
An all-purpose reference

guide for first-time

computerists as well

as experienced

programmers!

z. commodore

COMPUTER VM110

I

I

I

I

Reference

A. Finkel

N. Harris

P. Higginbottom

M. Tomczyk

Published by

Commodore Business Machines, Inc.

and Howard W. Sams & Co., Inc.

I

FIRST EDITION

,.„__ [
Copyright = 1982 by Commodore Business Machines. Inc.

All rights reserved. .

No part of this publication may be reproduced, siored in a retrieval system, or

transmitted in any form or by any means,electronic, mechanical, photocopying,
recording or otherwise without the prior written permission ot Commodore

Business Machines. Inc.

:

TABLE OF CONTENTS

I

I

INTRODUCING THE PROGRAMMER'S REFERENCE
GUIDE
VIC 20 APPLICATIONS GUIDE v«

1 BASIC PROGRAMMING REFERENCE GUIDE 1
VIC BASIC; The Language of the VIC 3

Commands 5

Statements 14

I/O Statements 35

BASIC Functions 40

Numbers and Variables 54

Operators 62

Logical Operators 68

2 PROGRAMMING TIPS 71
• Editing Programs 73

• Using the GET Statement 77

• How to Crunch BASIC Programs 79

• Working With Graphics 82

Character Memory 82

Programmable Characters 82

High Resolution Graphics 88

Multi-Color Mode Graphics 92

Superexpander Cartridge 94

• Sound and Music 95

3 MACHINE LANGUAGE PROGRAMMING GUIDE 107
• System Overview 109

• Introduction to Machine Language 123

• Writing Your First Program 132

iii

I
Memory Maps 170

Useful Memory Locations 178

The KERNAL 182

KERNAL Power Up Activities 211

VIC Chips 212

6560 (Video Interface Chip) 212

6522 (Versatile Interface Adapter) 218

INPUT/OUTPUT GUIDE 227
User Port 229

The Senaf Bus 234

Using the VIC Graphic Printer 236

VIC Expansion Port 241

Game Controllers 246

Joystick 246

Paddfes 248

Light Pen 250

• RS-232 Interlace Description 251

APPENDICES 261
A, Abbreviations for BASIC Keywords 263

B. Screen & Border Color Combinations 265

C> Table of Musical Notes 266

D. Screen Display Codes 267

E. Screen Memory Maps 270

F. ASCII and CHRS Codes 272

G. Deriving Mathematical Functions 275

H. Error Messages 276

I. Converting Programs to VIC 20 BASIC 278

J. Pinouts for Input/Output Devices 280

K. VIC Peripherals & Accessories 284

INDEX 285

SCHEMATIC 291

INTRODUCING...

THE PROGRAMMER'S

REFERENCE GUIDE!

The Friendly Computer deserves a Friendly Reference Book.

That's why we wrote the VIC 20 PROGRAMMER'S REFER

ENCE GUIDE ... a book that gives you more information about

your VIC 20 Personal Computer than any other source. This guide

was compiled from the experience of Commodore's international

programming staffs in more than half a dozen countries, and is

designed to be used by first-time computerists as well as

experienced programmers.

To cover the areas VIC 20 programmers are most interested in,

we divided the book into four sections: BASIC Programming,

Machine Language Programming, Input/Output Interfacing and

Programming Graphics & Sound.

Here are just a few of the ways the VIC 20 Programmer's

Reference Guide helps meet your programming needs:

—Our complete "dictionary" includes not only BASIC com

mands but also sample programs to show you how they work.

—Need an introduction to Machine Level Programming? Our

laymen's overview gets you started.

—The exclusive Kernal helps assure the programs you write

today won't be outdated tomorrow.

—The VIC's Interface section lets you expand yourcomputer. . .

from RS232 for telecommunications to joysticks, game paddles

and lightpens.

—You'll have fun learning about the VIC's graphic, sound and

music capabilities . . . including the unique "multicolor" mode.

—You'll discover POKEs you never knew about, and probably

PEEK into some memory locations you never knew existed.

There are lots of fascinating hours ahead of you. Let the

Programmer's Reference Guide be your companion as you

continue to explore your VIC 20 Personal Computer System.

And ... if you find any errors in this book, please send us a

postcard or letter in care of VIC PROGRAMMER'S REFERENCE

GUIDE, VIC Product Marketing Group, Commodore Business

Machines, inc., 681 Moore Road, King of Prussia, PA 19406+ We'd

appreciate your assistance in helping us "debug" our reference

guide for future printings.

Enjoy your new reference guide . . . and happy programming!

—Toe Authors

i

i

i

i
v.

[

!

I

I

!

I

L

VIC 20 APPLICATIONS GUIDE

When you first considered buying a computer, the chances are

you said something like, "I know computers are good things to have

and it's nice thatthey're finally affordable, but. . .what can I do with

one?"

The great thing about a computer is that you can tailor the

machine to do what you want it to—you can make it calculate your

home budget, play arcade-style action games—you can even

make it talk! And the best thing is, if your VIC 20 does only ONE of

the things listed below, it's well worth the price you paid for it,

Here then, is a list of applications for your VIC 20—in case you've

asked yourself, "Yes, but what else can I do with it?"

APPLICATION COMMENTS/REQUIRE

MENTS

ADVENTURE

GAMES

ADVERTISING &

MERCHANDISING

ANIMATION

BABYSITTING

COMMODORE provides 5 Scott

Adams Adventure games on car

tridge, decoded to "talk'1 with the

VOTRAX "Type N Talk11^.

Hook the VIC to a television and put

it in a store window with an animated

message flashing and you've got a

great point of purchase store dis

play.

The VIC is well-suited to screen

animation . . , a special aid called

THE PROGRAMMABLE CHARAC

TER SET & GAMEGRAPHICS

EDITOR is available from COM

MODORE on tape cassette.

The VIC HOME BABYSITTER car

tridge can keep your child occupied

for hours and teach keyboard sym

bols, special learning concepts and

relationships. A "first" from COM

MODORE.

x

BASIC

PROGRAMMING

BIORHYTHM

CHARTING

CHESS GAME

COLLECTIONS

COMMUNICATION

COMPOSING

SONGS

DEXTERITY

The VIC owner's guide and the

TEACH YOURSELF PROGRAM

MING series of books and tapes are

excellent starting points. A PRO

GRAMMERS AID CARTRIDGE is

available from COMMODORE.

COMMODORE'S Biorhythm pro

gram on tape has a special compati

bility leature which lets you compare

yourself to anyone else by simply

typing in your birthdates.

SARGON II (on cartridge from

COMMODORE) has been called

the most powerful microcomputer

chess program anywhere.

COMMODORE will provide a car

tridge which allows collectors to

record their collections (stamps,

coins or other items) on tape or

lloppy diskettes, and print out these

lists on the VIC GRAPHIC PRINT

ER.

VICMODEM1-, VICNET[m and VIC-

TERM^ are ail products which allow

VIC owners to communicate by

telephone with other computer

owners, or telecomputing services

like CompuServe1rn or The Source*1.

The VIC's 3 tone generators cover 5

octaves and may be used to write

and record music. The best music

writing accessory is the SUPEREX-

PANDER CARTRIDGE which lets

you write music in note form and

save it on tape or disk.

Hand-to-eye coordination and man

ual dexterity are aided by several of

COMMODORE'S VIC games . . .

including the "Jupiter Lander and

night driving simulations, among

others.

i

i

i

i

!

EDUCATION

i

i

EXPENSE

RECORDS

FOREIGN

LANGUAGE

FORMULA/FIGURES

GAMBLING

I

GAMES

GRAPHICS

PLOTTING

I

The COMMODORE Educational

Computing Resource Book con

tains information on educational

uses of computers in general as welt

as educational software lists for the

VIC 20. Available through COM

MODORE computer dealers.

A CALENDAR/EXPENSE REC

ORD tape is offered by COMMO

DORE,

The VIC Programmable Character

Set Editor lets any user replace the

VIC character set with user-defined

foreign language characters.

The VIC has the same powerful

math routines built into its operating

system as the COMMODORE

PET/CBM microcomputers. Com

plex formulas may be calculated

quickly and easily either directly or

under program control (see the

OPERATORS section of the VIC

user manual and/or the matching

section in this book).

COMMODORE provides several

games which provide hours of gam

bling fun without risking any money

. . . programs like VIC21 Casino

Style Blackjack (on tape), SU-

PERSLOT (cartridge) and DRAW

POKER {cartridge).

Everything from space games on

cartridge to Blackjack on tape, plus

REAL ARCADE games adapted

from the most popular coin-operat

ed games in the world.

The SUPEREXPANDER CAR

TRIDGE offers 3K memory expan

sion, hi-resolution mulii-color

graphics platting, easy function key

definition, and musicwriting com

mands ... all in one cartridge.

xi

HOME INVENTORY

INSTRUMENT

CONTROL

JOURNALS OR

CREATIVE

WRITING

LIGHTPEN

CONTROL

LOAN/MORTGAGE

CALCULATION

MACHINE CODE

PROGRAMMING

MATH PRACTICE

TOOL

The HOME INVENTORY tape in

COMMODORE'S HOME CALCU

LATION SIXPACK provides a tow

priced method for storing and up

dating lists of belongings for insur

ance purposes, business purposes,

etc.

The VIC has a serial port, RS-232

port and IEEE-4888 adapter car

tridge for use in a variety of special

industrial applications.

The VIC is excellent for making daily

journal entries, using the VIC TYPE

WRITER or VICWRITER. Informa

tion can be stored on the VIC

DATASSETTE tape recorder or VIC

DISK DRIVE, and printed out on a

VIC GRAPHIC PRINTER.

Applications using a lightpen to

specify items can use any commer

cial llghtpen which fits the VIC game

port connector , . . at least two

makers market lightpens which

work with the VIC.

Try the LOAN/MORTGAGE CAL

CULATOR from COMMODORE.

COMMODORE'S PROGRAM

MERS REFERENCE GUIDE in

cludes a machine language section.

The VICMONlm machine language

monitor cartridge is recommended.

VfC machine language programs

may also be written in assembly

language on the PET/CBM using 1he

COMMODORE Assembler Develop

ment System.

Several software companies offer

educational programs on tape for

the VIC. COMMODORE'S first math

practice program, called "SPACE-

MATH," is available on tape.

i

!

I

I

I
Xii

NETWORKING &

DISTRIBUTED

PROCESSING

PAYROLL &

FORMS PRINTOUT

PERSONAL

BUDGET

PORTFOLIO

ANALYSIS

PRINT

INFORMATION ON

PAPER

RECIPES

SIMULATIONS

SPORTS DATA

Networking may be achieved by

using the VIC as part of a telephone

or RS-232 hookup, or by using a

commercially available network

system.

The VIC can be programmed to

handle a variety of entry-type busi

ness applications. Upper/tower

case letters combined with VIC

"business form" graphics make it

easy to design forms, which can be

easily printed out on the VIC

GRAPHIC PRINTER.

COMMODORE provides PERSON

AL FINANCE programs on tape and

on plug-in cartridge.

Business software which performs

this function is available as printed

programs in books available from

most computer stores. This service

is also available through telecom

puting services.

The VIC GRAPHIC PRINTER prints

letters, numbers and graphics in

high quality dot matrix format. RS-

232 PRINTERS including letter

quality printers may also be used

with the proper interfacing. An IEEE

488 INTERFACE cartridge may also

allow IEEE printer use.

See the recipe program called

"MIKE'S CHICKEN SOUP" in the

VIC owner's manual, or check a

computer book rack (most "practi

cal" program books contain recipe

programs).

Computer simulations permit dan

gerous or expensive experiments to

be performed at minimum risk &

expense.

The Source'"1 and CompuServe""

both provide sports information.

XIII

STOCK QUOTES

TALKING VIC

TERM PAPERS

& REPORTS

TERMINAL

MODEM

TYPING PRACTICE

WORDPROCESSING

The VIC, a modem, and a subscrip

tion to The Source" or Compu

Serve1" can cost less than $500.

Connect the VIC to a voice synthe

sizer such as the "Type N Talk"tm

manufactured by VOTRAX INC.

The VIC heips students research

current library-type sources over the

telephone . . . and compose, edit

and print out their reports on the VIC

and VIC GRAPHIC PRINTER . . .

the same type of computer services

which were previously available

only through large institutions at a

cost of many thousands of dollars.

VIC accessories include an RS-232

modem interface (for use with RS-

232 modems} or the ultra low-priced

VICMODEM1"

The reverse side of the VtC TYPE

WRITER has a "TYPING TUTOR"

program.

THE VIC TYPEWRITERS is avail

able on tape and the VIC-

WRITERS cartridge also provides

wordprocessing power. Both work

with the VIC GRAPHIC PRINTER.

i

i

i

i

xiv

BASIC PROGRAMMING

REFERENCE GUIDE

• VIC BASIC: The Language

of the VIC

• Commands

• Statements

• I/O Statements

• BASIC Functions

• Numbers and Variables

• Logical Operators

I

I

I

I

I

[

I

I

I

I

I

1

I

VIC BASIC: THE LANGUAGE OF

THE VIC

The BASIC computing language is a powerful and easy-to-use

means of communicating instructions to your VIC 20 Personal

Computer. VIC BASIC is the same language used in the

Commodore PET.'CBM line of microcomputers, and is nearly

identical to the BASIC used in most other personal computers.

Learning BASIC now can prepare you to move up to a more

sophisticated computer in the future, and can also give you the

foundation you need to learn other "higher level'1 computing

languages.

If you're a first-time computerist, you'll be pleased to know you

can write your first BASIC program on the VIC within 15 minutes,

using the VIC 20 PERSONAL COMPUTER GUIDE which comes

with the machine. Additional self-teaching aids are available from

Commodore as part of the TEACH YOURSELF PROGRAMMING

SERIES, and classes offered by schools, computer centers and

retail stores can give you a solid grounding in the fundamentals of

BASIC within 4-6 hours.

The VIC BASIC instructions which follow will provide a valuable

reference as you learn to write BASIC, or as you put into practice

the techniques you've already learned. Each entry in the listing

explains how the instruction is used, with practical examples.

Additional programming tips are included in a separate "BASIC

PROGRAMMING TIPS" section.

BASIC has approximately 60 words in its vocabulary and is

surprisingly easy to learn. That doesn't mean you can't keep

improving, however. Like any language, BASIC has its own

''idioms'1 and complexities which you can use to write increasingly

sophisticated programs, VIC BASIC even has a sort ot "slang" in

that you can abbreviate most of the commands by typing the first

letter of the instruction and the SHIFTED second letter. Using

abbreviated commands to write programs makes programming the

VIC fast and convenient. (Note that if you LIST a program written in

abbreviated form, the full-length commands are displayed to help

you read your program.)

In BASIC, all instructions are commonly referred to as

'commands," although technically the BASIC instruction set can

be broken down into several areas . . . which is how we've grouped

them in the following VIC BASIC "vocabulary11 guide. We've

included separate sections on several types of BASIC instructions;

Commands, Statements, Input/Output Statements, Functions,

Numbers and Variables, and Operators.

It should also be noted here that while we communicate with the

VIC through the BASIC language, the VIC's "native" vocabulary is

Machine Language which is based on a binary or hexadecimal

numbering system. BASIC is really a translation of Machine

Language into terms we humans can understand . . . which is why

BASIC programs generally run slower than Machine Language i

programs, since BASIC programs have to be interpreted into

Machine Language before they run, while Machine Language

programs run immediately. See "Introduction to Machine Lan

guage Programming" for more information.

Of course, you don't have to know BASIC to take advantage of

the VIC's computing power. . . you don't even haveto know howto

type. We like to say that with the VIC 20, the first thing you do is

learn "computing" . . . not "programming." You don't have to bean

auto mechanic to drive a car, and by the same token you don't have

to be a programmer to "drive" your VIC 20. Still, knowing something

about how your car works mechanically helps you maintain and use

yourcarto best advantage. Likewise, knowing how the computer is

programmed helps you get the most out of your VIC 20.

In the future, being able to "speak" a computer language will give

you a tremendous advantage over those who can't. . .not because

you can write a computer program, but because you'll have a better

understanding of what a computer is and does, and you'll be able to

make better use of computing at school, on the job and at home.

Learning BASIC . . .or at least how it works. . .will bring you close

to the future and prepare you for the dramatic technological

changes that are already occurring as part of the "Computer

Revolution."

TO

0

0 =

1 =

1 =

* -

AVOID CONFUSION, PLEASE NOTE:

= letter 0 as in OPEN

= ZERO

letter I as in INPUT

= number ONE

type the large asterisk

Format == all format entries

[] = information contained

lines is optional.

key

shall be typed in on one line

inside brackets in the Format

WARM START —If you get into trouble or want to break out

of a program while it's running, you can hold down the

RUN/STOP key and hit the RESTORE key. This combination

resets the VIC without losing your program. Now you can

LIST or RUN your program again.

[

COMMANDS

BASIC commands tell the VIC to do something with ^program.

For example, you "command" the VIC to list, run, stop, continue,

save and load programs.

BASIC commands may be used in direct mode (without line

numbers) or as instructions in BASIC programs, tn direct mode,

commands are executed as soon as the RETURN key is pressed.

In a BASIC program, commands are included like any other

instruction, and executed when you type RUN, The only command

which may not be used in a program is CONT.

