The Z-Machine Standards Document: Contents

Preface

Overview of Z-machine ar chitecture

1. Thememory map

2. Numbersand arithmetic

3. How text and characters are encoded

4. How instructions ar e encoded

5. How routines ar e encoded

6. The game state: storage and routine calls

7. Output streams and file handling

8. The screen model
9. Sound effects
10. I nput streams and devices

11. Theformat of the header
12. The object table
13. Thedictionary and lexical analysis

14. Complete table of opcodes (with Inform assembly syntax)

file://ID|/doc/zspecl0/index.html (1 of 2) [6/22/2000 4:34:11 PM]

The Z-Machine Standards Document: Contents

15. Dictionary of opcodes

16. Font 3 and character graphics

A. Error messages and debugging

B. Conventional contents of the header

C. Resour ces available (with WWW links)
D. A short history of the Z-machine

E. Statistics

F. Canonical story files

file://ID|/doc/zspecl0/index.html (2 of 2) [6/22/2000 4:34:11 PM]

file:///D|/doc/zspec10/sect15.html
file:///D|/doc/zspec10/sect16.html
file:///D|/doc/zspec10/appa.html
file:///D|/doc/zspec10/appb.html
file:///D|/doc/zspec10/appc.html
file:///D|/doc/zspec10/appd.html
file:///D|/doc/zspec10/appe.html
file:///D|/doc/zspec10/appf.html

The Z-Machine Standards Document: Preface

Preface

The Z-machine was created on a coffee table in Pittsburgh in 1979. It is an imaginary computer whose
programs are adventure games, and is well-adapted to its task, implementing complex games remarkably
compactly. They were still perhaps 100K long, too large for the memory of the home computers of their
day, and the Z-machine seems to have made the first usage of virtual memory on a microcomputer.
Further ahead of its time was the ability to efficiently save and restore the entire execution state.

The design's cardinal principleisthat any game is 100% portable to different computers: that is, any legal
program exactly determines its behaviour. This portability islargely made possible by awillingnessto
constrain maximum as well as minimum levels of performance (for instance, dynamic memory allocation
isimpossible).

Infocom's catal ogue continues to be sold and to be played under interpreter programs, either original
Infocom ones or more recent and generally better freeware ones. About 130 story files compiled by
Infocom's compiler Zilch survive and since 1993 very many more story files have been created with the
Inform design system.

Eight Versions of the Z-machine exist, and the first byte of any "story file" (that is: any Z-machine
program) gives the Version number it must be interpreted under.

Standardisation

The opcode names used in this document were agreed between 1994 and 1995 as a standard set by Mark
Howell, author of the disassembler Txd (part of the Ztools suite of utility programs), and Graham
Nelson, author of the assembly level of Inform. They do not correspond to Infocom's unpublished opcode
names.

This Standard was drawn up in November 1995, drawing on a rougher description written in 1993 and,
before that, sketches of table formats by Mike Threepoint and others. It has formalised what different
interpreter writers regard as the Z-machine, guaranteeing areliable and well-featured platform for writers
of new games. The first forma Standard was numbered 0.2, and thisis the second, containing some
corrections and clarifications but also two new features. The following changes are worth noting:

« Support for the Unicode character set has been added, introducing a new table and two new
opcodes. S3 has been rewritten and there are also changes to S7 and S10, as well as the addition of
the opcodes to S14 and S15.

file:///D|/doc/zspeclO/preface.html (1 of 4) [6/22/2000 4:35:48 PM]

file:///D|/doc/zspec10/appf.html

The Z-Machine Standards Document: Preface
o S8.8.3.1, on window attributes in Version 6, has been rewritten with extensive corrections.
o S7.1.2.1.1requires anew feature: handling nested usages of output stream 3.

« Itisnow explicit that text buffering never applies to the upper window in Versions 3to 5. (In
Standard 0.2 the rules allowed text buffering in Version 4 under some conditions.)

« Anoptional operand (never used and not useful) has been removed from the opcode set_font. An
optional operand, discovered by Mark Knibbs, has however been added to the Version 6 form of
set_colour.

« Itisnow defined that the input character codes for return and delete are 13 and 8 respectively. (10
and 127 have been suggested as alternatives in the past).

« Thefixed-pitch font flag now survives restarts and restores, like the transcription flag.

Also, the "character set table" is now called the "a phabet table" (for clarity) and the "mouse data table™
has been renamed the "header extension table."

A companion document to this one, by Martin Frost, defines a standard format called Quetzal for
saved-game files. Standard interpreters are not required to use Quetzal, since choice of saved-game
format does not affect Z-Machine behaviour, but interpreter-writers are strongly encouraged to consider
it.

Andrew Plotkin is currently (June 1997) drafting a standard format called Blorb for a"resources’ file to
accompany or encapsulate a Z-machine game, neatly packaging up sound and graphics in modern
formats. Again, since the Z-Machine has no formal knowledge of the means of storage of sound or

graphics, this document does not include Andrew's. A Standard Version-6 interpreter need not provide
for Blorb.

So what is "standard" ?

To call itself "Standard"”, an interpreter should (as far as anyone knows) obey this document exactly for
every Version of the Z-machine it claims to interpret. Interpreters need not provide optional features
suggested in the "remarks" sections, and need not make their source code public. Each edition of this
document has a Revision number, somewhat like the JFIF identification number used by the JPEG
standard. A standard interpreter should communicate its revision number in three ways:

« To someone downloading it from an FTP site or bulletin board: by including it in its filename.

« Totheplayer: for instance by means of an "information” option on amenu, or in an initialisation
sequence.

« Tothegame: by writing it into bytes in the header which were always left zero before this standard
was devised (see S11). A game compiled with Inform library 5/12 or later printsthe revision
number in its banner (if thisisn't 0.0).

Few arbitrary choices have been made in writing this document. Where Infocom's own shipped
interpreters disagree, or contain manifest bugs, it has usually been possible to decide which was
"correct”. Elsewhere, minimum levels of performance have been invented where necessary. (For
example, aminimum call-stack size is needed for programmers to be sure of what level of recursionis
safe.)

file:///D|/doc/zspecl0O/preface.html (2 of 4) [6/22/2000 4:35:48 PM]

The Z-Machine Standards Document: Preface

Those few paragraphs which genuinely extend the Infocom format are marked ***. In any event,
Infocom's original shipped interpreters do not conform to this standard document, because of bugs or
because of slight variations between the Inform output format and Infocom's.

Notation

Hexadecimal numbers are written with an initial dollar, asin $ff, while binary numbers are written with a
double-dollar asin $$11011, according to Inform conventions. The bitsin abyte are numbered 0to 7, 0
being the least significant and the top bit, 7, the most.

Story files are mechanically best identified by their release number and serial code, which are written
into the header information at the bottom of Z-machine memory. The release number can be anything
between 0 and 65535 but is usually between 1 and 100. The seria code can consist of any six textual
characters but is usually the date of compilation, arranged YY MM DD: thus 970619 refers to June 19th,
1997.

Paul David Doherty, in his extensive investigations into Infocom's released games, introduced the
notation

Release number .Serial code

to identify particular story files: for example the first production copy of 'Enchanter' is 10.830810. This
notation is used throughout the Standard when individual Infocom files need to be referred to.

