patch-2.4.0-test12 linux/arch/parisc/mm/fault.c
Next file: linux/arch/parisc/mm/init.c
Previous file: linux/arch/parisc/mm/extable.c
Back to the patch index
Back to the overall index
- Lines: 284
- Date:
Tue Dec 5 12:29:39 2000
- Orig file:
v2.4.0-test11/linux/arch/parisc/mm/fault.c
- Orig date:
Wed Dec 31 16:00:00 1969
diff -u --recursive --new-file v2.4.0-test11/linux/arch/parisc/mm/fault.c linux/arch/parisc/mm/fault.c
@@ -0,0 +1,283 @@
+/* $Id: fault.c,v 1.5 2000/01/26 16:20:29 jsm Exp $
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ *
+ * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
+ * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
+ * Copyright 1999 Hewlett Packard Co.
+ *
+ */
+
+#include <linux/mm.h>
+#include <linux/ptrace.h>
+#include <linux/sched.h>
+#include <linux/interrupt.h>
+
+#include <asm/uaccess.h>
+
+
+/* Defines for parisc_acctyp() */
+#define READ 0
+#define WRITE 1
+
+/* Various important other fields */
+#define bit22set(x) (x & 0x00000200)
+#define bits23_25set(x) (x & 0x000001c0)
+#define isGraphicsFlushRead(x) ((x & 0xfc003fdf) == 0x04001a80)
+ /* extended opcode is 0x6a */
+
+#define BITSSET 0x1c0 /* for identifying LDCW */
+
+/*
+ * parisc_acctyp(unsigned int inst) --
+ * Given a PA-RISC memory access instruction, determine if the
+ * the instruction would perform a memory read or memory write
+ * operation.
+ *
+ * This function assumes that the given instruction is a memory access
+ * instruction (i.e. you should really only call it if you know that
+ * the instruction has generated some sort of a memory access fault).
+ *
+ * Returns:
+ * VM_READ if read operation
+ * VM_WRITE if write operation
+ * VM_EXEC if execute operation
+ */
+static unsigned long
+parisc_acctyp(unsigned long code, unsigned int inst)
+{
+ if (code == 6 || code == 16)
+ return VM_EXEC;
+
+ switch (inst & 0xf0000000) {
+ case 0x40000000: /* load */
+ case 0x50000000: /* new load */
+ return VM_READ;
+
+ case 0x60000000: /* store */
+ case 0x70000000: /* new store */
+ return VM_WRITE;
+
+ case 0x20000000: /* coproc */
+ case 0x30000000: /* coproc2 */
+ if (bit22set(inst))
+ return VM_WRITE;
+
+ case 0x0: /* indexed/memory management */
+ if (bit22set(inst)) {
+ /*
+ * Check for the 'Graphics Flush Read' instruction.
+ * It resembles an FDC instruction, except for bits
+ * 20 and 21. Any combination other than zero will
+ * utilize the block mover functionality on some
+ * older PA-RISC platforms. The case where a block
+ * move is performed from VM to graphics IO space
+ * should be treated as a READ.
+ *
+ * The significance of bits 20,21 in the FDC
+ * instruction is:
+ *
+ * 00 Flush data cache (normal instruction behavior)
+ * 01 Graphics flush write (IO space -> VM)
+ * 10 Graphics flush read (VM -> IO space)
+ * 11 Graphics flush read/write (VM <-> IO space)
+ */
+ if (isGraphicsFlushRead(inst))
+ return VM_READ;
+ return VM_WRITE;
+ } else {
+ /*
+ * Check for LDCWX and LDCWS (semaphore instructions).
+ * If bits 23 through 25 are all 1's it is one of
+ * the above two instructions and is a write.
+ *
+ * Note: With the limited bits we are looking at,
+ * this will also catch PROBEW and PROBEWI. However,
+ * these should never get in here because they don't
+ * generate exceptions of the type:
+ * Data TLB miss fault/data page fault
+ * Data memory protection trap
+ */
+ if (bits23_25set(inst) == BITSSET)
+ return VM_WRITE;
+ }
+ return VM_READ; /* Default */
+ }
+ return VM_READ; /* Default */
+}
+
+#undef bit22set
+#undef bits23_25set
+#undef isGraphicsFlushRead
+#undef BITSSET
+
+/* This is similar to expand_stack(), except that it is for stacks
+ * that grow upwards.