VIC BASIC commands include the following:

CONT

LIST

LOAD

NEW

RUN

SAVE

VERIFY

CONT

Format: Abbreviation: Screen Display:

cont cBERlo cfi

This command is used to re-start the execution of a program

which has been stopped by either using the STOP key, a STOP

statement, or an END statement within the program. The program

will re-start at the exact place from whfch it left off. While the

program is stopped, the user can inspect or change any variables

or look at the program, CONT will not work if you have changed or

added lines of the program (or even just moved the cursor to a

program line and hit RETURN without changing anything), or if the

program halted due 1o an error, or if you caused an error before

typing to re-start the program. The message in this case is CANT

CONTINUE ERROR.

This is a handy tool when debugging a program. It lets you place

STOP statements at strategic locations in the program, and

examine variable vafues when the program stops. You can keep

using STOP and CONT until you find what you're looking for.

EXAMPLE:

10 PI = 0: C --■ 1

20 PI =

30 PRINT PI

40 C - C + 4:GOTO 20

0: C = 1

PI + 4/C - 4/(C + 2)
■ Dl

This program calculates the value of PI. RUN this program, and

after a short while hit the ^9 key. You will see the display:

BREAK IN 20

Type the command PRINT C to see how far the VIC has gotten.

Then use CONT to resume from where the VIC left off.

LIST

Format: * Abbreviation: Screen Display:

LIST [from line number] LKi;!!rTiJ I L -,
- [to line number]

The LIST command allows you to look at lines of the BASIC

program currently in the VIC's memory. The VfC's powerful screen

editor allows you to easily and quickly edit programs which you

have LISTed.

The LIST command can specify which program line numbers will

be shown. If you type LIST and a single line number, only that line

will be displayed. If the number is followed by a hyphen (-), all the

lines from that number forward will be shown. If the number is

preceded by the hyphen, all lines from the beginning to that line will

be shown. You can LIST a range of line numbers by typing the two

line numbers separated by a hyphen, in which case the lines from

the first number to the second number are shown. If LIST0 is typed,

the whole program will be LISTed and not just line 0.

If the program length exceeds the length of the screen display,

the first lines in the program will scroll off the screen during LISTing.

To slow down the scrolling, hold down the p^ hi ifI key. To stop

the program during a LIST, hit the EQ3 key.

The LIST command may also be used as a statement within a

BASIC program, but the program will stop as soon as the LIST is

finished.

"All format entries should be typed in one line

EXAMPLES OF LIST COMMAND

LIST LISTs whole program

LIST 0 LISTs whole program

LIST 100 Line 100 only

LIST 100- Everything from 100 on

LIST -100 Shows from start to 100

LIST 100-150 Starts at 100 and stops with 150

EXAMPLE OF LIST STATEMENT

(Program Mode)

10 PRJNT'THIS IS LINE

20 LIST

30 PRINT'THIS IS LINE

LOAD

Format:

LOAD [■'filename",

device, commandl

10"

30"

Abbreviation:

LJUffilo
Screen

L

Display:

n

The LOAD command transfers a program from cassette tape or
disk into the VIC's memory, where it can be used or changed.

LOAD FROM TAPE

If the program to be LOADed is the first one on the tape, all you

have to type is the word LOAD by itself. Unless the PLAY key was

already down, the VIC answers with the message:

PRESS PLAY ON TAPE.

Once the recorder has been started, the VIC says:

OK

SEARCHING

FOUND

LOADING

At this point, any program that had been in memory is lost,

because the new one has begun to take its place. (If you use the

ffflf Key to halt the LOAD there will likely be a spot in the
program with garbage, just at the point where you stopped it.)

Once the program has finished the LOAD, the VIC says:

READY.

I
When the program is not the first on the lape, or you're not sure

that it is, the VIC can search for the program you want. Type LOAD

and the name of the program inside quote marks ("), or the name of

a string variable containing the name of the program. The VIC will

show any other programs or files that it sees on the tape with the

message: r

FOUND name

The VIC will onfy LOAD the correct program, and will not LOAD a

data file on that tape.

LOAD FROM DESK

In order to bring in a program from a device other than the tape, a

device number is used. Folfowing the name of the program, type a

comma (,) and the number (or variable containing the number). The

cassette is device number 1. The disk drive is device numbers. See

the manual of the device for its number.

If the program with that name is not found on the device, a FILE

NOT FOUND ERROR will result. This doesn't happen on tape,

since the VIC has no way of sensing that there are no more

programs on a tape. It is possible to put an end-of-tape marker on

the tape, using the SAVE or OPEN statements, and if the VIC reads

this marker while searching a tape, an error message appears.

The VIC will automatically LOAD the program into the beginning

of BASIC program memory, at location 4096 in a machine without

an extra 3K of memory, or at 1024 with the extra 3K. For certain

applications this may not be convenient. By following the device

number with a comma and the command number 1, the VIC will be

sure to LOAD the program in the same spot in memory from which it

was SAVEd.

LOAD can be used as a statement in a BASIC program. The

program will be RUN as soon as LOADing is finished. Variables

used in the first program will not be cleared as long as the new

program is shorter in length than the older one. If a longer program

is LOADed on a short one, the BASIC program lines will over-write

the variables, and changing a variable will mess up the program.

Note that using an asterisk can save loading time (see

examples).

EXAMPLES:

LOAD Reads in the next program from tape.

LOAD "HELLO" Searches tape until the program called

HELLO is found, then it is LOADed.

LOAD AS Uses the name in AS to search,

3

I

I

LOAD +1*"p 8 LOADs first program from disk.

LOAD "AB*'\ 8 Loads first program beginning with AB.

LOAD L1HELLO"r S Looks for a program on device 8 (disk

drive},

LOAD "71,1 Looks for the first program on tape, and

LOADs it into the same part of memory that

it came from.

10 LOAD"NEXT'\ 8 Finds the program called NEXT on device

8, LOADs, then RUNs it.

Because of possible problems with old tapes or misaligned

recorders, it is possible that the program will not LOAD correctly.

The VIC stores two copies of the program on the tape. If they don't

match, the message LOAD ERROR is displayed. The program may

LIST correctly, but probably won't. In any case, there is most likely

some problem, some section of memory that is not right, and the

program should be re-LOADed. It is wise to make an extra copy of

any program, in case you run into this problem at some time.

In the case o1 a very bad LOAD, some of the important memory

locations inside the VIC may be changed. If you get weird results

after a LOAD, like the VIC not understanding normal BASIC

commands anymore, you'll have to turn the VIC off and then on

again.

NEW

Format: Abbreviation: Screen Display:

NEW None None

NEW is used to tell the VIC to erase a current program from

memory so a different program can be used. Unless the program is

stored (on tape or disk), ft will be lost unless it is typed in again from

the beginning. For this reason, you should BE CAREFUL when

using this command! Not clearing out an old program before typing

in a new one can result in a confusing mixing of the two programs.

NEW can also be used as a statement within a program. When

this instruction is executed, the program in memory Is erased, and

the program stops. This is not a good programming technique,

especially if you RUN the program and it erases itself while you're

writing or debugging it.

EXAMPLE:

NEW Clears the program & variables.

10 NEW Performs the NEW operation and stops the program.

RUN

Format: Abbreviation: Screen Display:

HUN [line number] rKUBMu R Q

This command causes a BASIC program to begin operating. The

command RUN by itself starts the program at the lowest numbered

line. All variable values are cleared when this command is given.

RUN followed by a number causes the program to start working

from another line than the lowest numbered one. If that line number

does not exist, the message UNDEF'D STATEMENT ERROR

appears. RUN followed by a variable will first clear the value of that

variable, and try to start the program at line 0. il it exists.

RUN can also be used as a statement within a program. Keep in

mind that all variables are cleared when this statement is executed.

i
EXAMPLES:

RUN Starts at the beginning

RUN 100 Starts at line 100

RUN X Starts at line 0, or UNDEF'D

STATEMENT ERROR if no line 0

SAVE

Format: Abbreviation: Screen Display:

SAVE ["filename", S^S"?prJ A S J5
device, command]

The SAVE command stores a program currently in memory on

tape or disk. The program being SAVEd is not affected and remains

fn the VIC's memory after the save operation. Programs on tape are

stored twice automatically, so the VIC can check for errors when

LOADing the program back in.

The command SAVE all by itself sends the program to the

cassette deck without a name. When the command is given, the

VIC wil! say:

PRESS RECORD AND PLAY ON TAPE

Holding down the RECORD button, press PLAY, and the VIC will

say:

OK

SAVING

10

and begin storing. The VIC cannot check the RECORD key: it can

only sense that the tape is moving, so be sure to press RECORD, if

PLAY was already pressed, no message appears.

When the program has been SAVEd, the VIC will give the
message:

READY.

The VIC has no way of searching for a blank spot on the tape, but

just records wherever it is, erasing any information that may have

been there. However, the VERIFY command can be used to find
the end of the last program.

SAVE can be followed by a program name in quotes or in a string

variable. The VIC will then write the program name before the

program on the tape, which lets the VIC find it more easily.

The program can be SAVEd on a device other than the tape deck

by giving a device number. To do this, put a comma after the

program name, and then the number of the device. The cassette

deck is device number 1, and the disk is number 8. (See examples.)

It is possible to instruct the VIC to SAVE a program so it will not be

moved in memory when LOADed. Using command number 1 after

the device number will do this. This is useful when working with

different memory configurations which may cause VIC memory

locations to shift.

To prevent a user from accidentally trying to read past the last

information on the tape, the VIC can also write an end-of-tape

marker after the program. To do this, follow the device number with

a comma and command number 2. When the VIC finds this marker,

it will stop and show the message DEVICE NOT PRESENT
ERROR.

Command number 3 is a combination of 1 and 2, telling the

program on tape not to relocate and to put an end-of-tape marker

after the program.

SAVE can also be used as a statement within a BASIC program.

When this statement is hit, the program will be SAVEd normally,

with the usual prompts appearing on the screen. The program

resumes normally after the SAVE.

EXAMPLES

SAVE Stores program on tape without name

SAVE "HELLO" Stores on tape with name HELLO

SAVE AS Stores on tape with name in AS

SAVE ■1HELLO",8 Stores on device number 8 (disk drive)

SAVE "HELLO",! ,1 Won't relocate HELLO upon re-LOADing

11

SAVE "HELLO",1,2 Puts an end-of-tape marker after the

program.

SAVE "HELLO",! ,3 Won't relocate & end-oMape marker

10 SAVE"HELLO" Saves the program, then goes on with the

next program line.

I
VERIFY |

Format: Abbreviation: Screen Display:

VERIFY ''filename", v|h;!I;T|e V [,
device

This command checks the program on tape or disk against the

program in the VIC's memory. VERIFY is normally used right after a

SAVE, to make sure the program was stored correctly on the tape

ordisk. VERIFYing a program after it has been LOADed is useless,

since the same incorrect program could be in both places. i

When you tell the VIC to VERIFY, this message shows:

PRESS PLAY ON TAPE

Once the tape is moving, the VIC checks the program against

memory, reading until the end of the program. If the copies match,

the VIC says:

OK

READY. '

If there is a problem, you will see this message: .

7VERIFY ERROR

In this case, you should immediately SAVE the program on a

different tape or disk and try again.

The format of the VERIFY command is similar to the LOAD

command. A program name can be given either in quotes or a string

variable, and the VIC will search for that program. If a comma and a

device number follow the name, the VIC will look at the device

designated.

VERIFY is also used to position a tape just past the last program,

so a new program can be added to the tape without over-writing an

older one. Just VERIFY with the name of the last program there; the

VIC searches, checks the program, and stops with a VERIFY

ERROR. However, your program is still in memory, and now the

tape is at a blank spot. You can SAVE without worry.

12

I

EXAMPLES:

VERIFY Checks the first program on tape.
VERIFY "HELLO" Searches for HELLO, then checks

VERIFY "HELLO",8 Looks on device a for the program.

I

1

13

STATEMENTS

ICLH

DATA

DEF FN

DIM

END

FOR ... TO ... STEP

GET

GOSUB

GOTO or GO TO

IF . . THEN

INPUT

LET

NEXT

ON

POKE

PRINT

READ

REM

RESTORE

RETURN

STOP

SYS

WAIT

CLR

Format: Abbreviation: Screen Display:

CLR C Bfffil L C G

This statement clears out any variables that have been defined,

un-DIMensions any arrays, and RESTORES the DATA pointer

back to the beginning. This makes available all the RAM memory

that the variables had used so that it can be used for something

different. The RUN command automatically performs the CLR

operation, asdoesLOADing a new program or doing a NEW. Don't

confuse this statement with ihe ImII key, which clears the screen.

14

I

!

EXAMPLE:

100 A a 1014

110 CLR

120 PRINT A

When RUN. this program PRINTs a zero on the screen.

DATA

Format: Abbreviation: Screen Display:

DATA value dHJTHBa d V

[■ value, . . . , value]

The DATA statement holds information that will fill variables in a
READ statement. Any type of information can be stored here,
separated by commas. If a comma, space, or colon are to be used

as data, they must be enclosed in quote marks ("). Two commas

with nothing in between will be read as zero, or an empty string.

Note: the information in brackets is optional.

The line containing the DATA statement doesn't actually have to
be executed while RUNning the program, so most programmers
leave all the DATA statements at the end of the program, out of the
way.

EXAMPLE:

10 READ A : PRINT A

20 READ A, B, C : PRINT A; B; C

30 READ AS : PRINT A$

40 FOR L = 1 to 5 : READ A : PRINT A; : NEXT

50 READ AS, A, B, B$: PRINT AS, A. B, BS

60 END : REM YOU NEVER ACTUALLY HAVE TO HIT THE
DATA STATEMENTS!

960 DATA 1

970 DATA 1,2,3

980 DATA ABC

990 DATA 2,3,5,7,11,"HELLO" -1.2445E-5, 69.7767. "A, B, C"

DEF FN

Format: Abbreviation: Screen Display:

DU.F FN [name] D^fctlE D [!

(variable) - formula

15

When a long mathematical formula is used several times in

different lines of a program, program memory and typing time can

be saved by using a defined function for the formula. The function is

then used throughout the program in place of the lengthy formula.

The name of the function will be the letters FN and any variable

name you choose, one or two letters long. The DEF FN statement

must be executed at least once for the program to use it, so this

statement is normally placed at the beginning of the program.

The function name is followed by a variable name inside

parentheses. Next comes an equal sign, and then the formula.

Here's an example of a simple formula definition, with an

example of its use in the program.

EXAMPLE 1:

10 DEF FNA(X) = 7 * X

20 PRINT FNA(1}

30 PRINT FNA(3)

The result of line 20 is 7, and the result in line 30 is 21.

EXAMPLE 2:

10 DEF FNA(X) = INT(RND(1)*6) + 1

20 PRINT FNA(10)

When the function in this example is used in the program, the

value of the number in parentheses in line 20 doesn't have any

effect on the result. This is because in line 10 the variable (X) in the

parentheses doesn't appear in the formula on the right.

The next example does use the variable name in the formula.

EXAMPLE 3:

10 DEF FNA(X) = INT(RND(1)-X} + 1

20 PRINT FNA(10)

In this case, the number in the parentheses in line 20 does affect

the result. The number in the parentheses in line 20 is the largest

random number that will be picked.

The result of a defined formula must always be a number; there

are no defined functions for string variables.

I

16

]

DIM

Format;

DIM variable

(number.

[variable (

Abbreviation:

lull1
. . . , number),

number, . . . , number), .

Screen

D

■■]

Display:

This statement defines an array or matrix of variables, which

allows you to use the variable name with a subscript. The subscript

points to the element in the array being used. The lowest element

number in an array is zerot and the highest is the number given in

the DIM statement. If an array variable is used without a DIM

statement to create it. it is automatically DIMensioned to 10 in each

dimension.

Let's suppose we wanted to keep track ot the score of a football

game. There are 2 teams, and four quarters plus a possible

overtime quarter in the game. We could use a matrix to hold the

scores fn each quarter. Here is a program that asks you for the

score of each team in each quarter:

EXAMPLE:

100 DIM S(1,5) , T$(1)

110 INPUT "TEAM NAMES1' ; T$(0), T$(1)

120 FOR Q - 1 TO 5

130 FOR T - 0 TO 1

140 PRINT TS(T), "SCORE IN QUARTER" Q

150 INPUT S(T,Q)

160S(T,0) = S(T, 0) + S(Tr Q)

170 NEXTT,Q

180 PRINT CHRS(147) "SCOREBOARD"

190 PRINT "QUARTER11;

200 FOR Q = 1 TO 5

210 PRINT TAB(CT2 +9) O;

220 NEXT

230 PRINT TAB (15) "TOTAL"

240 FOR T = 0 TO 1

250 PRINT TS(T);

260 FOR Q = 1 TO 5

270 PRINT TAB (Q*2 +9) S(T. Q);

280 NEXT

290 PRINT TAB(15) S(T.O)

300 NEXT

The element numbers in every dimension start at 0 and end at the

number in the D!M statement. The number of elements created in

any dimension is the maximum subscript number PLUS 1. The total

number of elements is equal to the product of the number of

elements in ah dimension multiplied together.