Where are all the grammar tables?

The Z-machine has some lexical acuity but it doesn't contain afull parser: it's like a computer without an
operating system. A game program has to contain its own parser and the tables this uses are not part of
the formal Z-machine specification. (Many Infocom games have similar parsing table formats simply
because, until Version 6, they used an evolving version of the 'Zork I' parser. A quite different parser was
used in Version 6.) Inform's parsing table formats are documented in the Inform Technical Manual. For
the usual format of Infocom's parsing tables, see the Ztools utility I nfodump.

Acknowledgements

There is an obvious resemblance between an unreadabl e script and a secret code; similar
methods can be employed to break both. But the differences must not be overlooked. The
code is deliberately designed to baffle the investigator; the script is only puzzling by
accident.

John Chadwick, The Decipherment of Linear B

file:///D|/doc/zspeclO/preface.html (3 of 4) [6/22/2000 4:35:48 PM]

The Z-Machine Standards Document: Preface

The Z-machine was originally devised by Joel Berez and Marc Blank in 1979. Marc Blank made most of
the Version 4 extensions, and Version 5 was created by Dave Lebling (with contributions from others
including Brian Moriarty, Duncan Blanchard and Linde Dynneson). Version 6 was largely the work of
Tim Anderson and Dave Lebling.

In the reverse direction, decipherment is mostly due to the InfoTaskForce (David Beazley, George
Janczuk, Peter Lisle, Russell Hoare and Chris Tham), Matthias Pfaller, Mike Threepoint, Mark Howell,
Paul David Doherty and Stefan Jokisch. Only afew of the piecesin the jigsaw were placed by myself.

| gratefully acknowledge the help of Paul David Doherty and Mark Howell, who each read drafts of this
paper and sent back detailed corrections; also, of Stefan Jokisch and Marnix Klooster who have put a
great deal of work into the fine detail of the specification; and of al those who commented on the
circulated draft. Mistakes and misunderstandings remain my own.

Graham Nelson

15 November 1995

Kevin Bracey and Stefan Jokisch discovered most of the mistakes in Standard 0.2, in developing the first
Version 6 interpreters of the modern age: Zip2000 and Frotz. Matthew Russotto and Mark Knibbs
supplied helpful information about Infocom's own Version 6 interpreters. Stefan also kindly read and
commented on numerous drafts of the present revision. Finally, discussion about this document was
greatly assisted by the Z-Machine Mailing List, organised by Marnix Klooster.

Graham Nelson

22 June 1997

Contents/ Preface / Overview

file:///D|/doc/zspeclO/preface.html (4 of 4) [6/22/2000 4:35:48 PM]

file:///D|/doc/zspec10/sect15.html
file:///D|/doc/zspec10/sect16.html
file:///D|/doc/zspec10/appa.html
file:///D|/doc/zspec10/appb.html
file:///D|/doc/zspec10/appc.html
file:///D|/doc/zspec10/appd.html
file:///D|/doc/zspec10/appe.html
file:///D|/doc/zspec10/appf.html

The Z-Machine Standards Document

&

Overview of Z-machine architecture

Local
variables
Global variables l I l I
Processor Temporary
M
Object tree
|
|
| Stack
b ——
Current routine M) PC | |
|
Anoather routine EF':E m
LLLE || — _
Hardware accessed indirectly

Memory

The Z-machine is adesign for an imaginary computer: Z isfor 'Zork', the adventure game it was originally
designed to play. Like any computer, it storesitsinformation (mostly) in an array of variables numbered from
0 up to some large number: thisis called its memory. A stock of some 240 memory locations are set aside for
easy and quick access, and these are called global variables (since they are available to any part of the
program which is running, at any time).

The two important pieces of information not stored in memory are the program counter (PC) and the stack.
The Z-machine continuously runs a program by getting the instruction stored at position PC in memory, acting
on the instruction and then moving the PC forward to the next. The instruction set of the Z-machine (the

file:///D]/doc/zspecl0/overview.html (1 of 4) [6/22/2000 4:35:48 PM]

The Z-Machine Standards Document

range of possible actions and how they are encoded as numbers in memory) occupies much of this document.

Programs are divided into routines: the Z-machine is always executing a particular routine, the one which the
PC currently points inside. However, some instructions cause the Z-machine to call a new routine and then to

return where the first routine left off. The Z-machine therefore needs to remember details of where to go back,
and it stores these on the stack.

The stack is a second bank of memory, quite separate from the main one, which has variable size: initialy it is
empty. From time to time values are added to, or taken from, the top of the stack. Aswell as being used to
keep return details, the stack is also used to store local variables (values needed only by a particular routine)
and, for short periods only, the partial results of calculations.

Thus, whereas most physical processors (e.g. Z80 or 6502) have a number of quick-access variables outside of
memory (called "registers') and a stack inside memory, the Z-machine has the reverse: it has global variables
inside memory and a stack kept outside.

There is no access to hardware except by executing particular Z-machine instructions. For instance, read and
read_char allow use of the keyboard; print and draw_picture allow use of the screen. The screen'simage is
not stored anywhere in memory. Conversely, hardware can cause the Z-machine to interrupt, that is, to make
a spontaneous call to a particular routine, interrupting what it was previously working on. This happens only if
the program has previously requested it: for example, by setting a sound effect playing and asking for a
routine to be called when it finishes; or by asking for an interrupt if thirty seconds pass while the player is
thinking what to type.

This simple architecture is overlaid by a number of special structures which the Z-machine maintainsinside
memory. There are around a dozen of these but the most important are:

the header, at the bottom of memory, giving details about the program and a map of the rest of memory;

the dictionary, alist of English words which the program expects that it might want to read from the
keyboard;

the object tree, an arrangement of chunks of memory called objects.

The Z-machineis primarily used for adventure games, where the dictionary holds names of items and verbs
that the player might type, and the objects tend to be the places and artifacts which make up the game. Each
object in the tree may have a parent, asibling and a child. For instance, in the start position of 'Zork I":

West of House

Y ou are standing in an open field west of awhite house, with a boarded front door. Thereisa
small mailbox here.

>0open mailbox

Opening the small mailbox reveals aleaflet.
At this point (part of) the game's object tree looks like this:

[41]
[68] "West of House"
[21] "you"
[239] "small mail box"
[80] "leaflet"

file:///D]/doc/zspecl0/overview.html (2 of 4) [6/22/2000 4:35:48 PM]

The Z-Machine Standards Document

[127] "door™"

Note that objects are numbered from 1 upward. (Object 41 is a dummy object being used by the game to
contain al the "rooms' or locations, and it has many more children besides object 68.) The parent of the player
is"West of House", whose parent is 41, which has no parent. The sibling of the player is the mailbox; the
child of the mailbox isthe leaflet; the sibling of the mailbox is the door and so on.

