inefficient, this is in
+fact an area where many optimizations are possible.  For example,
+if it can be proven that a user address space has never executed
+on a cpu (see vma->cpu_vm_mask), one need not perform a flush
+for this address space on that cpu.
+
+First, the TLB flushing interfaces, since they are the simplest.  The
+"TLB" is abstracted under Linux as something the cpu uses to cache
+virtual-->physical address translations obtained from the software
+page tables.  Meaning that if the software page tables change, it is
+possible for stale translations to exist in this "TLB" cache.
+Therefore when software page table changes occur, the kernel will
+invoke one of the following flush methods _after_ the page table
+changes occur:
+
+1) void flush_tlb_all(void)
+
+	The most severe flush of all.  After this interface runs,
+	any previous page table modification whatsoever will be
+	visible to the cpu.
+
+	This is usually invoked when the kernel page tables are
+	changed, since such translations are "global" in nature.
+
+2) void flush_tlb_mm(struct mm_struct *mm)
+
+	This interface flushes an entire user address space from
+	the TLB.  After running, this interface must make sure that
+	any previous page table modifications for the address space
+	'mm' will be visible to the cpu.  That is, after running,
+	there will be no entries in the TLB for 'mm'.
+
+	This interface is used to handle whole address space
+	page table operations such as what happens during
+	fork, and exec.
+
+3) void flush_tlb_range(struct mm_struct *mm,
+			unsigned long start, unsigned long end)
+
+	Here we are flushing a specific range of (user) virtual
+	address translations from the TLB.  After running, this
+	interface must make sure that any previous page table
+	modifications for the address space 'mm' in the range 'start'
+	to 'end' will be visible to the cpu.  That is, after running,
+	there will be no entries in the TLB for 'mm' for virtual
+	addresses in the range 'start' to 'end'.
+
+	Primarily, this is used for munmap() type operations.
+
+	The interface is provided in hopes that the port can find
+	a suitably efficient method for removing multiple page
+	sized translations from the TLB, instead of having the kernel
+	call flush_tlb_page (see below) for each entry which may be
+	modified.
+
+4) void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
+
+	This time we need to remove the PAGE_SIZE sized translation
+	from the TLB.  The 'vma' is the backing structure used by
+	Linux to keep track of mmap'd regions for a process, the
+	address space is available via vma->vm_mm.  Also, one may
+	test (vma->vm_flags & VM_EXEC) to see if this region is
+	executable (and thus could be in the 'instruction TLB' in
+	split-tlb type setups).
+
+	After running, this interface must make sure that any previous
+	page table modification for address space 'vma->vm_mm' for
+	user virtual address 'page' will be visible to the cpu.  That
+	is, after running, there will be no entries in the TLB for
+	'vma->vm_mm' for virtual address 'page'.
+
+	This is used primarily during fault processing.
+
+5) void flush_tlb_pgtables(struct mm_struct *mm,
+			   unsigned long start, unsigned long end)
+
+   The software page tables for address space 'mm' for virtual
+   addresses in the range 'start' to 'end' are being torn down.
+
+   Some platforms cache the lowest level of the software page tables
+   in a linear virtually mapped array, to make TLB miss processing
+   more efficient.  On such platforms, since the TLB is caching the
+   software page table structure, it needs to be flushed when parts
+   of the software page table tree are unlinked/freed.
+
+   Sparc64 is one example of a platform which does this.
+
+   Usually, when munmap()'ing an area of user virtual address
+   space, the kernel leaves the page table parts around and just
+   marks the individual pte's as invalid.  However, if very large
+   portions of the address space are unmapped, the kernel frees up
+   those portions of the software page tables to prevent potential
+   excessive kernel memory usage caused by erratic mmap/mmunmap
+   sequences.  It is at these times that flush_tlb_pgtables will
+   be invoked.
+
+6) void update_mmu_cache(struct vm_area_struct *vma,
+			 unsigned long address, pte_t pte)
+
+	At the end of every page fault, this routine is invoked to
+	tell the architecture specific code that a translation
+	described by "pte" now exists at virtual address "address"
+	for address space "vma->vm_mm", in the software page tables.