There may be any number of dimensions and any number of

elements in an array, limited only by the amount of RAM memory

that is available to hold the variables. The array may be made up of

normal numeric variablesI as shown above, or o1 strings or integer

numbers. If the variables are to be other than normal numeric,

simply use the S or % signs after the variable name to indicate string

or integer variables.

It's easy to calculate the amount oi memory that will be used up

by an array:

MEMORY USED - 5 bytes for variable name

2 bytes for each dimension

2 bytes/element for integer variables

5 bytes/element for normal numeric variables

3 bytes/element for string variables

1 byle for each character in each string

element

END

Format; Abbreviation: Screen Display: i

END eRV^|n E0

This statement will finish the program when RUNning and return

complete control of the VIC to the person operating it. The CONT

command can be used to resume execution of the program after

the END statement was reached, because no variables or pointers

are cleared.

The END statement results in the message: READY.

The difference between STOP and END statements is slight: the

STOP statement displays the message:

BREAK IN LINE XXX

Neither STOP nor END is required to appear at any point in the

program in VIC BASIC, because a program running out of lines to

execute will END all by itself.

i;

FOR ... TO ... STEP . . .

Format: Abbreviation: Screen Display:

FOR variable = F^.'Lrffi|o Ff

start TO limit [STEP increment]

This is a special BASIC statement that lets you easily use a

variable as a counter. You must specify certain parameters: the

variable name, its starting value, the limit of the count, and how

much to add during each cycle.

Here is a simple BASIC program that counts from 1 to 10,

PRINTing each number and ENDing when complete, and using no

FOR statements:

100 L = 1

110 PRINT L

120 L - L -f- 1

130 IF L <- 10 THEN 110

140 END

Using the FOR statement, here is the same program;

100 FOR L - 1 TO 10

110 PRINT L

120 NEXT L

130 END

As you can seer the program is shorter and easier to understand

using the FOR statement. Here is a closer look at the parameters,

to see how everything works.

The variable can be any numeric variable name except an array

variable. When the program reaches a FOR statement, variable is

set to the value of start. The program proceeds with the statements,

until a statement containing the word NEXT is reached.

At that point, increment is added to variabEe's value. The STEP is

optional, and if there is no STEP shown increment is assumed to be

4-1,

After increment has been added to variable, the vaJue of variable

is compared to limit. It the limit has not been exceeded the program

continues with the line after the FOR statement. If the limit has been

passed, the line to be executed is the line following the NEXT

statement. Note: if the STEP value is positive, variable will exceed

limit when its value is greater than limit, and if the STEP value is

negative, the variable must be less than limit to end the

count. The loop will always be executed at least once, re

gardless of the values in "start" and Lliimit".

19

I

I

EXAMPLE:

100 FOR L - 100 TO 0 STEP -1

100 FOR L = PI TO 6*PI STEP .01

100 FOR AA = 3 TO 3

GET

Format: Abbreviation: Screen Display:

GET variable gI:^;;" |e G £j

This statement lets you inpul one character at a time from the

keyboard. Whatever character was hit goes into the variable. If no

key was pressed, a zero is placed in a numeric variable, or an

empty value (Ih") in a string variable. This differs from the INPUT

statement in one major respect: if no key is typed, the program

continues running here, and in the INPUT statement it waits for the

user to type something.

The GET statement is usualry placed in a loop to wait for the

keystroke.

EXAMPLE 1:

10 GET AS: IF AS = "" THEN 10

The GET can also be used to allow the program to continue

processing while waiting for data. Example 2 is a simple GET editor

with a blinking cursor.

EXAMPLE 2:

10 C = 0 : Q = 18

20 GET A$: C = C + 1

30 IF C = 10 THEN Q = 164 - Q : C = 0

40 PRINT CHRS(Q) CHRS{32} CHRS(146) CHRS(157);

50 PRINT AS; : GOTO 20

GOSUB

Format: Abbreviation: Screen Display:

GOSUB line number GoBjvi Is GO [vj

I
20

I

This is a specialized form of the GOTO statement, with the

important difference that GOSUB remembers where it came from.

When the RETURN statement (different from the RETURN key on

the keyboard) is reached in the program, the program jumps back

to the statement immediately following the original GOSUB

statement from which it came.

The major use of a subroutine {GOSUB really means GO to a

SUBroutine) is when there is a small section of program that is used

by different sections of the program. By using subroutines rather

than repeating the same lines over and over at different places in

the program, you can save lots of program space. In this way,

GOSUB is similar in use to DEF FN: DEF FN lets you save space

when using a formula, and GOSUB saves space when using a

several-line routine.

Here is an inefficient program that doesn't use GOSUB:

100 PRINT "THIS PROGRAM PRINTS'1

110 FOR L - 1 TO 500 : NEXT

120 PRINT "SLOWLY ON THE SCREEN"

130 FOR L = 1 TO 500 : NEXT

140 PRINT "USING A SIMPLE LOOP"

150 FOR L - 1 TO 500 : NEXT

160 PRINT "AS A TIME DELAY."

170 FOR L = 1 TO 500 : NEXT

Here is the same program using GOSUB:

100 PRINT "THIS PROGRAM PRINTS'1

110 GOSUB 200

120 PRINT "SLOWLY ON THE SCREEN"

130 GOSUB 200

140 PRINT "USING A SIMPLE LOOP"

150 GOSUB 200

160 PRINT "AS A TIME DELAY."

170 GOSUB 200

180 END

200 FOR L = 1 TO 500 : NEXT

210 RETURN

Each time the program executes a GOSUB, the line number and

position in the program line are saved in a special area called the

"stack," which takes up 256 bytes of your memory. This limits the

amount of data that can be stored in the stack. Therefore, the

numberofsubroutine return addresses that can be stored is limited,

and care should be taken to make sure every GOSUB hits the

corresponding RETURN, or else you'll run out of memory even

though you have plenty of bytes free.

21

GOTO or GO TO

Format: Abbreviation: Screen Display:

GOTO line number GH![T~i|o G |~~

This simple statement allows the BASIC program to execute

lines out of numerical order. The word GOTO followed by a number

will make the program jump to the line with that number. GOTO

cannot be followed by a variable, but must have the line number

typed after the word GOTO.

EXAMPLE 1:

10 GOTO 10

Notice that the loop in the example never ends, since the

program keeps running the same line over and over. This is called

an "infinite loop," and can be utilized when you want a program to

stop in place and wait. The only way to stop an infinite loop is with

EXAMPLE 2:

10 PRINT "HELLO";

20 GOTO 10

IF ... THEN

Format Choices: Abbreviation: Screen Display:

IF expression THEN line number None None

IF expression THEN statement

This is the statement that gives BASIC most of its 'Intelligence,11

the ability to evaluate conditions and take different actions

depending on the outcome.

The word IF is followed by an expression, which can include

variables, strings, numbers, comparisons, and logical operators.

The word THEN is followed on the same line by either a line number

or one or more BASIC statements. When the expression is false,

everything after the word THEN on that line is ignored* and

22

i

execution continues with the next line number in the program. A

true result makes the program either branch to the line number after

the word THEN or execute whatever other BASIC statements are

found on that line.

EXAMPLE 1:

100 INPUT "TYPE A NUMBER1'; N

110 IF N <= OTHEN 200

120 PRINT "SQUARE ROOT-" SQR(N)

130 GOTO 100

200 PRINT "NUMBER MUST BE >0"

210 GOTO 100

This program prints out the square root of any positive number.

The IF statement here is used to validate the result of the INPUT.

When the result o(N < - 0 is true, the program skips to line 200,

and when the result is false the next line to be executed is 120. Note

that GOTO is not needed with IF ... THEN, as in line 110 where

THEN 200 actually means THEN GOTO 200.

EXAMPLE 2:

100 FOR L = 1 TO 100

110 IF RND(1} < .5 THEN X - X + 1 : GOTO 130

120 Y = Y + 1

130 NEXT L

140 PRINT "HEADS- " X

150 PRINT "TAILS = " Y

The IF in line 120 tests a random number to see if it is less than .5.

When the result is true, the whole series of statements following the

word THEN is executed: first X is incremented by 1, then the

program skips to line 130. When the result is false, the program

drops to the next statement, line 120.

EXAMPLE 3:

100 PRINT CHRS(147);

110 FOR X = 1 TO 23

120 FOR Y - 1 TO 22

130 IFX = 23ANDY = 22THENPRINTCHR$(157)CHR$(148);
140 PRINT "Z";

150 NEXT:NEXT

160 GOTO 160

23

I

EXAMPLE 1:

100 INPUT A

110 INPUTS, C, D

120 INPUT "PROMPT11; E

i

This program will fill the entire screen with Zs, including the

bottom right corner, and then freeze. The IF in tine 120 checks for

both X = 23 and Y = 22 being true, or else the program just drops

through to line 130. When the conditions aretrue, the VIC PRINTS a

cursor left and an insert.

By the way, this really is a trick to PRINT in the lower right earner

in the screen without forcing the screen to scroll up a line. This is

because you never really PRINT in that position, you insert in the

position before that, which pushes the character into position.

For those of you using cartridges that add extra commands to

BASIC, like "Super Expander" and ''Programmers Aid," make sure

thai you put a colon between the word THEN and one of the exira

commands.

EXAMPLE 4;

100 IF X = 4 THEN : GRAPHIC 4

INPUT |

Format: Abbreviation: Screen Display:

INPUT ["prompt";] None None

variable

This is a statement that lets the person running the program

"feed" irrformation into the computer. When executed, this

statement PRINTS a question mark (?) on the screen, and positions

the cursor 2 spaces to the right of the question mark, Now the

computer waits, cursor blinking, for the operator to type in the

answer and press the RETURN key.

The word INPUT may be followed by any text contained in quote

marks O- This text is PRlNTed on the screen, lollowed by the

question mark.

After the text comes the name of one or more variables

separated by commas. This variable is where the computer stores

the information that the operator types. The variable can be any

legal variable name, and you can have several different variable

names, each for a different input.

i

I

I

When this program runs, the question mark appears to prompt

the operator that the VtC is expecting an input for line 100. Any

number typed in goes into A, for later use in the program. If the

answer typed was not a number, the ?REDO FROM START

message appears, which means that a string was received when a

number was expected. If the operator just hit RETURN without

typing anything, the variable's value doesn't change.

Now the next question mark, for line 110, appears. If we type only

one number and hit RETURN, the V!C will now display 2 question

marks (??), which means that more input is required. You can just

type as many inputs as you need separated by commas, which

prevents the double question mark from appearing. If you type

more data than the INPUT statement requested, the ?EXTRA

IGNORED message appears, which means that the extra items

you typed were not put into any variables.

Line 120 displays the word PROMPT before the question mark

appears. The semicolon is required between the prompt and any

list of variables. Note: The only way to end a program during

an INPUT statement is to hold down the RUN/STOP key and

hit RESTORE.

EXAMPLE 2:

10 PRINT "INPUT A WORD":INPUT AS

20 PRINT -YOUR INPUT WAS"AS

30 GOTO 10

LET

Format: Abbreviation: Screen Display:

expression

The LET statement is used to set a variable to a value. The value

can be a constant (like 5) another variable (like C), or a complex

formula (like PPR-3). The LET statement also works with string

variables.

Since the LETstatement is used so often in BASIC programs, the

word 'LET' has been made optional, since it did nothing but take up

memory. Advanced programmers always leave it out.

LET B=1 This is the same as B=1

A = 3'3-33-B A will equal 41

AS = "CAT" - "DOG" AS will equal "CATDOG"

25

NEXT

Format: Abbreviation: Screen Display:

NEXT [variable , variable N JfrljE N f"
, . . . , variable]

This statement compleies a loop that was started by a FOR

statement. If the word NEXT is not followed by a variable nameh the

loop completed is the last one thai was started. If there is a variable

name given, that loop is finished. If the loop being finished wasn't

the last one started, any loops between the last one and the one

specified in the NEXT statement are lost.

Care must be taken when placing loops within other loops, to

complete them properly. Here is an example of correct placement

("nesting'*) of loops. r-

EXAMPLE 1:

10 FOR L = 1 TO 100

20 FOR M = 1 TO 10

30 NEXT M

40 NEXT L

Notice that the first loop finished is the last one that was started.

Here are some general examples of the NEXT statement.

EXAMPLE 2: i
NEXT

NEXT J

NEXT I, J, K

ON

Formats: Abbreviation: Screen Display:

ON variable GOTO number [, number number]

ON variable GOSUB number [, number number]

This statement allows the program to choose from a list o1 line

numbers to go to. If the variable has a value of 1, the first line

number is the one chosen. If the value is 2, the second number in

the list is used, and so on. If the value in the variable is less than 1 or

greater than the number of line numbers in the list, the program just

26

ignores the statement and continues with the statement following

the ON statement.

EXAMPLE 1:

ON X GOTO 100, 130, 180, 220

ONX+ 3 GOSUB 9000,20,9000

ON is really an under-used variant of the IF ... THEN . . .

statement which can send the program to one of many possible

lines. Using formulas and logical operators, one ON statement can

replace a whole list of IF statements.

EXAMPLE 2: IF statements

IF A-7 THEN 400

IF A = 3 THEN 900

IF A < 3 THEN 1000

IF A > 7 THEN 100

EXAMPLE 3: ON ... GOTO . . .

ON-(A-7) -2* (A-3) -3*(A<3) -4* (A>7) GOTO 400, 900,

1000, 100*

IF A = 7 is true,

the expression's value

is -1, and its value

is 0 if false!

POKE

Format: Abbreviation: Screen Display:

POKE location, value Pi:^.[Tflo P |~~

This statement allows you to alter the value of any RAM location

in memory. There are a possible 65,536 locations in the VIC's

memory, and in an unexpanded VIC a little more than 5K of them

are RAM and can be changed. Your 5K of RAM is in locations

numbered from 0 to 1023 and from 4096 to 8191. The memory

maps in Chapter 3 describe the contents of the first 1K. Your BAS IC

program, variables, and the screen memory all go in the 4K area.

27

Color RAM is an extra half-K block of memory starting at 38400.

There are also alterable areas in some of the chips, like the VIC chip

from 368G4 to 36879 and the 6522 chips above that.

Because each memory location holds 1 byte, which can have a

value from 0 to 255, only numbers in that range can be POKEd into

memory.

EXAMPLE:

POKE 36879 , 8

POKE A , B

PRINT Abbreviation: ?

There is no statement in BASIC with more variety than the PRINT

statement. There are so many symbols, functions, and parameters

associated with this statement that it might almost be considered as

a language of its own within BASIC, a language specially designed

for writing on the screen.

Quote mode

Once the quote mark (SHIFT 2) is typed, the cursor controls stop

operating and start displaying reversed characters which actually

stand for the cursor control you are hitting. This allows you to

program these cursor controls, because once the text inside the

quotes is PRINTed they perform their functions. The DEL key is the

only cursor control not affected by "quote mode."

1, Cursor movement

The cursor controls which can be "programmed" in quote mode

are;

Key Appears as

■ i

S i

m

D I

I

If you wanted the word HELLO to PRINT diagonally from the

upper reft corner of the screen, you would type:

PRINT"

or

PRINT1

H

H E [Q] L O"

2. Reverse characters

Holding down thej-i1': ■■ 1 <€■■■/ and hitting Ifjjf^will cause a R!

to appear inside the quotes. This will make alt characters start

printing In reverse video (tike a negative of a picture). To end the

reverse prrnting^iit | ':■ i | Atj4- which prints a or else

PRINT a^S |i J. (Just ending the PRINT statement without a

semicolon or comma will take care of this.)

3. Color controls

Holding down the CTRL key with any of the 8 color keys will make

a special reversed character appear in the quotes. When the

character is PRINTed, then the color change will occur.

Color Appears as

ff you wanted to PRINT the word HELLO in cyan and the word

THERE in green, type:

PRINT ■

or

PRINT "

HELLO

HELLO \T THERE"

29

THERE"

4. Insert mode ^^

The spaces created by using the insert ■■■ key have some of

the same characteristics as quote mode. The cursor controls and

color controls show up as reversed characters. The only difference

is in the BB a=-d WjA BB, which performs its normal function

even in quote modeT now creates the T] . And ^m, which created

a special character in quote modeT inserts spaces normally.

Because of this, it is possible to create a PRINT statement

containing DELetes, which cannot be PRINTed in quote mode.

Here is an example of how this is done:

10 PRirsTTHELLO"

which displays as

10 PRINT'HELLO[T][t]P"

When the above line is RUN, the word displayed will be HELP,

because the last two letters are deleted and the P is put in their

place.

WARNING: The DELetes will work when LISTing as well as

PRINTing. so editing a line with these characters will be difficult.

The "insert mode" condition is ended when the RETURN (or

SHIFT RETURN) key is hit, or when as many characters have been

typed as spaces were inserted.

5. Other special characters

There are some other characters that can be PRINTed for

special functions, although they are not easily available from the

keyboard. In order to get these into quotes, you must leave empty

spaces forthem in the line, hit RETURN or SHIFT RETURN, and go

back to the spaces with the cursor controls. Now you must hit CTRL

RVS ON, to start typing reversed characters, and type the keys

shown below:

Function Type

SHIFT

switch

switch

disable

enable

RETURN

to tower case

to upper case

case-switching

case-switching

keys

keys

SHIFT

N

SHIFT

H

I

M

N

The SHIFT RETURN will work in the LISTing as well as

PRINTing, so editing will be almost impossible if this character is

used. The LISTing will also look very strange.