Objects are bundled-up collections of variables, which come in two kinds: attributes and properties.
Attributes are simply flags, that is, they can be set or unset, but have no numerical value. Properties hold
numbers, which may in turn represent pieces of text or other information. For instance, one of the properties of
the mailbox object above contains the information that the English word "mailbox" refersto it. One of the
attributes of the mailbox object is set to indicate that it's a container, whereas the same attribute for the leafl et
object isunset. Here is a breakdown of the state of the mailbox:

239. Attributes: 30, 34
Parent object: 68 Sibling object: 127 Child object: 80
Property address: 2b53
Description: "snmall mail box"
Properti es:
[49] 00 Oa
[46] 54 bf 4a c3
[45] 3e cl
[44] 5b 1c

So the only set attributes are 30 and 34: all others are unset. Values are given for properties 44, 45, 46 and 49.
The Z-machine itself does not know or care what this information means: that is for the program to sort out.

Asafinal example, hereis part of one of the routinesin 'Zork I':

| 0006: print_ret "Suicide is not the answer."
| 0007: je g57 #84 ~1 0008
je g48 #15 ~rfal se
print_ret “"Why don't you just walk Iike normal people?"
| 0008: je g57 #63 ~I1 0009
print_ret "How romantic!"
| 0009: je g57 #3b ~rfal se
get parent "mrror" localO
get _parent "mrror" sp
je g6b | ocal 0 sp ~1 0010
print_ret “Your image in the mrror |ooks tired."
| 0010: print_ret "That's difficult unless your eyes are prehensile."

Z-machine programs are stored on disc, or archived on the Internet, in what are called story files. (Since they
were introduced to hold interactive stories.) A story file consists of a snapshot of main memory only. The
processor beginsto run a story file by starting with an empty stack and a PC value set according to some
information in the story file's header. Note that the story file has to be set up with many of the structuresin
memory, such as the dictionary and the object tree, already created and with sensible contents.

Thefirst byte of any story file, and so the byte at memory address 0, always contains the ver son number of
the Z-machine to be used. The design was evolutionary over a period of a decade: as version number

file:///D]/doc/zspecl0/overview.html (3 of 4) [6/22/2000 4:35:48 PM]

The Z-Machine Standards Document

increases, the instruction set grows and tables are reformatted to allow more room for larger games. All of
Infocom's games can be played using versions between 3 (the majority) and 6. Games compiled by Informin
the 1990s mainly use versions 5 or 8.

Contents/ Preface / Overview

file:///D]/doc/zspecl0/overview.html (4 of 4) [6/22/2000 4:35:48 PM]

file:///D|/doc/zspec10/sect15.html
file:///D|/doc/zspec10/sect16.html
file:///D|/doc/zspec10/appa.html
file:///D|/doc/zspec10/appb.html
file:///D|/doc/zspec10/appc.html
file:///D|/doc/zspec10/appd.html
file:///D|/doc/zspec10/appe.html
file:///D|/doc/zspec10/appf.html

The Z-Machine Standards Document

1. The memory map

1.1 Regions of memory / 1.2 Addresses

11

The memory map of the Z-machine is an array of bytes with "byte addresses' running from O upwards.
Thisisdivided into three regions. "dynamic", "static" and "high". Dynamic memory begins from byte
address $00000 and runs up to the byte before the byte address stored in the word at $0e in the header.
(Dynamic memory must contain at least 64 bytes.) Static memory follows immediately on. Its extent is
not defined in the header (or anywhere else), though it must end by the last byte of the story file or by
byte address $0ffff (whichever islower). High memory begins at the "high memory mark” (the byte
address stored in the word at $04 in the header) and continues to the end of the story file. The bottom of
high memory may overlap with the top of static memory (but not with dynamic memory).

111

Dynamic memory can be read or written to (either directly, using loadb, loadw, storeb and storew, or
indirectly with opcodes such asinsert_obj and remove_obj).

1111

By tradition, the first 64 bytes are known as the "header". The contents of this are given later but note
that games are not permitted to alter many bitsinsideit.

1.11.2

It islegal for gamesto alter any of the tables stored in dynamic memory above the header, provided they
leave the tablesin legal states.

112

Static memory can be read using the opcodes |oadb and loadw. It isillegal for a game to attempt to write
to static memory.

file:///D]/doc/zspecl0/sect01.html (1 of 3) [6/22/2000 4:35:48 PM]

The Z-Machine Standards Document

1.13

Except for its (possible) overlap with static memory, high memory cannot be directly accessed at al by a
game program. It contains routines, which can be called, and strings, which can be printed using
print_paddr.

114

The maximum permitted length of a story file depends on the Version, as follows:

V1-3 V4-5 V6 V7 V8
128 256 512 320 512

1.2

There are three kinds of addressin the Z-machine, all of which can be stored in a 2-byte number: byte
addresses, word addresses and packed addresses.

1.2.1
A byte address specifies abyte in memory in the range O up to the last byte of static memory.

122

A word address specifies an even address in the bottom 128K of memory (by giving the address divided
by 2). (Word addresses are used only in the abbreviations table.)

1.2.3

*** A packed address specifies where a routine or string begins in high memory. Given a packed address
P, the formulato obtain the corresponding byte address B is:

2P Versions 1, 2 and 3

4P Versions 4 and 5

4P + 8R O Versions 6 and 7, for routine calls
4P + 8S O Versions 6 and 7, for print_paddr

8P Version 8
R Oand S O arethe routine and strings offsets (specified in the header as words at $28 and $2a,
respectively).

An example memory map of a small game
|Dynamic|00000 |header
100040 |abbreviation strings

file:///D]/doc/zspecl0/sect01.html (2 of 3) [6/22/2000 4:35:48 PM]

The Z-Machine Standards Document

100042 |abbreviation table

100102 |property defaults

100140 |objects

10020 |object descriptions and properties
|006e3 |global variables

1008c3 |arrays

|Static

|00b48 |grammar table
1010a7 |actions table
101153 |preactions table
101201 |adjectives table
10124d |dictionary

IHigh

|01a0a |Z-code
105d56 |static strings
|06ae6 |end of file

Remarks

Inform never compiles any overlap between static and high memory (it places all datatablesin dynamic
memory). However, many Infocom games group tables of static data just above the high memory mark,
before routines begin; some, such as'Nord 'n' Bert...", interleave static data between routines, so that
static memory actually overlaps code; and afew, such as 'Seastalker' release 15, even contain routines
placed below the high memory mark. (The original idea behind the high memory mark was that
everything below it should be stored in the interpreter's RAM, while what was above could reasonably be
kept in "virtual memory", i.e., loaded off disc as needed.)

Note that the total of dynamic plus static memory must not exceed 64K. (In fact, 64K minus 2 bytes.)
Thisisthe most serious limitation on the Z-machine (though it has not yet been reached by anyone).

Throughout the specification, Versions 7 and 8 are identical to Version 5 except as stated at 1.1.4 and

1.2.3 above.

Contents/ Preface / Overview

file:///D]/doc/zspecl0/sect01.html (3 of 3) [6/22/2000 4:35:48 PM]

file:///D|/doc/zspec10/sect15.html
file:///D|/doc/zspec10/sect16.html
file:///D|/doc/zspec10/appa.html
file:///D|/doc/zspec10/appb.html
file:///D|/doc/zspec10/appc.html
file:///D|/doc/zspec10/appd.html
file:///D|/doc/zspec10/appe.html
file:///D|/doc/zspec10/appf.html

The Z-Machine Standards Document

147101

L X o]
L Rl o]
L X L]
O ol D=

2. Numbers and arithmetic

2.1 Numbers/ 2.2 Signed operations/ 2.3 Arithmetic errors/ 2.4 Random number generator

2.1

In the Z-machine, numbers are usually stored in 2 bytes (in the form most-significant-byte first, then
|east-significant) and hold any value in the range $0000 to $ffff (0 to 65535 decimal).