+
+	A port may use this information in any way it so chooses.
+	For example, it could use this event to pre-load TLB
+	translations for software managed TLB configurations.
+	The sparc64 port currently does this.
+
+Next, we have the cache flushing interfaces.  In general, when Linux
+is changing an existing virtual-->physical mapping to a new value,
+the sequence will be in one of the following forms:
+
+	1) flush_cache_mm(mm);
+	   change_all_page_tables_of(mm);
+	   flush_tlb_mm(mm);
+
+	2) flush_cache_range(mm, start, end);
+	   change_range_of_page_tables(mm, start, end);
+	   flush_tlb_range(mm, start, end);
+
+	3) flush_cache_page(vma, page);
+	   set_pte(pte_pointer, new_pte_val);
+	   flush_tlb_page(vma, page);
+
+The cache level flush will always be first, because this allows
+us to properly handle systems whose caches are strict and require
+a virtual-->physical translation to exist for a virtual address
+when that virtual address is flushed from the cache.  The HyperSparc
+cpu is one such cpu with this attribute.
+
+The cache flushing routines below need only deal with cache flushing
+to the extent that it is necessary for a particular cpu.  Mostly,
+these routines must be implemented for cpus which have virtually
+indexed caches which must be flushed when virtual-->physical
+translations are changed or removed.  So, for example, the physically
+indexed physically tagged caches of IA32 processors have no need to
+implement these interfaces since the caches are fully synchronized
+and have no dependency on translation information.
+
+Here are the routines, one by one:
+
+1) void flush_cache_all(void)
+
+	The most severe flush of all.  After this interface runs,
+	the entire cpu cache is flushed.
+
+	This is usually invoked when the kernel page tables are
+	changed, since such translations are "global" in nature.
+
+2) void flush_cache_mm(struct mm_struct *mm)
+
+	This interface flushes an entire user address space from
+	the caches.  That is, after running, there will be no cache
+	lines assosciated with 'mm'.
+
+	This interface is used to handle whole address space
+	page table operations such as what happens during
+	fork, exit, and exec.
+
+3) void flush_cache_range(struct mm_struct *mm,
+			  unsigned long start, unsigned long end)
+
+	Here we are flushing a specific range of (user) virtual
+	addresses from the cache.  After running, there will be no
+	entries in the cache for 'mm' for virtual addresses in the
+	range 'start' to 'end'.
+
+	Primarily, this is used for munmap() type operations.
+
+	The interface is provided in hopes that the port can find
+	a suitably efficient method for removing multiple page
+	sized regions from the cache, instead of having the kernel
+	call flush_cache_page (see below) for each entry which may be
+	modified.
+
+4) void flush_cache_page(struct vm_area_struct *vma, unsigned long page)
+
+	This time we need to remove a PAGE_SIZE sized range
+	from the cache.  The 'vma' is the backing structure used by
+	Linux to keep track of mmap'd regions for a process, the
+	address space is available via vma->vm_mm.  Also, one may
+	test (vma->vm_flags & VM_EXEC) to see if this region is
+	executable (and thus could be in the 'instruction cache' in
+	"Harvard" type cache layouts).
+
+	After running, there will be no entries in the cache for
+	'vma->vm_mm' for virtual address 'page'.
+
+	This is used primarily during fault processing.
+
+There exists another whole class of cpu cache issues which currently
+require a whole different set of interfaces to handle properly.
+The biggest problem is that of virtual aliasing in the data cache
+of a processor.
+
+Is your port subsceptible to virtual aliasing in it's D-cache?
+Well, if your D-cache is virtually indexed, is larger in size than
+PAGE_SIZE, and does not prevent multiple cache lines for the same
+physical address from existing at once, you have this problem.
+
+If your D-cache has this problem, first define asm/shmparam.h SHMLBA
+properly, it should essentially be the size of your virtually
+addressed D-cache (or if the size is variable, the largest possible
+size).  This setting will force the SYSv IPC layer to only allow user
+processes to mmap shared memory at address which are a multiple of
+this value.