30

I

READ

Format: Abbreviation: Screen Display:

READ variable list R HfflHI E R —;

This works with the DATA statement to fill variables with values
stored within the program. The information Is usually in the form of a

list that is READ in at the beginning of the program, or a table that is
re-READ during the program. READ works just like INPUT, except

that the information comes from DATA statements instead of the
person working the program.

EXAMPLE:

10 READ A, B; CS

20 DATA 1, 2, HELLO THERE!

REM

Format: Abbreviation: Screen Display:

REM any text None None

This statement makes your program more easily understood
when LISTed. It is a reminder to yourself to telJ you what you had in

mind when writing each section. For instance, you might tell what a

variable is used for, what date the program was written, or some

other useful piece of informatfon. The REMark can be "any-text,
word, or character, including the colon (:) or BASIC keywords!
Therefore, the REM statement is the fast one on a Jine that the
program sees.

ff you try to use graphic characters in a REM statement without
using a quote mark Q first, when you LfST the line youJI see BASIC

keywords instead of the graphic characters. This is because the
VIC thinks these characters are the "tokens" for those commands.

The BASIC tokens are discussed in the last part of this chapter.

EXAMPLE;

REM PROGRAM BY SUE M. 10/6/81 Good example
REM AS HOLDS 22 CURSOR DOWNS Good example
LET A- 1 : REM PUT A1INA Bad example

31

RESTORE

Format: Abbreviation: Screen Display:

RESTORE Re|:> iiji |s RE [v]

I
This statement sets the DATA statement pointer back to the first

DATA statement in the program. Each time you READ the DATA,

the pointer advances through ail the items in the first DATA

statement, then through the items in the next DATA statement, and

so on through all the DATA statements in the program. In order to

re-READ the items, use the RESTORE statement.

EXAMPLE:

10 PRINT "THIS IS THE PROGRAM"

20 GOSUB 1000

30 PRINT "PROGRAM CONTINUES'1

32

I

EXAMPLE:

10 DATA 1, 2, 3, 4

20 DATA 5, 6, 7, 8

30 FOR L = 1 TO 6

40 READ A : PRINT A

50 NEXT

60 RESTORE

70 FOR L=1 TO 8

SO READ A : PRINT A

90 NEXT

RETURN

Format: Abbreviation: Screen Display:

RETURN RE^I^T RE '] j

This statement completes a subroutine that was begun with the

GOSUB statement. When the GOSUB is performed, the ViC

remembers which line it came from. When it later hits a RETURN

statement, it goes back to the statement right after the original

GOSUB. This is similar to a GOTO, except the GOSUB subroutine

can be performed and the program continued from the original

GOSUB line.

20 GOSUB 1000

I

40 GOSUB 1000

50 PRINT "MORE PROGRAM'1

60 END

1000 PRINT THIS IS THE GOSUB'1: RETURN

STOP

Format:

STOP

Abbreviation: Screen Display

This statement will halt a program and return control to the user.

The onfy difference between the STOP and END statements is that

the message BREAK IN LINE XXXX appears when STOP is used,

just as if the user had pressed the UiiJ Hey.

EXAMPLE:

100 STOP

SYS

Format:

SYS location

Abbreviation

SHIFT

Screen Display

This is the most common way to mix a BASIC program with a

machine language program. The machine language program

begins at the location given in the SYS statement. When the

machine language instruction RTS (return from subroutine) is

reached, the program jumps back to the BASIC program, right after

the SYS statement. A machine language program can be POKEd

into memory from BASIC or created with the aid of

EXAMPLE:

SYS 64802

POKE 4400 96 : SYS 4400

resets the VIC from power-up

returns immediately

33

WAIT

Format: Abbreviation: Scraen Display: I
WAIT location, Wp.}:!i-|A W [*]

maski [, mask2]

For most programmers, this statement should never be used. It

causes the program to halt until a specific memory location's bits

change in a specified way. This is used for arcane I/O operations

and almost nothing else.

The WAIT statement takes the value in the memory location and

performs a logical AND operation with the value in maski. If there is

a mask2 in the statement, the result of the first operation is

exclusive-ORed with mask2. This sounds confusing, but there's an

easier way to look at it. The maski value "filters out'r any bits that

we don't want to test. Where the bit is 0 in maski, the corresponding

bit in the result will always be 0. The mask2 value will flip any bits, so

we can test for an off condition as well as on. Any bits being tested

for a 0 should have a 1 in the corresponding position in mask2.

EXAMPLE:

WAIT 36868 , 144 , 16

What are we testing for here? Here's a binary look at our two

masks:

144 = 10010000

16 = 00010000

This WAIT statement will halt the program until either the 128 bit

is on or the 32 bit is off.
i

;
34

I/O STATEMENTS

CLOSE

CMD

GET#

INPUT#

OPEN

PRINT#

CLOSE

Format: Abbreviation: Screen Display:

CLOSE fitef CL fcil^B O CL □

This closes the file that was started in an OPEN statement. It is

recommended that a PRINT# to that file be performed before

closing the file, to make sure that all data has been transmitted. Not

closing an OPEN file results in a FILE OPEN ERROR,

[

EXAMPLE:

OPEN 1,4 :

CMD

Format:

CMD file*

PRINT#1 , "HI THERE!"

Abbreviation:

cKkiijjm

: CLOSE 1

Screen Display:

This changes the normal output device of the VIC from the

screen to the file specified. In this way, data and LISTings can be

sent to other devices, like the printer, disk, or tape drive. When

finished transmitting, to reset output to the screen, do a PRINT#

and CLOSE the file.

EXAMPLE:

OPEN 1,4: CMD 1 : PRINT "HELLO THERE!lh :PRINT#1 : CLOSE 1

35

GET#

Format:

GET# file#,

variable

Abbreviation:

None

Screen Display:

None

This statement receives data one byte at a time from any

OPENed device. If no data is available, it works the same as the

GET statement, returning a null value. The INPUT# statement can

get more than one character, and will get all the characters up to a

carriage return (CHR$(13)). The GET# will receive any characters,

1 at a time, including special characters like the carriage return and

quote marks.

EXAMPLE:

tO OPEN 1, 3

20 PRINT CHRS{147) "HELLO THERE11 CHRS{19);

30 FOR L = 1 TO 22

40 GET#1, BS : A$ = A$ + BS

50 NEXT : PRINT A$: CLOSE 1

If you examine A$ when this program is finished, you'll see that

the last character is a CHRSI13), a carriage return, which

terminates the line.

input# i

Format: Abbreviation: Screen Display: r

input* f]ie#, iK:m:- In 10

variable 1[, variable 2, etc.]

This usually is the fastest and easiest way to retrieve data that

was stored in a file on tape or disk. The data is in the form of whole

variables, as opposed to the one-byte-at-a-time method of GET#.

First the file must have been OPENed, then you can use INPUT# to

fi]| your variables.

EXAMPLE:

10 OPEN1, 1, 0, "TAPE FILE NAME"

20 PRINT 'TILE IS OPEN OK'1

30 INPUT# 1, AS, B5

40 CLOSE 1

36

[

I

When using the screen (device # 3) as an input device, the

INPUT# statement can be used to read any whole line of text

from the screen. The last character of the line will be read as

a CHR$(13), as if the screen hit the RETURN key at the end

of the line!

However, there are times when it's not aiways practical to use

1NPUT#, and some precautions are in order. If a siring variable put

on the file has certain characters, using INPUT# could have

unexpected results. If you use CHRS(13), or a comma (,) or

semicolon {;) or colon {:), the VJC will think that this marks the end of

your variable. If you put quote marks (CHRS(34)) at the start and

end of your string when it is written, it will come back intact.

IN PUT # may also be used to 'llNPUT" data without the question

mark (?) prompt being displayed. This is very useful for a variety of

applications, for example if you want to set up a graphic chart and

let the operator INPUT data to the chart without question marks

being displayed.

EXAMPLE:

10 OPEN 1,0

20 PRINT "ENTER A NUMBER'1: INPUT#1, A

30 PRINT A "TIMES" 5 "EQUALS'1 A*5

OPEN

Format: Abbreviation: Screen Display:

OPEN file#, oftTfr-Tlp O lII

[device#T command^ string]

This statement OPENs a channel for input and/or output to a

device. This device can be part of the VIC, like the screen and

keyboard, or an accessory, like the tape recorder, printer, or disk

drive. When OPENing a channel to an externaE device, the VIC sets

up a buffer for the data, and only transmits and receives whofe

buffers at a time.

The file# can be any number from 1 to 255, and is the same

number that will be used in the INPUT#, GET#, and PRINT*

statements to work with this device. The device# specifies which

device, and is set within that device.

37

DEVICE#

0

1

2

3

4

5

8

4-127

126-255

DEVICE

keyboard

cassette deck

RS232 device

screen

printer

printer

disk drive

serial bus device

serial bus device—send If after cr

I

I

The command* is specific to each different device. Here are

some of the command numbers:

DEVICE

Cassette

Disk

Keyboard

Screen

Printer

RS232

COMMAND#

0

1

2

1-14

15

1-255

1-255

0

7

EFFECT

read tape file

write tape file

write tape file, put EOT marker at

end

open data channel

open command channel

no effect

no effect

upper case/graphics

upper/lower case

See RS232 (Section 4)

The string at the end is sent to the printer or screen as if a

PRINTS were performed toihat device. With the cassette deck, it is

used for the filename, and with disk it can be a filename or some

control information.

EXAMPLE;

OPEN 1t 0

OPEN 1, 1, 0, ■name"

Read the keyboard

Read from cassette

33

I

I

OPEN

OPEN

OPEN

OPEN

OPEN

OPEN

OPEN

1,

1,

1,

1,

1,

1,

1,

1, 1,

1, 2.

2,0,

3

4.0,

4, 7,

5,0,

"name

"name"

■■string"

'"string"

"'string"

"string"

Write to cassette

Write to tape, put EOT marker

after file

Open channel to RS232 device

Read/write screen

Send upper case/graphics to

printer

Send upper/lower case to printer

Send upper/lower case to printer,

device# switched

OPEN 1, 8, 15, "command11 Send command to disk

PRINT#

Format:

PRINT# file*.

Abbreviation: Screen Display:

P □

variable list

This sends the contents of the variables in the list to the device

that was previously OPENed. They will be transmitted in the same

format as if PRINTed to the screen; if commas are used as

separators extra spaces will appear, rf semicolons are used no

space wilE appear, and a CHR$(13) ssthe last character sent \i there

isn't a comma orsemicolon at the end of the line. The easiest way to

write more than one variable to a file on tape or disk is to set a string

variable to CHR$(13), and use that string in between all the other

variables when writing the file.

EXAMPLE:

100 OPEN 1, 1, 1, "TAPE FILE"

110 R$ - CHRS{13)

120 PRINT#1r 1; R$; 2; R$; 3; R$; 4; RS; 5

130 PRINT#1h 6

140 PRINT#1, 7

The example shows how to write a tape file that can be easily

read back using JNPUT# statements, since each variable has a

CHR$(13) printed after it. You can also print1J," or";" to separate

the variables.

39

VIC 20 BASIC FUNCTIONS

The intrinsic functions provided by BASIC are presented in the

following paragraphs. The functions may be called from any

program without further definition.

Arguments to functions are always enclosed in parentheses. In

the formats given for the functions in this chapter, the arguments

have been abbreviated as follows:

X and Y Represent any numeric expression

I and J Represent integer expressions

XS and YS Represent string expressions

If a floating point value is supplied where an integer is required,

BASIC will round the fractional portion and use the resulting

integer.

VIC 20 BASIC Functions i
FUNCTION

ABS

ASC

ATN

CHRS

COS

EXP

FRE

INT

LEFTS

LEN

LOG

MIDS

PEEK

POS

RIGHTS

RND

Numeric

X

X

X

X

X

X

X

X

X

X

X

X

RESULT

String

X

X

X

X

[

[

I

SGN

SIN

SPC

SQR

STATUS

STRS

TAB

TAN

TIME

TIMES

USR

VAL

X

X

X

X

X

X

X

X

X

X

X

X

ABS

Format:

ABS(X)

Abbreviation: Screen Display:

Action: Returns the absolute value of the expression X.

EXAMPLE:

PRINT ABS (7*(-5))

35

READY.

ASC

Format:

ASC(XS)

Abbreviation Screen Display:

A [y\

Action: Returns a numerical value that is the ASCII code of the first

character ol the string XS. (See Appendix F for ASCI I codes.) If XS

is null, an "ILLEGAL QUANTITY" error is returned,

41

EXAMPLE:
I

10 XS = "TEST"

20 PRINT ASC(XS)

RUN

84

READY. I
See the CHRS function for ASCII-to-string conversion.

ATN

Format: Abbreviation: Screen Display:

ATN(X) A JP|Jt a \D

Action: Returns the arctangent of X in radians. Result \s in the

range — pi/2 to pi/2. The expression X may be any numeric type, but

the evaluation of ATN is always performed \n floating point binary.

EXAMPLE:

10 INPUT X

20 PRfNT ATN(X)

RUN

?3

1.24904577

READY.

CHR$

Format: Abbreviation: Screen Display:

CHR$(I) cBBBIh C (I

Action: Returns a string whose one element has ASCII code L

(ASCH codes are listed in Appendix F.) CHR$ is commonly used to

send a special character to the terminal. For instance, a screen

clear could be sent (CHR$(147)} to clear the CRT screen and return

the cursor to the home position, as a preface 1o an error message.

EXAMPLE:

PRINT CHRS(66)

B

READY.

42

I

I

See the ASC function for ASCIMo-numeric conversion.

COS

Format: Abbreviation: Screen Display:

COS(X) None None

Action: Returns the cosine of X in radians. The calculation of

COS(X) is performed in floating point binary.

EXAMPLE:

10X = 2*COS(.4)

20 PRfNT X

RUN

1.84212199

READY.

Abbreviation: Screen Display:

Effl

Action: Returns e to the power of X.X must be <= 88.02969191. If

EXP overflows, the "OVERFLOW" error message is displayed.

EXAMPLE:

10 X= 5

20 PRINT EXP (X-1)

RUN

54.5981501

READY.

Abbreviation: Screen Display:

fQ ^

Action: Arguments to FRE are dummy arguments. FRE returns the

number of bytes in memory not being used by BASIC.

43

EXAMPLE:

PRINT FRE(O)

14542

READY.

INT

Format; Abbreviation: Screen Display:

INT{X) None None

i

i

i

i

Action: Returns the largest integer < = X.

EXAMPLE:

PRINT INT(99.4343), INT(-12.34)

99 -13

Ready.

LEFT$

Format: Abbreviation: Screen Display;

SHIFTLEFTS(XS; I) LE

I
Action: Returns a string comprised of the leftmost I characters of

XS. I must be in the range 0 to 255. If I is greater than LEN(XS), Ihe

entire string (XS) will be returned. If 1 = 0, the null string (length zero)

is returned.

EXAMPLE:

10 AS = 'COMMODORE COMPUTER1'

20 BS = LEFTS{AS(9)

30 PRINT BS I

COMMODORE

READY.

Also see the MID$ and RIGHTS functions.

44

I

I

LEN

Format: Abbreviation: Screen Display:

LEN(X$) None None

Action: Returns the number of characters in XS. Non-printing
characters and blanks are counted.

EXAMPLE:

10XS = "COMMODORE COMPUTER"

20 PRINT LEN (XS)

18

READY.

LOG

Format: Abbreviation: Screen Display:

LOG(X) None None

Action: Returns the natural logarithm of X. X must be greater than

zero.

EXAMPLE:

PRINT LOG (45/7)

1.86075234

READY.

MIDS

Format: Abbreviation: Screen Display:

MID$(X$, I[,J])

Action: Returns a string of length J characters from XS beginning

with the tth character. I and J must be in the range 0 to 255. If J [s

omitted or if there are fewer than J characters to the right of the Ith

character, all rightmost characters beginning with the Ith character

are returned. If l>LEN(X$)p MIDS returns a null string.

EXAMPLE:

LIST I

10 A$ = "GOOD"

20 B$ = 1'MORNING EVENING AFTERNOON"

30 PRINT AS;MIDS(B$,9,7) ■

RUN

GOOD EVENING

READY.

Also see the LEFT$ and RIGHTS functions.

PEEK

Format: Abbreviation: Screen Display:

PEEK(I)

Action: Returns the byte (decimal integer in the range 0 to 255)

read from memory location I. I must be in the range 0 to 65535.

PEEK is the complementary function to the POKE statement.

EXAMPLE:

PRINT PEEK{36879)

This will return the value of the screen background color byte.

POS

Format: Abbreviation: Screen Display:

POS(X) None None

Action: Returns the current cursor position. The leftmost position is

0. X is a dummy argument.

EXAMPLE:

IF POS(X) >20 THEN PRINT CHRS(13)

■16

I

I

RIGHT$

Format: Abbreviation: Screen Display:

RIGHTS(XS, I)

Action: Returns the rightmost I characters of siring X$, Jf
f = LEN(XS)h returns X$. If 1 = 0, the null string (fength zero) is
returned.