2.2

These values are sometimes regarded as signed, in the range $-32768% to 327673. In effect $-n$is
stored as $65536-n$ and so the top bit is the sign bit.

221

The operations of numerical comparison, multiplication, addition, subtraction, division,
remainder-after-division and printing of numbers are signed; bitwise operations are unsigned. (In
particular, since comparison is signed, it is unsafe to compare two addresses using ssimply jl and jg.)

2.3

Arithmetic errors;

231

Itisillegal to divide by O (or to ask for remainder after division by 0) and an interpreter should halt with
an error message if this occurs.

2.3.2

Formally it has never been specified what the result of an out-of-range calculation should be. The author
suggests that the result should be reduced modulo $10000.

file:///D]/doc/zspecl0/sect02.html (1 of 3) [6/22/2000 4:35:49 PM]

The Z-Machine Standards Document

2.4

The Z-machine needs a random number generator which at any time has one of two states, "random" and
"predictable". When the game starts or restarts the state becomes "random". Ideally the generator should
not produce identical sequences after each restart.

24.1

When "random", it must be capable of generating a uniformly random integer in the range 1 <= x <=n,
for any value 1 <= n <= 32767. Any method can be used for this (for instance, using the host computer's
clock time in milliseconds). The uniformity of randomness should be optimised for low values of n (say,
up to 100 or so) and it is especially important to avoid regular patterns appearing in remainders after
division (most crudely, being aternately odd and even).

24.2

The generator is switched into "predictable” state with a seed value. On any two occasions when the
same seed is sown, identical sequences of values must result (for an indefinite period) until the generator
Is switched back into "random" mode. The generator should cope well with very low seed values, such as
10, and should not depend on the seed containing many non-zero bits.

2.4.3

Theinterpreter is permitted to switch between these states on request of the player. (Thisis useful for
testing purposes.)

Remarks

It is dangerous to rely on the ANSI C random number routines, as some implementations of these are
very poor. This has made some games (in particular, 'Balances) unwinnable on some Unix ports of Zip.

The author suggests the following algorithm:
1. In"random" mode, the generator uses the host computer's clock to obtain a random sequence of bits.

2. In "predictable” mode, the generator should store the seed value S, If S< 1000 it should then internally
generate

1,2,3,..,S5123,..,S1, ..

so that random n produces the next entry in this sequence modulo n. If S>= 1000 then Sisused as a
seed in a standard seeded random-number generator.

(Therising sequence is useful for testing, since it will produce all possible valuesin sequence. On the
other hand, a seeded but fairly random generator is useful for testing entire scripts.)

file:///D]/doc/zspecl0/sect02.html (2 of 3) [6/22/2000 4:35:49 PM]

The Z-Machine Standards Document

Note that version 0.2 of this standard mistakenly asserted that division and remainder are unsigned, a
myth deriving from abug in Zip. Infocom's interpreters do sign division (thisisrelied on when
calculating pizza cooking times for the microwave oven in ‘The Lurking Horror'). Here are some correct
Z-machine calculations:

11/ -2
-13 % -5

-5 -11/ -2
-3 13 % -5

-11/ 2
-13 %5

Il
w Ol

Il
1
w

Contents/ Preface/ Overview

file:///D]/doc/zspecl0/sect02.html (3 of 3) [6/22/2000 4:35:49 PM]

file:///D|/doc/zspec10/sect15.html
file:///D|/doc/zspec10/sect16.html
file:///D|/doc/zspec10/appa.html
file:///D|/doc/zspec10/appb.html
file:///D|/doc/zspec10/appc.html
file:///D|/doc/zspec10/appd.html
file:///D|/doc/zspec10/appe.html
file:///D|/doc/zspec10/appf.html

The Z-Machine Standards Document

3. How text and characters are encoded

Thistechnique is similar to the five-bit Baudot code, which was used by early Teletypes
before ASCII was invented.

Marc S. Blank and S. W. Galley, How to Fit a Large Program Into a Small Machine

3.1 Text/ 3.2 Alphabets/ 3.3 Abbreviations/ 3.4 ZSCI | escape/ 3.5 Alphabet table / 3.6 Padding and
incompleteness / 3.7 Dictionary truncation / 3.8 Definition of ZSCIl and Unicode

3.1

Z-machine text is a sequence of ZSCII character codes (ZSCII isasystem similar to ASCII: see S3.8
below). These ZSCI | values are encoded into memory using a string of Z-characters. The process of
converting between Z-characters and ZSCI| valuesisgivenin SS 3.2 to 3.7 below.

3.2

Text in memory consists of a sequence of 2-byte words. Each word is divided into three 5-bit
'Z-characters, plus 1 bit left over, arranged as

--first byte------- --second byte---
7 6 5432 10 765 43210
bit --first-- --second--- --third--

The bit is set only on the last 2-byte word of the text, and so marks the end.

321

There are three 'al phabets, AO (lower case), Al (upper case) and A2 (punctuation) and during printing
one of these is current at any given time. Initially AO is current. The meaning of a Z-character may
depend on which aphabet is current.

3.2.2
InVersions 1 and 2, the current alphabet can be any of the three. The Z-characters 2 and 3 are called

file:///D|/doc/zspecl10/sect03.html (1 of 10) [6/22/2000 4:35:49 PM]

The Z-Machine Standards Document

'shift’ characters and change the alphabet for the next character only. The new alphabet depends on what
the current oneis:

fromAO from Al from A2
Z-char 2 Al A2 A0
Z-char 3 A2 AO Al

Z-characters 4 and 5 permanently change a phabet, according to the same table, and are called 'shift lock’
characters.

3.2.3

In Versions 3 and later, the current alphabet is always A0 unless changed for 1 character only:
Z-characters 4 and 5 are shift characters. Thus 4 means "the next character isin A1" and 5 means "the
next isin A2". There are no shift lock characters.

324
An indefinite sequence of shift or shift lock charactersislegal (but prints nothing).

3.3

In Versions 3 and later, Z-characters 1, 2 and 3 represent abbreviations, sometimes also called
'synonyms (for traditional reasons): the next Z-character indicates which abbreviation string to print. If z
isthe first Z-character (1, 2 or 3) and x the subsequent one, then the interpreter must look up entry
32(z-1)+x in the abbreviations table and print the string at that word address. In Version 2, Z-character 1
has this effect (but 2 and 3 do not, so there are only 32 abbreviations).

331

Abbreviation string-printing follows all the rules of this section except that an abbreviation string must
not itself use abbreviations and must not end with an incomplete multi-Z-character construction (see S
3.6.1 below).

34

Z-character 6 from A2 means that the two subsequent Z-characters specify aten-bit ZSCI| character
code: the next Z-character gives the top 5 bits and the one after the bottom 5.

35
The remaining Z-characters are translated into ZSCI| character codes using the "al phabet table".

351

file:///D|/doc/zspecl10/sect03.html (2 of 10) [6/22/2000 4:35:49 PM]

The Z-Machine Standards Document

The Z-character O is printed as a space (ZSCl| 32).