+ */
+
+static inline int expand_stackup(struct vm_area_struct * vma, unsigned long address)
+{
+ unsigned long grow;
+
+ address += 4 + PAGE_SIZE - 1;
+ address &= PAGE_MASK;
+ grow = (address - vma->vm_end) >> PAGE_SHIFT;
+ if (address - vma->vm_start > current->rlim[RLIMIT_STACK].rlim_cur ||
+ ((vma->vm_mm->total_vm + grow) << PAGE_SHIFT) > current->rlim[RLIMIT_AS].rlim_cur)
+ return -ENOMEM;
+ vma->vm_end = address;
+ vma->vm_mm->total_vm += grow;
+ if (vma->vm_flags & VM_LOCKED)
+ vma->vm_mm->locked_vm += grow;
+ return 0;
+}
+
+
+/* This is similar to find_vma(), except that it understands that stacks
+ * grow up rather than down.
+ * XXX Optimise by making use of cache and avl tree as per find_vma().
+ */
+
+struct vm_area_struct * pa_find_vma(struct mm_struct * mm, unsigned long addr)
+{
+ struct vm_area_struct *vma = NULL;
+
+ if (mm) {
+ vma = mm->mmap;
+ if (!vma || addr < vma->vm_start)
+ return NULL;
+ while (vma->vm_next && addr >= vma->vm_next->vm_start)
+ vma = vma->vm_next;
+ }
+ return vma;
+}
+
+
+/*
+ * This routine handles page faults. It determines the address,
+ * and the problem, and then passes it off to one of the appropriate
+ * routines.
+ */
+extern void parisc_terminate(char *, struct pt_regs *, int, unsigned long);
+
+void do_page_fault(struct pt_regs *regs, unsigned long code,
+ unsigned long address)
+{
+ struct vm_area_struct * vma;
+ struct task_struct *tsk = current;
+ struct mm_struct *mm = tsk->mm;
+ const struct exception_table_entry *fix;
+ unsigned long acc_type;
+
+ if (in_interrupt() || !mm)
+ goto no_context;
+
+ down(&mm->mmap_sem);
+ vma = pa_find_vma(mm, address);
+ if (!vma)
+ goto bad_area;
+ if (address < vma->vm_end)
+ goto good_area;
+ if (!(vma->vm_flags & VM_GROWSUP) || expand_stackup(vma, address))
+ goto bad_area;
+/*
+ * Ok, we have a good vm_area for this memory access. We still need to
+ * check the access permissions.
+ */
+
+good_area:
+
+ acc_type = parisc_acctyp(code,regs->iir);
+
+ if ((vma->vm_flags & acc_type) != acc_type)
+ goto bad_area;
+
+ /*
+ * If for any reason at all we couldn't handle the fault, make
+ * sure we exit gracefully rather than endlessly redo the
+ * fault.
+ */
+
+ switch (handle_mm_fault(mm, vma, address, (acc_type & VM_WRITE) != 0)) {
+ case 1:
+ ++current->min_flt;
+ break;
+ case 2:
+ ++current->maj_flt;
+ break;
+ case 0:
+ /*
+ * We ran out of memory, or some other thing happened
+ * to us that made us unable to handle the page fault
+ * gracefully.
+ */
+ goto bad_area;
+ default:
+ goto out_of_memory;
+ }
+ up(&mm->mmap_sem);
+ return;
+
+/*
+ * Something tried to access memory that isn't in our memory map..
+ */
+bad_area:
+ up(&mm->mmap_sem);
+
+ if (user_mode(regs)) {
+ struct siginfo si;
+
+ printk("\ndo_page_fault() pid=%d command='%s'\n",
+ tsk->pid, tsk->comm);
+ show_regs(regs);
+ /* FIXME: actually we need to get the signo and code correct */
+ si.si_signo = SIGSEGV;
+ si.si_errno = 0;
+ si.si_code = SEGV_MAPERR;
+ si.si_addr = (void *) address;
+ force_sig_info(SIGSEGV, &si, current);
+ return;
+ }
+
+no_context:
+
+ if (!user_mode(regs)) {
+
+ fix = search_exception_table(regs->iaoq[0]);
+
+ if (fix) {
+
+ if (fix->skip & 1)
+ regs->gr[8] = -EFAULT;
+ if (fix->skip & 2)
+ regs->gr[9] = 0;
+
+ regs->iaoq[0] += ((fix->skip) & ~3);
+
+ /*
+ * NOTE: In some cases the faulting instruction
+ * may be in the delay slot of a branch. We
+ * don't want to take the branch, so we don't
+ * increment iaoq[1], instead we set it to be
+ * iaoq[0]+4, and clear the B bit in the PSW
+ */
+
+ regs->iaoq[1] = regs->iaoq[0] + 4;
+ regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
+
+ return;
+ }
+ }
+
+ parisc_terminate("Bad Address (null pointer deref?)",regs,code,address);
+
+ out_of_memory:
+ up(&mm->mmap_sem);
+ printk("VM: killing process %s\n", current->comm);
+ if (user_mode(regs))
+ do_exit(SIGKILL);
+ goto no_context;
+}
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)