EXAMPLE:

10 AS-"COMMODORE BUSINESS MACHINES"
20 PRINT RIGHT$(ASr 8)

RUN

MACHINES

READY.

Also see the MID$ and LEFTS functions.

RND

Format: Abbreviation: Screen Display:

RND(X) pIBIBBn R0

Action: Returns a random number between 0 and 1. X>0 returns

the same pseudo-random number sequence for any random
number seed. X<0 reseeds the sequence, each X producing a

different seed. The sequence is seeded at random on power-up.
X=0 generates a random number from a free running clock.

EXAMPLE:

10 FOR 1 = 1 TO 5

20 PRINT INT(RND(X)*100);
30 NEXT

RUN

24 30 31 51 5

READY,

SGN

Format: Abbreviation: Screen Display:

Action: IF X>0, SGN(X) returns 1. H X = 0, SGN(X) returns 0. If

X<0, SGN(X) returns -1.

EXAMPLE:

ON SGN(X)-2 GOTO 100. 200, 300 100 if X is negative,

200 if X is 0 and

300 if X is positive,

SIN

Format: Abbreviation: Screen Display:

Action: Returns the sine of X in radians. SIN(X) is calculated in

floating point binary. COS(X) = SIN(X +3.14159265/2)

EXAMPLE:

PRINT SIN (1.5)

.997494987

READY.

I
SPC

Format: Abbreviation: Screen Display:

Action: Prints J blanks on the screen, SPC may only be used

with PRINT. I must be in the range 0 to 255. .

EXAMPLE:

PRINT 'WEFT SPC(15) 'THERE1'

OVER THERE

READY

43

SQR

Format:

SQR(X)

Abbreviation: Screen Display:

Action: Returns the square root of X. X must be > -0

EXAMPLE;

10 FOR X = 10 TO 25 STEP 5

20 PRINT X, SQR(X)

30 NEXT

RUN

10 3.16227766

15 3.87298335

20 4.47213595

25 5

READY.

STATUS

Format:

STATUS

Abbreviation:

ST

Screen Display:

ST

Action: Returns the CBM status corresponding to the last f/O

operation, whether over cassette, screen, keyboard or serial bus.

ST

bit

position

0

1

2

3

4

ST

numeric

value

1

2

4

3

16

Cassette

Read

short block

long biock

unrecover

able read

error

Serial Bus

RAA/

time out

write

time out

read

! Tape

verify

+ load

short block

long block

any mismatch

49

ST

bit

position

5

6

7

ST

numeric

value

32

64

-128

Cassette

Read

checksum

error

end of file

end ot tape

Serial Bus

R/W

EOI

device not

present

Tape

verify

+ load

checksum

error

end of tape

I

EXAMPLE:

10 OPEN 2,1,2, "MASTER FILE"

12 GET#2,AS

14 IF STATUS AND 64 THEN 20

16 ?A$

18 G0T012

20 ?A$: CLOSE2

STR$

Format:

STRS(X)

!
Abbreviation: Screen Display:

Action: Returns a string representation of value of X.

EXAMPLE:

5 REM LINE UP DECIMAL POINTS

10 INPUT "TYPE A NUM8ER";N

20 A$ - STRS(N): Q = LEN(AS)

30 FOR L - QTO 1 STEP -1

40 IF MIDS{AS, L, 1) <> "." THEN NEXT: AS = AS + ".001

GOTO 60

50 IF L = Q - 1 THEN AS = AS + "0"

60 PRINT TAB(10)A$

70 GOTO 10

Also see the VAL function.

I

50

I

TAB

Format: Abbreviation: Screen Display:

TAB(I)

Action: Spaces to position I on the screen. If the current

print position is already beyond space I, TAB goes to that

position on the next line. Space 0 is the leftmost position,

and the rightmost position is the width minus one. I must be

in the range 0 to 255. TAB may only be used in PRINT.

EXAMPLE:

10 PRINT "NAME11 TAB(15) "AMOUNT" : PRJNT

20 READ AS, BS

30 PRINT AS TA8(15)BS

40 DATA "G.T. JONES", "$25,00"

RUN

NAME AMOUNT

G. T. JONES $25.00

READY

TAN

Format: Abbreviation: Screen Display:

TAN(X) None None

Action: Returns the tangent of X in radians. TAN(X) is calculated in

binary, If TAN overflows, the "OVERFLOW11 error message is

displayed.

EXAMPLE:

10 Y - QTAN(X)/2

TIME

Abbreviation: Screen Display:

None None

51

Action: Used to read the internal interval timer and return a

value in one-tenth seconds. This is a real-time clock. This

value is initialized only when Tl$ is envoked.

EXAMPLE:

10 PRENT TI.60 'SECONDS SINCE POWER UP"

TIME$

i

i
Format: Abbreviation: Screen Display:

TIS None None

Action: Used to read the internal interval timer and return a string of

6 characters in hours, minutes, seconds, May be used in an input

statement or on the left hand side of an expression to initiafize the

timer.

EXAMPLE:

10 TIS - "00000011

20 FOR 1-1 TO 10000:NEXT

30 PRINT TIS

RUN

000010

READY.

USR

Format: Abbreviation: Screen Display:

USR(X) uB ;! Is U[VJ

I

Action: Calfs the user's assembly language subroutine whose

starting address is stored in locations 1 and 2. The argument is

stored in the floating point accumufator (see memory map), and the

result is the value residing there when the routine returns to BASIC.

I

EXAMPLE:

40 B = T*SIN(Y)

50 C = USR(B/2)

60 D = USR(B/3)

etc.

VAL

Format:

VAL(XS]

Abbreviation:

vRUBBa

Screen Display:

V®

Action: Returns the numerical value of string XS. If the first

character of XS is not +, -, S, or a digit, VAL(XS) = 0

EXAMPLE:

10 READ NAMES, CITYS, STATES, ZIPS

20 IF VAL (ZIPS) < 90000 OR VAL (ZIPS) > 96699 THEN PRINT

NAMES TAB{25) "OUT OF STATE"

30 IF VAL(ZIP$)>-90801 AND VAL(ZIP$)<-90815 THEN

PRINT NAMES TAB{25) "LONG BEACH"

40 DATA "SUE M.'\ "MEDIA", "PA", "19063"

(See the STRS function for numeric to string conversion.)

53

NUMBERS AND VARIABLES

The numbers printed by VIC 20 are governed by limitations wfthin

their formats. The numbers are stored internally to over ten digits of

accuracy. However, when a number is printed, only nine digits are

displayed. Each number may also have an exponent (a

power-of-ten scalrng factor).

Numbers are used all the time when working with VIC 20. There

are two kinds of numbers that can be stored: floating point numbers

(also called real numbers) and integers.

Floating point is the standard number representation used by the

VIC. The VIC does its arithmetic using floating point numbers. A

floating point number can be a whofe number, a fractional number

preceded by a decimal point, or a combination. The number can be

signed negative (-) or positive (-). If the number has no sign, it is

assumed to be positive.

Consider the following examptes of floating point numbers:

Whole number equivalent to an integer:

5

-15

65000

161

0

Numbers with a decimal point;

0.5

0.0165432

-0.00009

1.6

24.0085

-65.6

3.1416

Notice that if you put a comma in a number and ask the VIC to

assign it to a variable, you will get a Syntax Error message. For

example, you must use 65000, not 65,000.

Numbers always have at least eight digits of precision; they can

have up to nine, depending on the number. The VIC rounds any

additional significant digits, it rounds up when the next digit is five or

more; it rounds down when the nex1 digit is four or less.

Rounding numbers wilt sometimes cause fractional numbers to

look inaccurate. Here are some examples:

54

i

You type: 7.5555555556

VIC prints: .555555555

(VIC appears to round down on 6 or less; up on 7 or more.)

You type: $.5555555557

VIC prints: .555555556

You type; 7.1111111115

VIC types: .111111111

(VIC appears to round down on 5 or less; up on 6 or more).

You type: 7.1111111116

VIC types: ,111111112

These quirks result from the manner in which computers store

floating point numbers.

Floating point numbers can also be represented in scientific

notation. When numbers with ten or more digits are entered, the

VIC automatically converts them to scientific notation. Scientific

notation allows the VIC to accurately display these large numbers

using fewer digits. For example:

READY.

71111111114

1.11111111E + 09

READY.

71111111115

1.11t11112E+09

A number in scientific notation has the form:

numberE-ee

Where:

number is an integer, fraction, or combination, as illustrated

above. The "number" portion contains the number's

significant digits; it is called the "coefficient." If no

decimal point appears, it is assumed to be to the

right of the coefficient.

E is the upper case letter E.

± is an optional plus sign or minus sign which indicates

the sign of the exponent,

ee is a one- ar two-digit exponent. The exponent

specifies the magnitude of the number; that is, the

number of places to the right (positive exponent) or

to the left (negative exponent) that the decimal point

must be moved to give the true decimal point

location.

55

Here are some examples:

Scientific Notation

2E1

10.5E + 4

66E + 2

66E-2

-66E-2

1E-10

94E20

Standard Notation

20

105000

6600

0.66

-0,66

0.0000000001

9400000000000000000000

As the last two examples show, scientific notation is a much more

convenient way of expressing very large or very small numbers.

VIC BASIC prints numbers ranging between 0.01 and 999,999,999

using standard notation; however, numbers outside of this range

are printed using scientific notation.

Consider the following out-of-range examples:

?.009

9E-03

READY.

?.01

.01

READY,

7999999998.9

999999999

READY.

7999999999.6

1E + 09

There is a limit to the magnitude of a number that the VIC can

handle, even in scientific notation. The range limits are:

Largest floating point number: -1.70141183E + 38

Smallest floating point number: ±2.93873588E-39

Any number of larger magnitude will give an overflow error. For

example:

71.70141184E+ 38

7OVERFLOW ERROR

READY.

Any number of a smaller magnitude will yield a zero result. For

example:

72.93873587E-39

0

56

I

READY.

An integer is a number that has no fractional portion or decimal

point. The number can be signed negative (-) or positive (+). An

unsigned number is assumed to be positive. Integer numbers have

a limited range of values, from -32768 to + 32767.

The following are examples of integers:

0

1

44

32699

-15

Any number that is an integer can also be represented in floating

point format since integers are a subset of floating point numbers.

VIC BASIC converts any integers to floating point representation

before doing arithmetic with them. The most important difference

between floating point numbers and integers is that an integer array

uses less storage space in memory (two bytes for an integer,

versus five bytes for a floating point number).

We have already used strings as messages to be printed on the

display screen. A string consists of one or more characters

enclosed in double quotation marks.

Consider the following examples of strings:

■'HI"

"SYNERGY"

" 12345"

■$10.89 IS THE AMOUNT"

All of the data keys (alphabetic, numeric, special symbols, and

graphics), the three cursor control keys (Clear Screen/Home,

Cursor Up/Down, Cursor Left/Right), as well as the Reverse On/Off

key, Insert/Delete, and Stop keys can be included in a string. The

only keys that cannot be used within a siring are Return, CTRL,

Shift, and the Logo key.

All characters within the string are displayed as they appear. The

cursor control and Reverse On/Off keys, however, normally do not

print anything themselves; to show that they are present in a string,

certain reverse field symbols are used. They are shown in Table

2-1.

When you enter a string from the keyboard, it can have any

length up to the space available within an 88-character line (that is,

any character spaces not taken up by the line number and other

required parts of the statement). However, strings of up to 255

characters can be stored in the VIC's memory. You get long strings

57

by pushing together, or concatenating, two separate strings to form

one longer string. We will describe this further when we discuss i

string variables in general.

Earlier in the chapter, we introduced the concept of a variable. In

this discussion variables are described more thoroughly.

Available is a data item whose value may be changed. The value

is determined by the number assigned to the variable. If you type

the immediate mode statement:

PRINT 10, 20, 30

10 20 30

The VIC will display the same three numbers (as illustrated

above) whenever the PRINT statement is executed; that is

because this PRINT statement used constant data. However, you

can write the immediate mode statement:

A=10: B = 20: C = 3Q: PRINT A, B, C

10 20 30

The same three numbers, 10, 20T 30p are displayed; however. A, j

B, and C are variables, not constants. By changing the values

assigned to A, B, and C, you can change the values printed out by

the PRINT statement. Consider the following example of this:

A- -4: B-45; C-4E2: PRINT AT B, C

-4 45 400

You will notice that variables appear in virtually all computer

programs.

Variables are identified by names. We used A, B, and C as

variable names in the illustrations above. A variable has two parts:

its name and a value. The variable name represents a location at

which the current value is stored. In the following illustration, the

current value of A is 14; for B it is 15; and for C it is 0.

Variable

Name Contents

A 14

B 15

C 0

If we change A to -1 using the immediate mode statement:

A=-1

then the Location Contents, stored under the variable-name AT will

change from 14 to -1.

This is an excellent way of looking at variables because it is, in

5a

fact, the way they are handled by the VIC. A variable name

represents an address in memory; and at that memory location, the

current value of the variable is stored. The important point to note is

that variable names—which are names that programmers make

up—are arbitrary; they have no innate relationship to the value that

the variables represent.

A variable name can have one or two characters. The first

character must be an alphabetic character from A to Z; the second

character can be either alphabetic or numeric {numeric characters

must be in the range from 0 to 9). A third character can be included

to indicate the type of number (integer or string), % or S.

Floating variables represent floating point numbers. This is

probably the most common type of variable that you will use.

The following are examples of floating point variables:

A

B

A1

AA

Z5

Integer variables represent integers. Names for integer variables

are followed by the % symbol as the following examples indicate:

A%

B%

A1%

MN%

X4%

Remember, floating point variables can also represent integers;

but you should use integer variables in arrays whenever possible

since they use less memory—two bytes versus five for a floating

point array element.

A string variable represents a string of text. The following are

examples of string variables:

A$

M$

MNS

M1$

2XS

F6S

You can use variable names having more than two alphanumeric

characters; but if you do, only the first two characters count. To VIC

59

!
BASIC, therefore, BANANA and BANDAGE are the same name

since both begin with BA.

The advantage of using longer variable names is that they make

programs easier to read. PARTNO, for example, is more

meaningful than PA as a variable name describing a part number in

an inventory program.

VIC BASIC allows variable names to have up to 255 characters.

The following are examples of names with more than the minimum

number of characters:

MEMBERS

T1234567

BBBS

ABCDPG%

PARTY

If you use extended variable names, keep in mind the following:

1. Oniy the first two characters, plus the identifier symbol, are

significant in identifying a variable. Do not use extended

names like LOOP1 and LOOP2; these refer to the same

variable: LO.

2. VIC BASIC has what are called "reserved words." These are

words that have special meaning for the VIC BASIC

interpreter. No variable can contain a reserved word, in longer

names you have to be very careful that a reserved word does

not occur embedded anywhere in the name.

3. The additional characters need extra memory space, which

you might need for longer programs.

The BASIC interpreter recognizes certain words as requests for

specific operations. Names that are used to call up certain

operations are called "reserved words." These words cannot be

used as variable names because the interpreter will recognize the

word as a request for the corresponding operation. Moreover, you

cannot use a reserved word as any part of your variable name;

BASIC will still find it and treat it as a request for an operation.

ARRAYS

An array is a sequence of related variables. A table of numbers,

for example, may be visualized as an array. The individual numbers

within the table become "elements" of the array.

Arrays are a useful shorthand means of describing a large

number o! related variables. Consider, for example, a table of

numbers containing ten rows of numbers, with twenty numbers in

I

each row. There are 200 numbers in the table. How would you like it

if you have to assign a unique name to each of the 200 numbers? It

would be far simpler to give the entire table one name, and identify

individual numbers within the table by their table location. That is

precisely what an array does for you.

Arrays of up to eleven elements (subscripts 0 to 10 for a

one-dimensional array) may be used where needed in VIC BASIC,

just as variables can be used as needed. Arrays containing more

than eleven elements need to be "declared" in a Dimension

statement. Dimension statements are described later in this and in

Chapter 3. An array (always with subscripts) and a single variable

of the same name are treated as separate items by VIC BASIC.

Once dimensioned, an array cannot be referenced with different
dimensions.

61

OPERATORS

I
An operator is a special symbol that VIC BASIC recognizes as

representing an operation to be performed on the variables or

constant data. One or more operators, combined with one or more

terms, form an "expression."

VIC BASIC provides arithmetic operators, relational operators,

and Boolean operators.

An arithmetic operator defines an arithmetic operation to be

performed on the adjoining terms. Arithmetic operations are

performed using floating point numbers. Integers are converted to

floating point numbers before an arithmetic operation is performed;

the result is converted back to an integer. Consider the following

operations and their symbols:

a. Addition (+). The plus sign specifies that the term on the left

is to be added to the term on the right. For numeric quantities this is

straightforward addition. Examples:

2 + 2

A+B+ C

X%+1

BR+10E-2

The plus sign can be used to add strings; but rather than adding

their values, they are joined together, or concatenated, forming one

longer string. The difference between numeric addition and string

concatenation can be visualized as follows:

Addition numbers:

num1 +num2 = num3

Addition of strings:

I

I

stringi + string2 = string!string2

By concatenation, strings containing up to 255 characters can be

developed.