352

InVersion 1, Z-character 1 is printed as a new-line (ZSCII 13).

3.5.3

In Versions 2 to 4, the alphabet table for converting Z-charactersinto ZSCI| character codesis as
follows:

Z-char 6789abcdef 0123456789abcdef

current ----------oo i
A0 abcdef ghi j kl mopqr st uvwxyz
Al ABCDEFGHI JKLMNOPQRSTUVWKYZ
A2 N"0123456789., 1?2 # "I\-:()

(Character 6in A2 is printed as a space here, but is not translated using the al phabet table: see S3.4
above. Character 7 in A2, written here asa circumflex ”, isanew-line.) For example, in aphabet A1 the
Z-character 12 istrandlated as a capital G (ZSCI| character code 71).

354
Version 1 has adlightly different A2 row in its al phabet table (new-line is not needed, making room for
the < character):

6789abcdef 0123456789abcdef

355

In Versions 5 and later, the interpreter should look at the word at $34 in the header. If thisis zero, then
the alphabet table drawn out in S 3.5.3 continues in use. Otherwise it isinterpreted as the byte address of
an aphabet table specific to this story file.

3551

Such an alphabet table consists of 78 bytes arranged as 3 blocks of 26 ZSCI| values, translating
Z-characters 6 to 31 for aphabets AO, Al and A2. Z-characters 6 and 7 of A2, however, are still
trandlated as escape and newline codes (as above).

file:///D|/doc/zspecl0/sect03.html (3 of 10) [6/22/2000 4:35:49 PM]

The Z-Machine Standards Document

3.6

Since the end-bit only comes up once every three Z-characters, a string may have to be '‘padded out' with
null values. Thisis conventionally achieved with a sequence of 5's, though a sequence of (for example)
4's would work equally well.

3.6.1

It islegal for the string to end while a multi-Z-character construction isincomplete: for instance, after
only the top half of an ASCII value has been given. The partial construction is simply ignored. (This can
happen in printing dictionary words which have been guillotined to the dictionary resolution of 6 or 9
Z-characters.)

3.7

When an interpreter is encrypting typed-in text to match against dictionary words, the following
restrictions apply. Text should be converted to lower case (as aresult A1 will not be needed unless the
game provides its own alphabet table). Abbreviations may not be used. The pad character, if needed,
must be 5. The total string length must be 6 Z-characters (in Versions 1 to 3) or 9 (Versions 4 and later):
any multi-Z-character constructions should be left incomplete (rather than omitted) if there's no room to
finish them. For example, "i" is encrypted as:

14,5,5,5,5,5, 5,5, 5
$48a5 $14a5 $94a5

3.8

The character set of the Z-machineis called ZSCII (Zork Standard Code for Information Interchange;
pronounced to rhyme with "xyzzy"). ZSCI| codes are 10-bit unsigned values between 0 and 1023. Story
files may only legally use the values which are defined below. Note that some values are defined only for
input and some only for output.

Table2: summary of the ZSCI I rules

0 inull |Output

|11-7 |----

8 delete lInput

9 itab (V6) |Output

110 -

111 sentence space (V6) |Output

112 [----

113 Inewline |Input/Output
1426 [—

|27 lescape lInput

file:///D|/doc/zspecl0/sect03.html (4 of 10) [6/22/2000 4:35:49 PM]

The Z-Machine Standards Document

2831 [—

132-126 |standard ASCI| |Input/Output
[127-128 [

1129-132 |cursor u/d/I/r lInput
1133-144 |function keysf1 to f12|Input
1145-154 |keypad0to 9 |Input
1155-251 |extra characters |Input/Output
252 imenu click (V6) lInput

1253 double-click (V6) lInput

1254 single-click lInput
[255-1023]—

3.8.1

The codes 256 to 1023 are undefined, so that for all practical purposes ZSClI is an 8-bit unsigned code.

382

The codes 0 to 31 are undefined except as follows:

3821

ZSCII code O ("null") is defined for output but has no effect in any output stream. (It isalso used as a
value meaning "no character" when reporting terminating character codes, but is not formally defined for
input.)

3.8.2.2
ZSCI| code 8 ("delete") is defined for input only.

3.8.2.3

ZSCII code 9 ("tab") is defined for output in Version 6 only. At the start of a screen line this should print
a paragraph indentation suitable for the font being used: if it is printed in the middle of ascreen line, it
should be converted to a space (Infocom's own interpreters do not do this, however).

38.24

ZSCII code 11 ("sentence space") is defined for output in Version 6 only. This should be printed as a
suitable gap between two sentences (in the same way that typographers normally place larger spaces after
the full stops ending sentences than after words or commas).

file:///D|/doc/zspecl0/sect03.html (5 of 10) [6/22/2000 4:35:49 PM]

The Z-Machine Standards Document

3.8.25
ZSCII code 13 ("carriage return”) is defined for input and output.

3.8.2.6
ZSCII code 27 ("escape” or "break") is defined for input only.

3.8.3

ZSCII codes between 32 ("space") and 126 ("tilde") are defined for input and output, and agree with
standard ASCII (aswell as all of the | SO 8859 character sets and Unicode). Specifically:

0123456789abcdef 0123456789abcdef

$20 I"#$9U&' ()*+, -./0123456789: ; <=>7?
$40 @ABCDEFGHI JKLIMNOPQRSTUVWKYZ[\]~
$60 ' abcdef ghij kl mopqgr st uvwxyz{!}~

Note that code $23 (35 decimal) is a hash mark, not a pound sign. (Code $7¢ (124 decimal) is a vertical
stroke which isshown as! here for typesetting reasons.)

3831
ZSCII codes 127 ("delete" in some forms of ASCII) and 128 are undefined.

384
ZSCII codes 129 to 154 are defined for input only:

129: cursor up 130: cursor down 131: cursor left 132: cursor right

133: f1 134: 2 Ce 144: {12
145: keypad O 146: keypad 1 Ce 154: keypad 9
3.85

The block of codes between 155 and 251 are the "extra characters' and are used differently by different
story files. Some will need accented L atin characters (such as French E-acute), others unusual
punctuation (Spanish question mark), others new alphabets (Cyrillic or Hebrew); still others may want
dingbat characters, mathematical or musical symbols, and so on.

3851

file:///D|/doc/zspecl0/sect03.html (6 of 10) [6/22/2000 4:35:49 PM]

The Z-Machine Standards Document

*** To define which characters are required, the Unicode (or 1SO 10646-1) character set is used:
characters are specified by unsigned 16-bit codes. These values agree with 1SO 8859 L atin-1 in the range
0 to 255, and with ASCII and ZSCl I in the range 32 to 126. The Unicode standard leaves arange of
values, the Private Use Area, free: however, an Internet group called the ConScript Unicode Registry is
organising a standard mapping of invented scripts (such as Klingon, or Tolkien's Elvish) into the Private
Use Area, and this should be considered part of the Unicode standard for Z-machine purposes.

3852

*** The story file chooses its stock of extra characters with a*Unicode tranglation table" as follows.
Under Versions 1 to 4, the "default table" is always used (see below). In Version 5 or later, if Word 3 of
the header extension table is present and non-zero then it isinterpreted as the byte address of the Unicode
trandation table. If Word 3 is absent or zero, the default table is used.