+
+Next, you have two methods to solve the D-cache aliasing issue for all
+other cases.  Please keep in mind that fact that, for a given page
+mapped into some user address space, there is always at least one more
+mapping, that of the kernel in it's linear mapping starting at
+PAGE_OFFSET.  So immediately, once the first user maps a given
+physical page into it's address space, by implication the D-cache
+aliasing problem has the potential to exist since the kernel already
+maps this page at it's virtual address.
+
+First, I describe the old method to deal with this problem.  I am
+describing it for documentation purposes, but it is deprecated and the
+latter method I describe next should be used by all new ports and all
+existing ports should move over to the new mechanism as well.
+
+  flush_page_to_ram(struct page *page)
+
+	The physical page 'page' is about to be place into the
+	user address space of a process.  If it is possible for
+	stores done recently by the kernel into this physical
+	page, to not be visible to an arbitray mapping in userspace,
+	you must flush this page from the D-cache.
+
+	If the D-cache is writeback in nature, the dirty data (if
+	any) for this physical page must be written back to main
+	memory before the cache lines are invalidated.
+
+Admittedly, the author did not think very much when designing this
+interface.  It does not give the architecture enough information about
+what exactly is going on, and there is not context with which to base
+any judgment about whether an alias is possible at all.  The new
+interfaces to deal with D-cache aliasing are meant to address this by
+telling the architecture specific code exactly which is going on at
+the proper points in time.
+
+Here is the new interface:
+
+  void copy_user_page(void *from, void *to, unsigned long address)
+  void clear_user_page(void *to, unsigned long address)
+
+	These two routines store data in user anonymous or COW
+	pages.  It allows a port to efficiently avoid D-cache alias
+	issues between userspace and the kernel.
+
+	For example, a port may temporarily map 'from' and 'to' to
+	kernel virtual addresses during the copy.  The virtual address
+	for these two pages is choosen in such a way that the kernel
+	load/store instructions happen to virtual addresses which are
+	of the same "color" as the user mapping of the page.  Sparc64
+	for example, uses this technique.
+
+	The "address" parameter tells the virtual address where the
+	user will ultimately this page mapped.
+
+	If D-cache aliasing is not an issue, these two routines may
+	simply call memcpy/memset directly and do nothing more.
+
+  void flush_dcache_page(struct page *page)
+
+	Any time the kernel writes to a page cache page, _OR_
+	the kernel is about to read from a page cache page and
+	user space shared/writable mappings of this page potentially
+	exist, this routine is called.
+
+	The phrase "kernel writes to a page cache page" means,
+	specifically, that the kernel executes store instructions
+	that dirty data in that page at the page->virtual mapping
+	of that page.  It is important to flush here to handle
+	D-cache aliasing, to make sure these kernel stores are
+	visible to user space mappings of that page.
+
+	The corollary case is just as important, if there are users
+	which have shared+writable mappings of this file, we must make
+	sure that kernel reads of these pages will see the most recent
+	stores done by the user.
+
+	If D-cache aliasing is not an issue, this routine may
+	simply be defined as a nop on that architecture.
+
+        TODO: If we set aside a few bits in page->flags as
+	      "architecture private", these interfaces could
+	      be implemented much more efficiently.  This would
+	      allow one to "defer" (perhaps indefinitely) the
+	      actual flush if there are currently no user processes
+	      mapping this page.
+
+	      The idea is, first at flush_dcache_page() time, if
+	      page->mapping->i_mmap is an empty list, just mark
+	      one of the architecture private page flag bits.
+              Later, in update_mmu_cache(), a check could be made
+	      of this flag bit, and if set the flush is done
+	      and the flag bit is cleared.
+
+XXX Not documented: flush_icache_page(), need to talk to Paul
+                    Mackerras, David Mosberger-Tang, et al.
+		    to see what the expected semantics of this
+		    interface are.  -DaveM

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)