EXAMPLES:

"FOR" + "WARD" results in "FORWARD"

"HI" + "THERE" results in "HITHERE"

A$+B$ results in ASBS

b. Subtraction (-). The minus sign specifies that the term to the

right of the minus sign is to be subtracted from the term to the left.

62 I

EXAMPLES:

4-1 results in 3

100-64 results in 36

A~B results in the difference between
the value of the two variables.

55-142 results in -87

The minus can also be used as a unary minus; that is, the minus
sign preceding a negative number.

EXAMPLES:

-5

-9E4

-B

4— 2 same as 4 + 2

c. Multiplication (*). An asterisk specifies that the term on the
right is multiplied by the term on the left.

EXAMPLES:

100*2 results in 200

50*0 results in 0
A*X1

R%*14

d. Division (I). The slash specifies that the term on the left is to be
divided by the term on the right.

EXAMPLES:

10/2 results in 5

6400/4 results in 1600
A/B

4E2/XR

e. Exponentiation (f)- The up arrow specifies that the term on
the left is raised to the power specified by the term on the right. If the

term on the right is 2, the number on the left is squared; if the term
on the right is 3. the number on the left is cubed, etc. The exponent
can be any number, variable, or expression, as long as the
exponentiation yields a number in the VIC's range.

63

EXAMPLES:

2 f 2 results in 4

12 T 2 results in 144 I
1 | 3 results in 1

When an expression has multiple operations, as in:

A + CM0/2T 2

There is a built-in hierarchy for evaluating the expression. First,

the exponentiation js considered, followed by the unary minus (-),

followed by the multfplication and division (*/), followed then by the

addition and subtraction (+ -). Operators of the same hierarchy

are evaluated from lett to right.

This natural order of operation can be overridden by the use of

parentheses. Any operation within parentheses is performed first.

EXAMPLES:

*2 results in 6

(4+1)*2 results in 10

100*4/2-1 results in 199

100*(4/2-1) results in 100

100^(4/(2-1}} results in 400

When parentheses are present, VIC BASIC evaluates the

innermost set first, then the next innermost, etc. Parentheses can

be nested to any level and may be used freely to clarify the order of

operations being performed in an expression.

A relational operator specifies a "true" or "false" relationship

between adjacent terms. The specified comparison is made, and

then the relational expression is replaced by a value of true (-1) or

false (0), Relational operators are evaluated after all arithmetic

operations have been performed.

EXAMPLES:

1 =5-4

14>66

15> = 15

results

results

results

in

in

in

true

false

true

(-D
(0)

(-1)

Relational operators can be used to compare strings. For

comparison purposes, the letters of the alphabet have the order

A<B, B<C, C<D, etc. Strings are compared by comparing their

stored character values. Characters are stored using a special

64

binary code called "ASCII." The Appendix lists the ASCII code
assigned to every VIC character.

EXAMPLES:

"A"<"B" results in true (-1)

"X" = "XX" results in false (0)

C$ S

The Boolean operators AND, OR, and NOT specify a Boolean
logic operation to be performed on two variables, on adjacent sides
of the operator. In the case of NOT, only the term to the right is
considered. Boolean operations are not performed until all

anthmetic and relational operations have been completed.

EXAMPLES:

IF A- 100 AND B = 100 THEN 10

If both A and B are equal to 100, branch to

statement 10.

IF X<Y AND B> = 44 THEN F = 0

If X is less than Y, and B is greater than

or equal to 44, then set F equal to 0.

IF A = 100 or B = 100 THEN 20

If either A or B has a value of 100, branch to
statement 20.

IF X<Y OR B> = 44 THEN F = 0

F is set to 0 if X is less than Y, or B is greater
than 43.

Asingle term being tested for "true" or "false" can be specified by
the term itself, with an implied "<>0" following it. Any non-zero

value is considered true; a zero value is considered false.

EXAMPLES:

IF A THEN B = 2

IF A<>0 THEN B = 2

The above two statements are equivalent.
IF NOT B THEN 100

Branch if B is false, i.e., equal to zero. This is

probably better written as:

IFB = 0THEN 100

65

The three Boolean operators can also be used to perform logic

operations on the individual binary digits of two adjacent terms (or

just the term to the right in the case of NOT). But the terms must be

in the integer range. Boolean operations are defined by groups of

statements, which taken together constitute a "truth table." The

following table lists the truth tables for the Boolean operators used

by VIC BASIC.

I

Boolean Truth Table

The AND operation results in a 1 only if both bits are 1.

1 AND 1 = 1

0 AND 1 = 0

1 AND 0-0

0 AND 0 = 0

The OR operation results in a 1 if either bit is 1.

1 OR 1 =1

0 OR 1 = 1

1 OR 0 = 1

0 OR 0 = 0

The NOT operation logically complements each bit.

NOT 1 = 0

NOT 0 = 1

I

Thisdiscussion of binary digit (bit) oriented Boolean operations is

presented for those who are interested in the details of how these

operations are performed. If you do not understand it, skip it. You

are not skipping anything you must know. Recall that a single term

has an implied "<>0" following it. The expression therefore

becomes:

IF G<>0 GOTO 40

Thus, the branch is not taken.

In contrast, a Boolean operation performed on two variables may

yield any integer number:

IF A% AND B% GOTO 40

Assume that A%= 255 and B% = 240. The Boolean operation 255

AND 240 yields 240. The statement, therefore, is equivalent to:

66

I

IF 240 GOTO 40

or, with the "<>O":

IF 240 <>0 GOTO 40

Therefore the branch will be taken.

Now compare the two assignment statements"

A - A AND 10

A = A<10

In the first example, the current value of A is logically ANDed with

10 and the result becomes the new value of A. A must be in the

integer range -r 32767 to -32768. In the second example, the

relational expression A<10 is evaluated to -1 orO,so A must end

up with a value of -1 or 0.

I
67

LOGICAL OPERATORS '

Logical operators perform tests on multiple relations, bit

manipulation, or Boolean operations. The logical operator returns a

bitwise resuit which is either 'true11 (not zero) or "false" (zero). In an

expression, logical operations are performed after arithmetic and

relational operations. The outcome of a logical operation is

determined as shown in the following table. The operators are listed

in order of precedence.

not ,

X NOT X

1 0 ,

0 1 |

AND [

1

1

0

0

Y

1

0

1

0

X AND Y

1

0

0

0

OR

X

1

1

c

c

Y

1

0

1

0

X OR Y

1

1

1

0 !

Just as the relational operators can be used to make decisions

regarding program flow, logical operators can connect two or more

relations and return a true or false value to be used in a decision.

For example:

IF D<200 AND F<4 THEN 80

IF l>10 OR K<0 THEN 50

IF NOT PTHEN 100

68

I

I

Logical operators work by converting their operands to

sixteen-bit, signed, two's-complement integers in the range

-32768 to -i- 32767. (If the operands are not in this range, an error

results.) If both operands are supplied as 0 or -1, logical operators

return 0 or -1. The given operation is performed on these integers

in bitwise fashion, i.e., each bit of the result is determined by the

corresponding bits in the two operands.

Thus, it is possible to use logical operators to test bytes for a

particular bit pattern. For example, the AND operator may be used

to "mask" all but one of the bits of a status byte at a machine I/O

port. The OR operator may be used to "merge" two bytes to create

a particular binary value. The following examples will demonstrate

how the logical operators work:

63 AND 16 - 16 63 - binary 111111 and 16 = binary

10000, so 63 AND 16=16

15 AND 14 =14 15 - binary 1111 and 14 = binary

1110, so 15 AND 14 = 14 (binary 1110)

-1 AND 8 = 8 -1 = binary 11111111 and 8 =

binary 1000, so -1 AND 8 = 8

4 OR 2 = 6 4 = binary 100 and 2 = binary 10, so 4

or 2 = 6 (binary 110)

10 OR 10 =10 10 = binary 1010, so 1010 OR 1010 -

1010 (10)

-1 OR -2 = -1 -1 m binary 11111111 and -2 = binary

11111110, so

- 1 OR - 2 = -1. The bit complement of

sixteen zeros is sixteen ones, which

is the two's complement representation

of -1.

NOT X= {-X) + 1 The two's complement of any integer is
the bit complement plus one.

STRING OPERATIONS

Strings may be concatenated using + . For example:

10 A$ = "FILE" : B$ = "NAME"

20 PRINT AS - BS

30 PRINT "NEW1 + AS - BS

RUN

FILENAME

NEW FILENAME

69

Strings may be compared using the same relational operators that
are used with numbers:

> <= > =

String comparisons are made by taking one character at a time

from each string and comparing the ASCII codes. If all the ASCII

codes are the same, the strings are equal. If the ASCI I codes differ,

the lower code number precedes the higher. lfh during string

comparison, the end of one string is reached, the shorter string is

said to be smaller. Leading and trailing blanks are significant.

Examples:

"AA" < "AB"

"FILENAME" - "FILENAME"

"X$" > "X#T1

"CL " > XL"

"kg" < "KG"

"SMYTH" < "SMYTHE11

BS < "9/12/78" where S$ - "8/12/78"

i

I
70

I

I

I

I

I

I

[

1

I

I

I

I

[

I

I

EDITING PROGRAMS

CURSOR CONTROLS

One of the most important features of the VIC is the ability to

move the cursor around the screen and make changes to program

lines. This is called "screen editing." The VIC will allow cursor

movement around the screen in any direction, inserting extra

spaces into a line, and erasing unwanted characters. The VIC's

editor is one of the most powerful and easy to use of any computer.

There are 6 keys on the keyboard that are used for editing. These

bar. These are all dual purpose keys, with different actions

when the I W,\\'< I or [<Q keys are pressed. The

SPACE
will all repeat if held down for at, and

least a second.

a.

When unshifted, this moves the cursor to the upper left corner of

the screen, called the "home position."

Withthe | Nijlinl I (or [^ key) held down, this key will

erase everything on the screen and move the cursor to the home

position. This does not erase a program, variables, or anything else

currently in memory.

b.

Without the I ■'; [\- ■ I, this key serves to delete the character to

the left of the cursor. Anything else on the line to the right of the de

leted character is moved one space to the left, filling in the gap.

With the I ■' ■ i i' I, this becomes an insert key. A space is ere -

ated atthecursor'sposition, and everything else on the line to the

right of the cursor is moved one more space to the right. If this

pushes the last character on the line past the right end of the line, all

lines below the current one are pushed down one line. Once the

line is filled all the way to the end of 4 screen lines (88 characters),

this key has no effect. (See also QUOTE MODE.)

73

c.

This will move the cursor up or down one line on the screen,

without affecting anything displayed on the screen. Unshiftedt the

cursor moves downT and if you hotd down the l-/(jfSvl (or the

key) the cursor moves up.

d.

This causes the cursor to move one space sideways. Unshifted,

the move is to the right; and shifted, 1he cursor moves left. All

characters remain on the screen without being erased. Notice that if

the cursor moves beyond the right edge of the screen, it "wraps"

one line down, to the left edge, if you move to the left edge the

cursor wraps to the right side of the next line up (except from the

home position).

e. RETURN

The primary purpose of this key is to "enter" an instruction,

calculation, or line of instructions, In direct mode the VIC executes

the instruction or calculation. In program mode (when the

instruction is preceded by a line number) the RETURN key causes

the program line to be stored in memory. However, when you hold

down the SHIFT key and hit RETURN, the VIC moves the cursor to

the next fine and the left edge of the screen but does not aftect the

line or instruction—SHIFT RETURN is a fast method for moving the

cursor down the screen,

t. SPACE

When you hit the ■jWJHJ bar (at the bottom of f-e keyboard) a

blank space appears on the screen and the cursor moves one

space to the right, erasing any character that was previously on that

position. ^^^^^

If the KjiPi^j or [jQ keys are heid down while typing the

SmEII bar' a cnaracter is printed that looks like a space but is
actually treated by the VIC as a graphic character.

EDITING LINES

Anything displayed on the screen can be edited using the cursor

controls. This can be a program line that is LISTed or typed in, or a

command without a line number. To edit a line simply move the

74

cursor until it is on the line, then make the required changes,

inserting or deleting as needed. Once you are finished, just hit the

^^^^j key. All the changes will be stored as rrsc.e. If you jus;

want to geHhecursor past the line it is on, just hold My ;.li: ;Mwhile
hitting ^^^ij and [tie VIC will ignore :he I nes it passes

In order to delete a line from a program, just type the line number

and hit |;ir,i!!M;jfl . There is no command for deleting more than 1

line at a time, although there is a trick for erasing all but a few lines.

This involves LISTing the good portion of the program on the

screen, typing NEW, moving the cursor to the top line displayed,

and hitting |i;r,s:;i J on all the lines. This method only works if the
section to be kept is very small (less than one screenful).

a. Direct Mode -'Calculator" Mode

If you enter a command or set of commands without a line

number, they will execute as soon as you press the Ju.j:Uj;f.!l key.

This is called "Direct Mode" or "Immediate Mode."

Since the VIC allows muitiple statements on a line by using the

colon (:), you can actually get a short program to run without

entering line numbers. This is especially helpful when there is

already a program in memory that you don't want to disturb. The

maximum length of a program line is 4 screen lines, or 88

characters. In other words, if you enter a line numbered 10 you can

display four 22-character lines on the screen but the VIC will store

and interpret the information as one 88-character program line.

Here is a sample immediate mode program for a sound effect:

(don't hit |jJjj£|^U\| until you've typed the whole line)

POKE 36878,15:FOR L = 254 To 128 STEP-1:POKE 36876
LiPOKE 36876,0:NEXT:POKE 36878.0

Some people also call this "calculator mode," because one of the

most common things you can do with a VIC is perform calculations

that don't require a program.

Here are some examples of calculations:

PRINT 5 + 4

PRINT (2^4}*5/9

PRINT S!N(37)

Certain commands can't be used in direct mode. These are:

INPUT, INPUT#, GET, GET#, and DEF FN. The DATA statement

75

may be typed but has absolutely no effect. The first four commands

shown can't be used because the same buffer that holds the

statement being executed is also used to hold the characters being

input. The DEF FN statement requires a line number so that the

formula may be referenced later

b. Program Mode

Instructions beyond a basic level of complexity require a

program, as opposed to direct mode commands which can perform j

simple commands in a single line of instructions. A program is one

or more lines, each having its own unique number and containing

a statement or group of statements. Line numbers must be whoie

numbers from 0 to 63999. Programs are usually written using every

10th number, or even 100th number, since most programmers

want to add more lines later between two existing lines, as the

program is developed or edited.

Line numbers are stored in numerical order regardless of the

order in which they are typed. The program will, when RUN,

execute from the lowest to highest numbered lines, unless there \s

a command to jump to a different Sine, like GOTO, IF ... THEN, or

GOSUB.

76

USING THE GET STATEMENT

Most simple programs use the INPUT statement to get data from

the person operating the computer. When dealing with more

complex needs, such as protection from typing errors, the GET

statement offers more flexibility and gives the program more

intelligence. This section shows you how to use the GET statement

to add some special screen editing features to your programs.

The ViC has a keyboard buffer that holds up to 10 characters.

This means if the computer is busy doing some operation and is not

reading the keyboard, you can still type in up to 10 characters, and

the VIC will use them as soon as it finishes what it was doing.

This can be demonstrated with a simple program. Type in the
program shown below. When you tell it to RUN, type the word

HELLO on the keyboard. Since the VIC is busy in a loop, nothing
appears on the screen—until the program stops after 15 seconds,

and the word HELLO that you typed appears on the screen.

10 Tl$ = "000000"

20 IF TIS < "000015" THEN 20

The VIC's input buffer is also called a queue, which is a good

image to use to better understand how it works. Imagine standing in

line wailing to buy a ticket to get into a movie. The first person in line

is the first to get a ticket and leave the line, and the last person in line

is the last to get a ticket. (In accounting, this is called the "first in, first

out" method, or FIFO, as opposed to the "last in, first out", or LIFO

method.)

The GET statement in the VIC acts as the ticket taker. First it

looks to see if there are any characters "in line" (if a key or keys

have been typed). If there are, the first character typed gets placed

in a "variable" and out of the queue. If no characters are waiting in

the buffer, then an empty value is returned.

One other point should be mentioned when talking about the

queue. Any characters typed on the VfC's keyboard afterthe queue

is fulf are lost, since the queue was full. So imagine that the ticket

line is long enough to hold 10 people, and there is a cliff at the end of

the line. Anyone trying to get into the line afterthe line is full simply

falls off the cliff, never to be seen again.

Since the GET statement will keep going even when no character

was typed, it is often necessary to put the GET statement into a

loop, having it wait until the operator hits a key (actually, until a

character has been received}. Here is the recommended form:

(Type NEW to erase the previous program.)

10 GET AS : IF AS - "" THEN 10

77

There must be NO SPACE between the quotes in this line, to

indicate an empty value. When the person is not typing anything,

the empty value goes into the string variable (in this case

represented by AS and the IF statement sends the program back to

the GET statement. This loop repeats indefinitely, until the person

operating the computer hits any key on the keyboard. At this point,

the program continues with the line following line 10.

Add this line to the program:

100 PRINT AS; : GOTO 10

Now RU N the program. No cursor appears on the screen, but any

character you type will be printed on the screen. This includes all

special functions, like cursor and color controls and clearing the

screen. This two-line program can be developed into a screen

editor, shown below.