3.8521
The table consists of one byte giving a number N, followed by N two-byte words.

3.85.2.2

Thisindicates that ZSCII characters 155 to $155+N-1$ are defined for both input and output. (It's
possible for N to be zero, leaving the whole range 155 to 251 undefined.)

3.8.5.2.3

The words in the table give Unicode character codes for each of the ZSCII characters 155 to $155+N-1$
in turn.

3.85.3
The default table is as shown in Table 1.

3854

The defined extra characters are entirely normal ZSCII characters. They can appear in astory file's
alphabet table, in an array created by print stream 3 and so on.

38541

*** Theinterpreter is required to be able to print representations of every defined Unicode character
under $0100 (i.e. of every defined SO 8859-1 Latinl character). If no suitable letter forms are available,
textual equivalents may be used (such as"ss' in place of German sharp "'s").

file:///D|/doc/zspecl0/sect03.html (7 of 10) [6/22/2000 4:35:49 PM]

The Z-Machine Standards Document

3.854.2

Normally, and where sensibly possible, al punctuation and letter charactersin 1SO 8859-1 Latinl should
be readable from the interpreter's keyboard. (However, some interpreters may want to provide alternative
keyboard mappings, or to run in adifferent SO 8859 set: Cyrillic, for example.)

3.854.3

*** An interpreter is not required to have suitable letter-forms for printing Unicode characters $0100 to
$FFFF. (It may, if it chooses, alow the user to configure certain fonts for certain Unicode ranges; but
thisis not required.) If a Unicode character must be printed which an interpreter has no letter-form for, a
guestion mark should be printed instead.

3.8.6
ZSCII codes 252 to 254 are defined for input only:

252: menu click 253: nouse doubl e-click 254: nouse single-click

Menu clicks are available only in Version 6. In Versions 5 and later it is recommended that an interpreter
should only send code 254, whether the mouse is clicked once or twice.

3.8.7

ZSCII code 255 is undefined. (This value is needed in the "terminating characterstable”" as awildcard,
indicating "any Input-only character with code 128 or above." However, it cannot itself be printed or read
from the keyboard.)

Table 1. default Unicodetrandations (see S 3.8.5.3)

1155|0e4 [a-diaeresis |ae 1191 |02 [a-circumflex |a
1156|0f6 |o-diaeresis [oe 1192|0ea [e-circumflex |e
1157 |Ofc |u-diaeresis |ue 1193|0ee fi-circumflex i

1158|0c4 [A-diaeresis|Ae 194 (0f4 |o-circumflex o
1159|0d6|O-diaeresis|Oe [195|0fb |u-circumflex |u
1160|0dc |U-diaeresis|Ue 1196|0c2 |A-circumflex A
1161 |0df |sz-ligature |ss 1197 |Oca [E-circumflex [E
1162|0bb [quotation [>> or " |198|0ce |I-circumflex |l

1163|0ab [marks |<<or" [199/|0d4|O-circumflex |O

1164|0eb |e-diaeresis |e 1200|0db [U-circumflex |U
165 |Oef |i-diaeresis |i 1201 |0€5 [a-ring a
1166 |Off |y-diaeresis |y 1202|0c5 |A-ring A
1167 |0cb |E-diaeresis [E 1203|0f8 |o-slash o
[168[0cf [I-diaeresis |i [204[0d8[O-slash [®

file:///D|/doc/zspecl0/sect03.html (8 of 10) [6/22/2000 4:35:49 PM]

The Z-Machine Standards Document

1169|0el [a-acute |a 1205|0€3 [a-tilde a

|170|0€9 [e-acute e 1206|0f1 |n-tilde In
1171|0ed fi-acute i 1207 |0f5 |o-tilde s
1172|0f3 [o-acute [0 1208|0c3 |A-tilde A
1173|0fa |u-acute |u 1209 [0d1 |N-tilde IN
1174|0fd |y-acute |y 1210|0d5 [O-tilde 0
1175|0c1 |A-acute |A 1211|0e6 |ae-ligature ae
1176|0c9 [E-acute [E 1212|0c6 |AE-ligature |AE
1177|0cd [I-acute || 1213|0€7 |c-cedilla ic
1178/0d3|O-acute |O 1214|0c7 |C-cedilla IC

1179|0da|U-acute |U 1215 |Ofe |Icelandic thorn [th
1180|0dd |[Y-acute [Y 1216|0f0 |Icelandiceth |th

1181|0e0 [a-grave |a 1217|0de |Icelandic Thorn|Th
1182|0e8 [e-grave e 1218|0d0 |Icelandic Eth [Th
1183|0ec fi-grave i 1219|0a3 [pound symbol |L

1184|0f2 [o-grave [0 1220{153 |oe-ligature oe
1185(0f9 |u-grave |u 1221 (152|OE-ligature |OE

1186/0cO [A-grave |A 1222|0al finverted ! !
1187|0c8 [E-grave [E 1223|0bf inverted ? ?
1188|0cc [I-grave |l

1189/0d2|O-grave |O

1190/0d9 |U-grave |U IN =69

Remarks

In practice the text compression factor is not really very good: for instance, 155000 characters of text
squashes into 99000 bytes. (Text usually accounts for about 75\% of a story file.) Encoding does at least
encrypt the text so that casual browsers can't read it. Well-chosen abbreviations will reduce total story
file size by 10\% or so.

The German trandlation of 'Zork |' uses an a phabet table to make accented |etters (from the standard
extra characters set) efficient in dictionary words. In Version 6, 'Shogun' also uses an alphabet table.

Unicode trandlation tables are new in Standard 1.0: in Standard 0.2, the extra characters were always
mapped using the default Unicode trandlation table.

Note that if arandom stretch of memory is accidentally printed as a string (due to an error in the story
file), illegal ZSCll codes may well be printed using the 4-Z-character escape sequence. It's helpful for
interpreters to filter out any such illegal codes so that the resulting on-screen mess will not cause trouble
for the terminal (e.g. by causing the interpreter to print ASCII 12, clear screen, or 7, bell sound).

file://ID|/doc/zspecl0/sect03.html (9 of 10) [6/22/2000 4:35:49 PM]

The Z-Machine Standards Document

The continental European quotation marks << and >> should have spacing which looks sensible either in
French style <<Merci!>> or in German style >>Danke!<<.

|dedlly, an interpreter should be able to read time delays (for timed input) from stream 1 (i.e., from a
script file). Seetheremarksin S7.

The 'Beyond Zork' story file is capable of receiving both mouse-click codes (253 and 254), listing both in
its terminating characters table and treating them equally.

The extant Infocom gamesin Versions 4 and 5 use the control characters 1 to 31 only asfollows: they all
accept 10 or 13 as equivalent, except that '‘Bureaucracy' will only accept 13. 'Bureaucracy' needs either
127 or 8 to be a delete code. No other codes are used.

Curioudly, 'Nord 'n' Bert Couldn't Make Head Nor Tail Of It' and 'A Mind Forever Voyaging' allow some
|etter charactersto be typed in with the top bit set. That is, if reading an A, they would recognise 65 or 91
(upper or lower case) and also 193 or 219. Matthew Russotto suggests this was an accommodation for
the Apple |1, whose keyboard primitives returned the last key pressed in the bottom 7 bits of a byte, plus
atop bit flag indicating whether or not the keyboard had been hit since last time.

Contents/ Preface / Overview

file:///D]/doc/zspecl10/sect03.html (10 of 10) [6/22/2000 4:35:49 PM]

file:///D|/doc/zspec10/sect15.html
file:///D|/doc/zspec10/sect16.html
file:///D|/doc/zspec10/appa.html
file:///D|/doc/zspec10/appb.html
file:///D|/doc/zspec10/appc.html
file:///D|/doc/zspec10/appd.html
file:///D|/doc/zspec10/appe.html
file:///D|/doc/zspec10/appf.html

The Z-Machine Standards Document

4. How instructions are encoded

We do but teach bloody instructions
Which, being taught, return to plague th' inventor
Shakespeare, M acbeth

4.1 Instructions/ 4.2 Operand types/ 4.3 Form and operand count / 4.4 Specifying operand types/ 4.5
Operands/ 4.6 Stores/ 4.7 Branches/ 4.8 Text opcodes

4.1

A single Z-machine instruction consists of the following sections (and in the order shown):

Opcode 1 or 2 bytes

(Types of operands) 1 or 2 bytes: 4 or 8 2-bit fields

Oper ands Between O and 8 of these: each 1 or 2 bytes
(Store vari abl e) 1 byte

(Branch of fset) 1 or 2 bytes

(Text to print) An encoded string (of unlimted | ength)

Bracketed sections are not present in al opcodes. (A few opcodes take both "store" and "branch”.)

4.2

There are four 'types of operand. These are often specified by a number stored in 2 binary digits:

$$00 Large constant (0 to 65535) 2 bytes

$$01 Smal | constant (0 to 255) 1 byte

$$10 Vari abl e 1 byte

$$11 Omitted al together 0 bytes
42.1

Large constants, like al 2-byte words of data in the Z-machine, are stored with most significant byte first
(e.g. $2478 is stored as $24 followed by $78). A 'large constant’ may in fact be a small number.

file:///D]/doc/zspecl0/sect04.html (1 of 5) [6/22/2000 4:35:50 PM]

The Z-Machine Standards Document

4.2.2

Variable number $00 refers to the top of the stack, $01 to $0f mean the local variables of the current
routine and $10 to $ff mean the global variables. It isillegal to refer to local variables which do not exist
for the current routine (there may even be none).

4.2.3

The type 'Variabl€e really means "variable by value". Some instructions take as an operand a "variable by
reference”: for instance, inc has one operand, the reference number of a variable to increment. This
operand usually has type 'Small constant' (and Inform automatically assembles aline like @inc turns by
writing the operand tur ns as a small constant with value the reference number of the variable turns).

4.3

Each instruction has a form (long, short, extended or variable) and an operand count (OOP, 10P, 20P or
VAR). If the top two bits of the opcode are $$11 the form is variable; if $$10, the form is short. If the
opcode is 190 ($BE in hexadecimal) and the version is 5 or later, the form is "extended". Otherwise, the
formis"long".

4.3.1

In short form, bits 4 and 5 of the opcode byte give an operand type as above. If thisis $11 then the
operand count is OOP; otherwise, 10P. In either case the opcode number is given in the bottom 4 bits.

4.3.2

In long form the operand count is always 20P. The opcode number is given in the bottom 5 bits.

4.3.3

In variable form, if bit 5is 0 then the count is 20P; if it is 1, then the count is VAR. The opcode number
Is given in the bottom 5 bits.

4.3.4

In extended form, the operand count is VAR. The opcode number is given in a second opcode byte.

4.4
Next, the types of the operands are specified.

441

file:///D]/doc/zspecl0/sect04.html (2 of 5) [6/22/2000 4:35:50 PM]

The Z-Machine Standards Document

In short form, bits 4 and 5 of the opcode give the type.

4.4.2

In long form, bit 6 of the opcode gives the type of the first operand, bit 5 of the second. A value of 0
means a small constant and 1 means avariable. (If a 20P instruction needs a large constant as operand,
then it should be assembled in variable rather than long form.)

4.4.3

In variable or extended forms, a byte of 4 operand typesis given next. This contains 4 2-bit fields: bits 6
and 7 are thefirst field, bits 0 and 1 the fourth. The values are operand types as above. Once one type has
been given as 'omitted’, al subsequent ones must be. Example: $$00101111 means large constant
followed by variable (and no third or fourth opcode).

4.4.3.1

In the specia case of the "double variable" VAR opcodes call vs2 and call _vn2 (opcode numbers 12 and
26), a second byte of typesis given, containing the types for the next four operands.

4.5

The operands are given next. Operand counts of 0OP, 10P or 20P require 0, 1 or 2 operands to be given,
respectively. If the count is VAR, there must be as many operands as there were types other than
‘omitted'.

45.1

Note that only call_vs2 and call_vn2 can have more than 4 operands, and no instruction can have more
than 8.

4.6

"Store" instructions return avalue: e.g., mul multipliesits two operands together. Such instructions must
be followed by a single byte giving the variable number of where to put the result.

4.7

Instructions which test a condition are called "branch” instructions. The branch information is stored in
one or two bytes, indicating what to do with the result of the test. If bit 7 of thefirst byteis O, abranch
occurs when the condition was false; if 1, then branch is on true. If bit 6 is set, then the branch occupies 1
byte only, and the "offset" isin the range O to 63, given in the bottom 6 bits. If bit 6 is clear, then the
offset isasigned 14-bit number given in bits 0 to 5 of the first byte followed by all 8 of the second.

file:///D]/doc/zspecl0/sect04.html (3 of 5) [6/22/2000 4:35:50 PM]

The Z-Machine Standards Document

4.7.1

An offset of 0 means "return false from the current routine”, and 1 means "return true from the current
routine".

4.7.2

Otherwise, a branch moves execution to the instruction at address

Address after branch data + O fset - 2.

4.8

Two opcodes, print and print_ret, are followed by atext string. Thisis stored according to the usual
rules: in particular execution continues after the last 2-byte word of text (the one with top bit set).

Remarks

Some opcodes have type VAR only because the available codes for the other types had run out;
print_char, for instance. Others, especially call, need the flexibility to have between 1 and 4 operands.

The Inform assembler can assemble branches in either form, though the programmer should always use
long form unless there's a good reason. Inform automatically optimises branch statements so as to force
as many of them as possible into short form. (This optimisation will happen to branches written by hand
In assembler as well as to branches compiled by Inform.)

The disassembler Txd numbers locals from 0 to 14 and globals from 0 to 239 in its output
(corresponding to variable numbers 1 to 15, and 16 to 255, respectively).

The branch formulais sensible because in the natural implementation, the program counter is at the
address after the branch data when the branch takes place: thus it can be regarded as

PC = PC + Ofset - 2.