There are many features that you could use in a screen editor. A

flashing cursor is nice to have, and can be programmed. Also, you

may wish to "trap certain keys, ke |jfflj , so as not to i

erase the screen accidentally. Or you may wish to program the

function keys for whole words. The following lines give each

function key a special purpose. Remember, this is only the

beginning of a program that you can customize for your needs, like

word processing or data capture. ,

20 IF AS - CHRS(133) THEN POKE 36879.8: GOTO 10

30 IF AS - CHR$(134) THEN POKE 36879,27: GOTO 10

40 IF A$ - CHR$(135) THEN AS="DEAR SIR:" + ,

CHRS(13)

50 IF AS = CHR$(136) THEN AS = "SINCERELY," +

CHRS(13)

The CHRS numbers In the parentheses come from the CHRS

code chart in the Appendix, which lists a different number for each

key character. The four function keys are activated here to perform

the tasks represented by the instructions which immediately follow

the word THEN in each line ... of course you could designate

different keys by changing the CHRS number in parentheses, and

different instructions after the THEN statement.

78

I

[

HOW TO CRUNCH BASIC
PROGRAMS

You can pack more instructions—and power—into your BASIC

programs by making each program as short as possible. This

process of shortening programs is called "crunching."

Crunching programs lets you squeeze the maximum possible

number of instructions into your program. It also helps you reduce

the size of programs which might not otherwise run in a given size;

and if you're writing a program which requires the input of data such

as inventory items, numbers or text, ashort program will leave more

memory space free to hold data.

But whether you're using an unexpanded VIC or a 32K VIC

System, your programs will benefit from the following crunching
techniques.

ABBREVIATING KEYWORDS

A list of keyword abbreviations is given in the Appendix A. This is

helpful when you program because you can actually crowd more

information on each line using abbreviations. The most frequently

used abbreviation is the question mark (?) which is the BASIC

abbreviation for the PRINT command. However, if you LIST a

program that has abbreviations, the VIC will automatically print out

the listing with the full-length keywords. If any program line exceeds

88 characters (4 lines on the screen) with the keywords

unabbreviated, and you want to change it, you will have to re-enter

that line with the abbreviations before saving the program.

SAVEing a program incorporates the keywords without inflating

any lines because BASIC keywords are tokenized by the VIC.

Usually, abbreviations are added after a program is written and do

not have to be LISTed any more before SAVEing.

SHORTENING PROGRAM LINE NUMBERS

Most programmers start their programs at line 100 and number

each line at intervals of 10 (i.e., 100, 120, 130). This allows extra

lines of instruction to be added (111, 112, etc.) as the program is

developed. One means of crunching the program after it is

completed is to change the line numbers to the lowest numbers

possible (i.e., 1, 2, 3) because longer line numbers take more

memory than shorter numbers. For instance, the number 100 uses

79

3 bytes of memory (one for each number} while the number 1 uses

only 1 byte. ,

PUTTING MULTIPLE INSTRUCTIONS ON

EACH LINE

You can put more than one instruction on each numbered line in

your program by separating them by a colon. The only limitation is

that all the instructions on each line, including colons, should not

exceed the standard 88-character line length. Here is an example

of two programs, before and after crunching:

BEFORE CRUNCHING: AFTER CRUNCHING:

10 PRINT "HELLO. .."; 10 PRINT "HELLO. . .";:FOR

T = 1 TO 500:NEXT:PRINT

20 FORT = 1TO500:NEXT "HELLO,AGAIN. . .":GOTO10

30 PRINT "HELLO, AGAIN. . ."

40 GOTO10 I

REMOVING REM STATEMENTS

REM statements are helpful in reminding yoursei*—or showing

other programmers—what a particular section of a program is

doing. However, when the program is completed and ready to use,

you probably won't need those REM statements anymore and you

can save quite a bit of space by removing the REM statements. If

you plan to revise or study the program structure in the future, it's a

good idea to keep a copy on file with the REM statements intact.

USING VARIABLES

If a number, word or sentence is used repeatedly in your program

it's usually best to define those long words or numbers with a one or

two letter variable. Numbers can be defined as single letters. Words

and sentences can be defined as string variables using a letter and

dollar sign. Here's one example:

BEFORE CRUNCHING AFTER CRUNCHING

10 POKE 36878, 15 10 POKE 36878, 15: S = 36874

20 POKE 36874, 200 30 POKES, 200:POKES, 250:POKES,

30 POKE 36874. 250 150

40 POKE 36874, 150

B0

i

USING READ AND DATA STATEMENTS

Large amounts of data can be typed in as one piece of data at a

time, over and over again ... or you can print the instructional part

of the program ONCE and print all the data to be handled in a long

running list called the DATA statement. This is especially good for

crowding large lists of numbers into a program.

USING ARRAYS AND MATRICES

Arrays and matrices are similar to DATA statements in that long

amounts of data can be handled as a list, with the data handling

portion of the program drawing from that list, in sequence. Arrays

differ in that the list can be two or three dimensional.

ELIMINATING SPACES

One of the easiest ways to reduce the size of your program is to

eliminate all the spaces. Although we often include spaces in

sample programs to provide clarity, you actually don't need any

spaces in your program and will save space if you eliminate them.

USING GOSUB ROUTINES

If you use a particular line or instruction over and over, it might be

wise to GOSUB to the line from several places in your program,

rather than write the whole line or instruction every time you use it.

USING TAB AND SPC

Instead of PRINTing several cursor commands to position a

character on the screen, it is often more economical to use the TAB

and SPC instructions to position words or characters on the screen.

81

WORKING WITH GRAPHICS

The graphics ability of the VIC 20 is more powerful and

sophisticated than many users realize. The following material is a

concept-by-concept guide to help you make better use of these

graphics features to enhance your games and other programs.

CHARACTER MEMORY |
Each character is formed in an 8-by-8 grid of dots, where each

dot may be either "on11 or "off." The character Images are stored in

a special chip called the "Character Generator ROM." The

characters are stored as a set of 8 bytes for each character, with

each byle representing the dot pattern of a row in the character, and

each bit representing a dot. A zero (0) bit means that dot is off, and

a one (1) bit means the dot is on.

The character memory in ROM begins at location 32768. The

first 8 bytes contain the pattern for the @ sign, which has a

character code value of zero on the screen. The next 8 bytes, from

location 32776 to 32783, contain the information for forming the

letter A.

IMAGE BINARY

00011000

00100100

01000010

01111110

01000010

01000010

01000010

00000000

PEEK

24

36

66

126

66

66

65

0

Each complete character set takes up 2K of memory, 8 bytes per

character and 256 characters. Since there are two character sets,

one for uppercase and graphics and the other with upper and lower

case, the character generator ROM takes up a total of 4K.

PROGRAMMABLE CHARACTERS

Since the characters are stored in ROM, it would seem like there

is no way to change them for customizing characters. However, the

memory location that tells the VIC where to find the characters Is in

a RAM location in the VIC chip, which can be changed to point to

82 t

many sections of memory. By changing the character memory

pointer to point to RAM, the character set may be programmed for

any need.

The VIC's standard characters are stored as follows:

HEX DECIMAL DESCRIPTION

8000 32768 Upper case with full graphics

8400 33792 Upper case & graphics—reversed

8800 34816 Upper and lower case with some

graphics

8C0O 35840 Upper & lower with some graphics—re

versed

The register which controls where the chip gets its character

information is at location 36869 decimal (9005 HEX}. Its value is

normally 240 (upper case and graphics) or 242 (upper, lower case).

The programmed character set cannot be put into expansion

RAM, since the VIC chip doesn't have access to that memory.

Therefore, any programmed characters must begin at a memory

location between 4096 and 7168. Since BASIC programs are

normally stored beginning at 4096, and strings start at the top of

available memory and work their way down, precautions must be

taken to protect the character set from being overwritten by BASIC.

If the BASIC program begins at 4096, the normal procedure is to

change the pointers to the top of available RAM at locations 52 and

56 so that they point below the character set. The following chart

shows the possible locations of character sets, and the POKES to

protect them.

Num

ber

240

241

242

243

244

245

246

247

248

249

250

251

252

Location of

Characters

32768

33792

34816

35840

(36864)

(37888)

(38912)

(39936)

(0)

(1024)

(2048)

(3192)

4096

Contents

of Location

Character ROM

Character ROM

Character ROM

Character ROM

VIC Chip, I/O

Color RAM

nothing

nothing

Zero Page RAM

Expansion RAM

Expansion RAM

Expansion RAM

Start of BASIC RAM

POKE 52 & 56

83

253

254

255

5120

S144

7168

BASIC RAM

BASIC RAM

BASIC RAM

20

24

29

This table assumes that screen memory starts at 7680 (1EOO).

However, it can be moved to other locations. The number of

characters you have to work with at each location might change in

that case.

There are two problems involved in creating your own special

characters. First, it is an all or nothing process. Generally, if you use

your own character set by telling the VIC chip to get the character

information from the area you have prepared in RAM, the standard

VIC characters are unavailable to you. To solve this problem, you

must copy any letters, numbers, or standard VfC graphics you

intend to use into your own character memory in RAM, You can pick

and choose, take only the ones you want, and don't even have to

keep them in order!

The second problem with programmable characters is that your

character set takes memory space away from your BASIC

program. This is a trade off situation, since you only have a limited

amount oi RAM available. If you decide to create a character set for

a program, the program has to be smaller than a program which

uses the standard VIC characters.

There are two locations in the VIC to start your character set that

should not be used with BASIC—0 and 4096. The first should not

be used because BASIC stores important data on page 0. The

second cant be used because that is where your BASfC program

starts! (If you expand your VIC, or use machine language1 you can

start your characters at 4096 if you want. This limit only applies to

the unexpanded VIC.)

The best place to put your character set for use with BASJC while

experimenting is at 7168. This is done by POKEing location 36869

with 255, giving you 64 characters to work with. Try the POKE now,

like this;

POKE 36369,255

Immediately all the letters on the screen turn to garbage. This is

because there are no characters set up at location 7166 right now

. . . only random bytes. Set the VIC back to normal by using the

RUN/STOP and RESTORE keys.

Now let's begin creating graphics characters. To protect your

character set from BASIC, you should reduce the amount of

memory BASIC thinks that it has. The amount of memory fn your

computer stays the same . + . it's just that you've told BASIC not to

use some of ft.

Type:

PRINT FRE(O)

The number displayed is the amount of memory space ieft

unused. Now type the following:

POKE 52, 28: POKE56, 28: CLR

Now type:

PRINT FRE(O)

See the change? BASIC now thinks it has 512 bytes [ess memory

to work with, The memory you just reclaimed from BASIC is where

you are going to put your character set, safe from actions of BASIC.

The next step is to put your characters into RAM. When you

begin, there is random data beginning at 7168. You must put

character patterns in RAM (in the same style as the ones in ROM)

for the VIC to use.

The following one line program moves 64 characters from ROM

to your character set RAM:

FOR I- 7166 TO 7679: POKE I, PEEK(I+ 25600): NEXT

Now POKE 36869 with 255, Nothing happens, right? Well,

almost nothing. The VIC is now getting its character Information

from your RAM, instead of from ROM. But since we copied the

characters from ROM exactfy, no difference can be seen . . . yet.

You can easily change the characters now. Clear the screen and

type an @ sign. Move the cursor down a couple of lines, then type:

FOR I = 7168 TO 7163 + 7:POKE I, 255 - PEEK(i) : NEXT

You just created a reversed @ sign!

VtC TIP: Reversed characters are just characters with their bit

patterns in character memory reversed!

Now move the cursor up to the program again and hit return

again to re-reverse the character (bring it back to normal). By

looking at the table of screen display codes, you can figure out

where in RAM each character is. Just remember that each

character takes eight memory locations to store.

Here are a few examples just to get you started:

CHARAC

TER

8
A

!

>

DISPLAY

CODE

0

1

33

62

CURRENT STARTING LOCATION

IN RAM

7168

7176

7432

7664

35

Remember that we only took the f[rst 64 characters, though.

Something else will have to be done if you want one of the other

characters.

What if you wanted character number 154, a reversed Z? Well,

you could make it yourself, by reversing a Z, or you could copy the

set of reversed characters frcm the ROM, or just take the one

character you want from ROM and replace one of the characters

you have in RAM that you don't need-

Suppose you decide that you won't need the > sign. Let's

replace the > sign with the reversed Z. Type this:

FOR!-7664 TO 7671: POKE I, PEEK{I~ 26336): NEXT

Now type a > sign. It comes up as a reversed Z. No matter how

many times you type the >, it comes out as a reversed Z. (This

change is really an illusion. Though the > sign looks like a reversed

Z, it still acts like a > in a program. Try something that needs a >

sign. It will still work fine, only it wfll fook strange.) r

A quick review: We can now copy characters Iron ROM into

RAM. Wecan even pickand chooseonly the ones we want. There's

only one step left in programmable characters (the best step!) . . .

making your own characters.

Remember how characters are stored in ROM? Each character

is stored as a group of eight bytes. The bit patterns of the bytes

directly control the character. If you arrange 8 bytes, one on top of

another, and write out each byte as eight binary digits, it forms an

eight-by-eight matrix, looking like the characters. When a bit is a

oneT there is a dot at that location. When a bit is a zero, there is a

space at that location.

When creating your own characters, you set up the same kind of

table in memory. Type this program;

10 FORC- 7328 TO 7335: READ A: POKE C,A: NEXT

20 DATA 60, 66, 165, 129, 165, 153, 66t 60

Now type RUN. The program will replace the letter T with a smile

face character. Type a few Ts to see the face. Each of the numbers

in the DATA statement in line 20 is a row in the smile face character.

The matrix for the face looks like this:

7 6 5 4 3 2 10

ROW0 ' * * •

1
•~ * * * *

3

4 *

5 * *

6

R0W7 * * * *

86

DECIMAL

60

66

165

129

165

153

66

GO

BINARY

00111100

01000010

10100101

10000001

10100101

10011001

01000010

00111100

The sheet on this page will help you design your own characters.

There is an 8-by-8 matrix on the sheet, with row numbers, and

numbers at the top of each column. (If you view each row as a

binary word, the numbers are the value of that bit position. Each is a

power of 2. The leftmost bit is equal to 128 or 2 to the 7th power, the

next is equal to 64 or 2 to the 6th, and so on, until you reach the

rightmost bit (bit 0) which is equal to 1 or 2 to the Oth power.)

Place an X on the matrix at every location where you want a dot to

be in your character. When your character is ready you can create

the DATA statement for your character.

Begin with the first row. Wherever you placed an X, take the

number at the top of the cofumn, and write it down. When you have

the numbers for every column of the first row, add them together.

Write this number down, next to the row. This is the number that you
will put into the DATA statement to draw this row.

Do the same thing with all of the other rows (1-7). When you are

finished you should have 8 numbers between 0 and 255. If any of

your numbers are not within range, recheck your addition. The

numbers must be in this range to be correct! If you have less than 8

numbers, you missed a row. It's OK if some are 0. The 0 rows are

just as important as the other numbers.

0

1

2

3

4

5

6

7

6 b 4 3 2 1 0

Programmable Character Worksheet

87

Replace the numbers in the DATA statement in line 20 with the

numbers you just calculated, and RUN the program. Then type a T.

Every time you type it, you see your own character!

If you donTt like the way the character turned out, just change the

numbers in the DATA statement and re-RUN the program until you

are happy with your character.

That's all there is to it!

HIGH RESOLUTION GRAPHICS j

When writing games or other types of programs, sooner or later

you get lo the point at which you want a high resolution display, or

smooth movement of objects on the screen. A regular character

can move one space at a lime, which is 8 rows or columns of cfots,

For smoother movement, characters should be moved one row of

dots a! a time, using high-resolution graphics.

The VJC can handle this need: high resolution is available

through bit mapping the screen. Bit mapping is the name of the

method where each possible dot (pixel) of resolution on the screen

is assigned its own bit in memory. If that memory bit is a one. the dot

it is assigned to is on. If the bit is set to zero, the dot is off. You can bit

map the entire screen of the VIC, or only a portion of it. You can mix

HI-RES, programmable characters and regular graphics.

High resolution has a few drawbacks, which is why it is not used

all the time. If takes a lot of memory to bit map the entire screen.

Because every pixel must have a memory bit to control it, you are

going to need one bit of memory per pixel (or one byte for B pixels).

Since each character is 8-by-8, and there are 23 lines of 22

characters, the resolution Is 176 by 184 for the whole screen. That

gives you 32384 separate dots, each of which requires a bit in

memory, or 4048 bytes of memory needed to map the whole

screen.

Fear not, you can still use high resolution graphics on the

unexpanded VIC! You just don"t bit map the entire screen. Instead,

you bit map just as much of the screen as you have memory for, and

either use the rest of the screen as a border, or use it for text. A 54

dot by 64 dot screen section will be fairly easy to work with for this

section.

Generally, high resolution operations are made of many short,

simple, repetitive routines. Unfortunately, this kind of thing is rather

slow using BASIC, so high resolution routines written in BASIC are

usually rather slow. However, short, simple, repetitive routines are

exactly what machine language does best. The solution is lo either

write your programs entirely in machine language (painful), or call

B8

HI-RES subroutines from your BASIC program, using the SYS

command from BASiC. That way you get both the ease of writing in

BASIC, and the speed (for graphics) of machine language. The

SUPER-EXPANDER cartridge also is available to add HI-RES

commands to VIC BASIC.