If the rule were ssimply "add the offset” then, since the offset couldn't be O or 1 (because of the
return-false and return-true values), we would never be able to skip past a 1-byte instruction (say, a 00P
like quit), or specify the branch "don't branch at al™ (sometimes useful to ignore the result of the test
altogether). Subtracting 2 means that the only effects we can't achieve are

PC = PC- 1 and PC = PC - 2

and we would never want these anyway, since they would put the program counter somewhere back
inside the same instruction, with horrid conseguences.

file:///D]/doc/zspecl0/sect04.html (4 of 5) [6/22/2000 4:35:50 PM]

The Z-Machine Standards Document

On disassembly

Briefly, the first byte of an instruction can be decoded using the following table:

$00 -- $1f long 20P smal | constant, small constant
$20 -- $3f long 20P smal | constant, variable

$40 -- $5f |ong 20P vari able, small constant

$60 -- $7f 1ong 20P vari abl e, variable

$80 -- 3$8f short 10P | ar ge const ant

$90 -- $9f short 10P smal | const ant

$a0 -- $af short 10P vari abl e

$b0 -- $bf short ooP

except $be extended opcode given in next byte

$cO0 -- $df variable 20P (operand types in next byte)
$e0 -- $ff wvariable VAR (operand types in next byte(s))

Here is an example disassembly:

@nc_chk ¢ 0 | abel; 05 02 00 d4
| ong form count 20P; opcode nunber 5; operands:
02 small constant (referring to variable c)
00 smal | constant O

branch if true: 1-byte offset, 20 (since |abel is

18 bytes forward from here).
@rint "Hello.""; b2 11 aa 46 34 16 45 9c a5

short form count OOP.

literal string, Z-chars: 4 13 10 17 17 20 5 18 5 7 5 5.
@l 1000 c -> sp; dé 2f 03 e8 02 00

vari able fornm count 20P; opcode nunber 22; operands:

03 e8 |ong constant (1000 deci nal)

02 vari able c
store result to stack pointer (var nunber 00).
@all _1n Message; 8f 01 56

short form count 10P; opcode nunber 15; operand:
01 56 |ong constant (packed address of routine)
. | abel ;

Contents/ Preface / Overview

file:///D]/doc/zspecl0/sect04.html (5 of 5) [6/22/2000 4:35:50 PM]

file:///D|/doc/zspec10/sect15.html
file:///D|/doc/zspec10/sect16.html
file:///D|/doc/zspec10/appa.html
file:///D|/doc/zspec10/appb.html
file:///D|/doc/zspec10/appc.html
file:///D|/doc/zspec10/appd.html
file:///D|/doc/zspec10/appe.html
file:///D|/doc/zspec10/appf.html

The Z-Machine Standards Document

[

5. How routines are encoded

5.1 Start position / 5.2 Header / 5.3 First instruction / 5.4 Main routine (V6) / 5.5 Initial execution point
(other versions)

5.1

A routine isrequired to begin at an address in memory which can be represented by a packed address (for
instance, in Version 5 it must occur at a byte address which is divisible by 4).

52

A routine begins with one byte indicating the number of local variablesit has (between 0 and 15
inclusive).

521

InVersions 1 to 4, that number of 2-byte words follows, giving initial values for these local variables. In
Versions 5 and later, theinitial values are al zero.

5.3

Execution of instructions begins from the byte after this header information. There is no formal
‘end-marker’ for aroutine (it is ssimply assumed that execution eventually resultsin areturn taking place).

5.4

InVersion 6, thereisa"main" routine (whose packed addressis stored in the word at $06 in the header)
called when the game starts up. It isillegal to return from this routine.

5.5

In all other Versions, the word at $06 contains the byte address of the first instruction to execute. The
Z-machine starts in an environment with no local variables from which, again, areturnisillegal.

file:///D]/doc/zspecl10/sect05.html (1 of 2) [6/22/2000 4:35:50 PM]

The Z-Machine Standards Document

Remarks

Note that it is permissible for aroutine to be in dynamic memory. Marnix Klooster suggests this might be
used for compiling code at run time!

In Versions 3 and 4, Inform always stores 0 as the initial values for local variables.

Inform's"main" routine is required not to have local variables and has to be the first defined routine. This
ensuresit isin the bottom 64K of memory, asit must be (in Versions other than 6).

Contents/ Preface/ Overview

file:///D]/doc/zspecl0/sect05.html (2 of 2) [6/22/2000 4:35:50 PM]

file:///D|/doc/zspec10/sect15.html
file:///D|/doc/zspec10/sect16.html
file:///D|/doc/zspec10/appa.html
file:///D|/doc/zspec10/appb.html
file:///D|/doc/zspec10/appc.html
file:///D|/doc/zspec10/appd.html
file:///D|/doc/zspec10/appe.html
file:///D|/doc/zspec10/appf.html

The Z-Machine Standards Document

6. The game state: storage and routine calls

6.1 Saved states/ 6.2 Storage of global variables/ 6.3 The stack / 6.4 Routine calls/ 6.5 Stack frames/
6.6 User stacks (\VV6)

6.1

The "state of play" is defined as the following: the contents of dynamic memory; the contents of the
stack; the value of the program counter (PC), and the "routine call state” (that is, the chain of routines
which have called each other in sequence, and the values of their local variables). Note that the routine
call state, the stack and the PC must be stored outside the Z-machine memory map, in the interpreter's
private memory.

6.1.1
The entire state of play must be stored when the game is saved.

6.1.1.1

The format of a saved game fileis not specified.

6.1.1.2

Aninternal saved game for "undo" purposes (if there isone) is not part of the state of play. Thisis
important: if a saved game file also contained the internal saved game at the time of saving, it would be
Impossible to undo the act of restoration. It also preventsinternal saved games from growing larger and
larger as they include their predecessors.

6.1.1.3

Itisillegal to save the game (either with save or save_undo) during an "interrupt routine" (one coming
about through timed input, sound effect termination or newline interrupts). Therefore saved games need
not store information capable of restoring such a position.

file:///D]/doc/zspecl0/sect06.html (1 of 5) [6/22/2000 4:35:51 PM]

The Z-Machine Standards Document

6.1.2

On a'restore" or "undo" (which restores a game saved into internal memory), the entire state of play is
written back except that 'Flags 2' in the header is preserved. (This information includes whether the game
Is being transcribed to printer and whether afixed-pitch font is being used.)

6.1.2.1

Before a'restore”, an interpreter should check that the file to be used has been saved from the same
game currently being played. (See remark below.)

6.1.2.2

After a"restore" or "undo"”, an interpreter should reset the header values marked Rst in the header table
of S11. (It should not be assumed that the game was saved by the same interpreter.)

6.1.3

A "restart" issimilar: the entire state is restored from the original story file, and the stack is emptied; but
'Fags 2' is preserved; and the interpreter should reset the Rst parts of the header.

6.1.4

In Versions 5 and later, an interpreter unable to save the game state into internal memory (for "undo”
purposes) must clear bit 4 of 'Flags 2' in the header.

6.2

Global variables (variable numbers $10 to $ff) are stored in atable in the Z-machine's dynamic memory,
at abyte address given in word 6 of the header. The table consists of 240 2-byte words and the initial
values of the global variables are the valuesinitially contained in the table. (It islegal for aprogram to
alter the table's contents directly in play, though not for it to change the table's address.)

6.3

Writing to the stack pointer (variable number $00) pushes a value onto the stack; reading from it pulls a
value off. Stack entries are 2-byte words as usual.

6.3.1

The stack is considered as empty at the start of each routine: it isillegal to pull values from it u