All of the examples given in this section will be in BASIC to make

them clear, in the future, you can add the routines to your own

programs to give you easy HI-RES graphics. Now to the technical

details.

Remember programmable characters? Well, bit mapping is

done almost the same way. When you created a programmable

character, you could watch it form before your eyes, if the character

was on the screen when you were changing it.

To see this again, type this program in and RUN it.

100 POKE 36869 , 255

110 FOR I - 7168 TO 7679 : POKE I, PEEK(I + 25600) : NEXT

120 PRINT CHRS(147) "A"

130 FORI = 7176 TO 7183

140 FOR L = 1 TO 1000 : NEXT

150 READ A : POKE I, A : NEXT

160 DATA 60,36,36,36,36,36,255,255

The character changed from an A to a top hat as you watched!

This is the trick behind HI-RES graphics on the VIC—making

changes directly on the character memory. When the character is

already on the screen you see the changes right away!

The best way to set up the HI-RES display screen for the 64-dot

by 64-dot HI-RES display is to print out 64 characters in a square

box or matrix.

Setting up the HI-RES display screen is the first step in HI-RES

graphics. The following short program section will set up the display

screen.

Type NEW, then

10 POKE 36879,8:PRINT CHRS(147)

20 FOR L = 0 TO 7 : FOR M = 0 TO 7

30 POKE 7680 + M*22 + L, L'8 + M

40 NEXT : NEXT

Now RUN the program. We now have 64 characters on the

screen; they can't be changed in any way, since the codes for the

letters are in ROM. If we change the character memory register to

point lo RAM, however, we will be displaying memory that we can

change any way we want.

Add the following line to the program:

5 POKE 36869,255

(This will give us 64 programmable characters, which we can set

up as an 8-by-a character matrix, which will give us a 64-dot by

64-dot HI-RES screen—just what we were looking for.)

RUN the program now. Garbage appeared on the screen,

right? Just like the regular screen, we have to clear the

HI-RES screen before we use it. Printing a key won't work in

this case. Instead we have to clear out the section of memory

used for our programmable characters. Add the following

line to your program to clear the HI-RES screen;

6 FOR I- 7168 TO 7679 : POKE I, 0 : NEXT

Now RUN the program again, You should see nothing but black

on the screen—your program is a success. What we want to add

now is the means to turn dots on and off on the Hl-RES screen.

To SET a dot (turn the dot on) or UNSET a dot you must know

how to find the correct bit in the character memory that you must set

to one. In other words, you have to find the character you need to

change, the row of the character, and which bit of the row that you

have to change. We need a formula to calculate this.

We will use X and Y to stand for the horizontal and vertical

position of the dot. The dot where X = 0 and Y - 0 is at the upper-left

of the display. Dots to the right have higher X values, and the dots

toward the bottom have higher Y values.

The dots where 0< = X< = 7 and 0< - Y< = 7 are in character

number 0, which we placed at the upper-left corner of the screen.

Each character contains 64 dots. 8 rows of 8 dots each.

These are the simple calculations to decide which dot of which

character is being altered:

The character number is. . .

CHAR - INT{X/8) *3 + INT(Y6}

I

90

This gives the display code of the character you want to change.

To find the proper row in the character, use this formula:

ROW = {Y/8 - INT(Y/8)) "8

Therefore, the byte in which character memory dot (X,Y) is

located is calculated by:

BYTE = 7168 + CHAR'S - ROW

The last thing we have to calculate is which bit should be

modified. This is given by:

BIT - 7- (X- (INT(X/8)"8)

To turn on any bit on the grid with coordinates (X, Y), use this line:

POKE BYTE, PEEK (BYTE) OR (2 \ BIT)

Let's add these calculations to the program. In the following

example, the VIC will plot a sine curve:

50 FOR X = 0 TO 63

60 Y = INT(32 + 31 " SIN (X/10))

70 CH = INT(X/8)*8 - INT(Y/8)

80 RO = (Y/8 - INT(Y/8)) " 8

90 BY = 7168 + 8"CH - RO

100 Bl = 7- (X- INT(X/B}*8)

110 POKE BY, PEEK(BY) OR (2 f Bl)

120 NEXT

130 GOTO 130

The calculation in line 60 will change the values for the sine

function from a range of - 1 to -1 to a range from 0 to 63. Lines 70

to 100 calculate the character, row, byte, and bit being affected,

using the formulas as given before. Line 130 freezes the program

by putting it into an infinite loop. When you have finished looking at

the display, just hold down RUN'STOP and hit RESTORE.

As a further example, you can modify the sine curve program to

display a circle. Here are the lines to type to make the changes:

55 Y1 = 32 + SQR(64'X -X*X)

56 Y2 = 32 - SQR(64'X -X*X)

60 FOR Y = Y1 TO Y2 STEP Y2-Y1

125 NEXT

This will create a circle in the HI-RES area of the screen. Notice

that the rest of the screen fills up with a stripe pattern. This is

because the empty spaces on the screen are filled with character

code 32, which is normally a space—and is now one of the

91

programmable characters in the grid. If you didn't want the screen

to fill up with that garbage, just fill the screen with characters with a

code you're not using. In 1his case, code 160 would work nicely,

stnce that points to the blank space character in ROM. Here is a line

that cleans up the rest of the screen:

11 FOR I - 7680 TO 8185 : POKE 1,160 ; NEXT

MULTI-COLOR MODE GRAPHICS

High resolution graphics gives you control of very small dots on

the screen. Each dot in character memory can have 2 possible

values, 1 for on and 0 for off. When a dot is offt the dot on the screen

is drawn with the screen cotor. If the dot is on, the dot is colored with

the character color for that screen position. All the dots within each

8x£ character can either have the screen color or the character

color. This limits the color resolution within that space.

Multi-color mode gives a solution to this problem. Each dot in

multi-cotor mode can be one of 4 colors: screen coior, character

color, border color, or auxiliary color. The only sacrifice is in the

horizontal resolution, because each multi-color mode dot is twice

as wide as a high-resolution dot. This ioss of resolution is more than

compensated for by the extra abilities of multi-color mode, like the

ability to color dots in one of 16 colors, instead of the usual 8.

Multi-color mode is set on or off for each space on the screen, so

that mufti-color graphics can be mixed with high-resolution

graphics. This is controlled in color memory. Color memory is in

locations beginning at either 37S8S or 33400, depending on the

size of memory in the VIC. To find the current location of color

memory, use the formula:

C - 37888 - 4 ' (PEEK (36866) AND 12B)

The memory in this location is a little ditferent from that in the rest

of the VIC, It is wired up as nibbles instead of bytes, meaning that

each memory location has 4 bits instead of the usual 8. When

PEEKing values from this section of memory, the value should

always be ANDed with 15 to "filter out" any random bits that appear

in the upper 4 bits.

By POKEing a number into color memory, you can change the

color of the character in that position on the screen. POKEing a

number from 0 to 7 gives the normal character colors, POKEing a

number between 8 and 15 puts the space into multi-color mode. In

other words, turning the high bit on in color memory sets multi-color

mode, and turning off the high bit rn color memory sets normal (or

high-resolution) mode.

Once multi-color mode is set in a space, the bits in the character

92 —

determine which colors are displayed for the dots. For example,

here is a picture of the letter A, and its bit pattern:

IMAGE BIT PATTERN

00011000

* 00100100

* 01000010

■•***• 01111110

' 01000010

• 01000010

■ • 01000010

00000000

In normal or high-resolution mode, the screen color is displayed

everywhere there is a 0 bit, and the character color is displayed

where the bit is a 1. Multi-color mode uses the bits in pairs, like so;

IMAGE

AABB

B8AA

AA BB

AACCCCBB

AA BB

AA BB

AA BB

BIT PATTERN

00 01 10 00

00 10 01 00

01 00 00 10

01 11 11 10

01 00 00 10

01 00 00 10

01 00 00 10

00 00 00 00

In the image area above, the spaces marked AA are drawn

in the border color, the spaces marked BB use the character

color, and the spaces marked CC use the auxiliary color. The

bit pairs determine this, according to the chart below;

BIT PAIR

00

01

10

11

COLOR REGISTER

Screen color

Border color

Character color

Auxiliary color

Turn the VIC off and on, and type this demonstration program

100 C - 3788B + 4 * (PEEK (36866) AND 128)

110 POKE 36878, 11 * 16 : REM SET AUX COLOR

120 PRINT CHRS(147) "AAAAAAAAAA"

130 FOR L - 0TO 9

93

140 POKE C - L , 8

150 NEXT

The screen color is white, the border color is cyan, the

character color is black, and the auxiliary color is light cyan.

You're not really putting color codes in the space for screen,

border, and auxiliary color; you're putting references to the

registers associated with those colors. This conserves memory,

since 2 bits can be used to pick 16 colors (screen and auxiliary) or 8

colors (character and border). This also makes some neat tricks

possible. Simply changing one of the indirect registers will change

every dot drawn in that color. So everything drawn in the screen,

border, or auxiliary color can be changed on the whole screen

instantly. Here is an example using the auxiliary color:

100 PRINT CHRS(147) CHRS(18);

110 POKE 646 , 8 ,

115 FOR L = 1 TO 22 : PRINT CHR$(32); : NEXT

120 POKE 646 , 6

130 PRINT "HIT A KEY"

140 GET AS: IF AS ="" THEN 140

150 X = INT (RND (1) "18)

160 POKE 36878 , X * 16

170 GOTO 140 |

There is a memory location in the VIC that is especially useful

with multi-color mode. Location 646 is the color that is currently

being PRINTed. When a color control key is pressed this location is

changed to the new color code- By POKEing this location, the

characters to PRINT can be changed to any color, including

multi-color characters. For example, type this command:

POKE 646.10

The word READY and anything else you type will be displayed in

multi-color mode. Any color control will set you back to regular text.

SUPEREXPANDER CARTRIDGE '
There is a cartridge program called the VIC SUPER EX

PANDER. This cartridge is programmed with many special

functions, including a graphics package. This allows drawing of

lines, dots, and circles, coloring in of areas on the screen, and full

control over graphic modes. For programs in BASIC, it will be

considerably easier to use graphics with the SUPER EXPANDER

than by use of cumbersome pokes. The SUPER EXPANDER also

includes 3K of extra RAM to give you enough room to do any

high-resolution operation.

94 i

SOUND AND MUSIC

Sound effects and music can improve almost any computer

program, whether in BASIC or Machine Language. Obviously, a

computer game is more exciting if you can hear the guns blazing

and the rockets exploding. Likewise, a clever little tune provides an

audio "theme" for a game or other program, or might become the

"reward" if the player reaches a special "high" score.

Beyond games, sound effects serve other useful purposes. For

example, a business or calculation program may be faster and

easier to use if the computerist can enter a long string of numbers or

formulas without looking up from a chart or balance sheet. A quick

tone at the end of each entry indicates when a number has been

entered ... a 'buzz" might sound if the number entered has too

many decimal places ... and different tones might be used to

distinguish one kind of entry from another.

These are just a few ideas about how sound and music are used

in computer programming. The following information is provided to

help you the programmer understand how to use the VIC's sound

capability to best advantage.

FOUR "SPEAKERS" AND 5 "OCTAVES"

The VIC has 3 tone generators (for music}, and one white noise

generator (for sound effects). The tone generators cover 3 octaves

each but are staggered slightly so you can actually reach a total of 5

separate octaves.

The VIC's speakers and volume control are stored in specific

memory locations which you can access and control by using the

POKE command. Whenever you poke one of these locations you

activate that tone generator, or the volume control.

When programming sound—especially music—it is often helpful

to think of these various sound controls as "speakers," and the

volume setting as a standard Volume" control.

Here, briefly, is a list of memory locations relating to sound:

36878 (VOLUME SETTING)

36874 (SPEAKER 1—MUSIC—LOWEST)

36875 (SPEAKER 2—MUSIC—MIDDLE)

36876 (SPEAKER 3—MUSIC—HIGHEST)

36877 (SPEAKER 4—NOISE)

There are 15 volume settings. Therefore to set the volume you must

type the POKE command, followed by a comma, and a number

95

from 1 to 15. We suggest you always use 15, unless you're playing

with the amplitude as part ol a sound effect.

Each speaker has a range of 128 separate settings. To "play" a

particular note you must POKE one of the speaker settings, which

happen to be numbered from 128 to 255. If you POKE a number

lower than 128 or higher than 255 you will get no sound (which

suggests one way to interrupt a speaker while it's "on").

Here's an example of how to play a note on the VIC:

20 POKE 36878,15 SETS VOLUME AT MAXIMUM

30 POKE 36875,200 TURNS ON SPEAKER NUMBER 2

40 FOR X=1TO1000: THIS IS A1000COUNTTIME DELAY

NEXT

50 POKE 36878,0 THIS TURNS THE SPEAKER OFF

AFTER COUNTING TO 1000

RUN

The VIC uses the television speaker as its "voice," so the volume

can also be adjusted by turning the television speaker (or other

external amplifier).

ABBREVIATING THE SOUND COMMANDS

You can abbreviate the lengthy POKE commands described above

by converting these to programming "shorthand.1 One way is

shown below:

t0 V-36878:51 = 36874:S2-36875:S3 = 36876:S4 -36877

Now if you want to turn on a particular speaker, or set volume, you

can use the abbreviations . . . like, for instance: I

20 POKEV.15

30 POKES2.200

40 FORX = 1TO1000:NEXT

50 POKEV.O

VICTIP

In line 10, we put all the commands on one line instead of five

lines because we want to demonstrate economical program

ming techniques. You can save memory and "crunch" longer

programs into less space if you put several commands on a

single line, with each command separated by a colon, as

shown.

96

Keep this "programming shorthand" in mind as we show you some

more examples of using the VIC speakers.

HOW MUSIC WORKS ON THE VIC

As already mentioned, the VIC's speakers each cover 3 octaves,

but together reach a total range of 5 octaves. This is because the

VIC's 3 tone generators are "staggered" so the octaves of the

different speakers overlap. A more graphic picture of which

speakers cover which octaves and how they overlap is shown in the

chart on page 99. Musical note values are shown below:

TABLE OF MUSICAL NOTES

APPROX.

NOTE

C

c#

D

D#

E

F#

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

SPEAKER

COMMANDS

POKE 36878

POKE 36874

POKE 36875

POKE 36876

POKE 36877

,x

,x

,x

.X

X

VALUE

135

143

147

151

159

163

167

175

179

183

187

191

195

199

201

203

207

209

212

WHERE

0

128

128

128

128

X

10

to

to

to

to

APPROX.

CAN

15

255

255

255

255

NOTE

G

G#

A

A#

B

C

c#

D

D#

E

F

F#

G

G#

A

A#

B

C

C#

BE:

VALUE

215

217

219

221

223

225

227

228

229

231

232

233

235

236

237

238

239

240

241

FUNCTION:

sets volume

plays tone

plays tone

plays tone

plays "noise"

97

The Octave Chart illustrates the three octaves contained in each

speaker register. It also shows how several octaves overlap . . . 1ar i

instance, the lowest octave of Speaker 3 contains the same notes

as the middle octave of Speaker 2. Of course, the same note played

on different speakers may sound slightly different . . . just as the

same note played on a piano may sound different from the same

note played on a harpsichord. Also, some television sets and

speakers may cause varying results in terms of tonal qualities.

The Table of Musical Notes on page 97 is intended to help you

approximate note values in your computer program using the VIC.

The number values are approximate only and may be adjusted by

using values between those shown.

MUSIC PROGRAMMING TECHNIQUES

There are four basic parameters in programming music:

1. Voiume I
2. Speaker/Sound Register Selection

3. Note

4. Duration

In other words, the things you have to consider when programming

music are which volume to set, which speaker(s) to use, the notes .

being played by each speaker, and the duration of each note. Let's

consider some techniques -for putting these parameters in your

program:

EXAMPLE 1: MUSIC USING DATA STATEMENT

10 POKE 36878, 15 Set volume to highest ieve! (15).

20 S2 = 36875 Set speaker to equal S2 (any variable).

30 READ N,D Read duration & note from DATA

below.

40 IF N = — 1 THEN Turn off speaker & end program at - 1.

POKES2h0:END

50 POKE S2.N Play note N from DATA on Speaker S2.

60 FORT = 1 TOD: Duration loop to set up time value.

NEXT

70 GOTO30 Keeps going back to DATA list to get

duration & note (NTD) values.

80 DATA 225,250,226, DATA statements ... the first number

250,227,250,228, is the note from the note value chart

250,229,250,230, earlier in text, and the second

250,231,250,232, number is the duration the note is

250,233,250,234, played.

250,235,250,-1.

98 I

VIC OCTAVE COMPARISON CHART

S3 (36876)

D 0

E C

F T

G A

A V

B E

C 3

D 0

E C

F T

G A

A V

B E

C 2

D O

E C

F T

G A

A V

B E

C 1

LOWEST OCTAVE

S2 (36875)

D O

E C

F T

G A

A V

B E

C 3

D 0

E C

F T

G A

A V

B E

C 2

D 0

E C

F T

G A

A V

B E

C 1

HIGHEST OCTAVE

S1 (36874)

D 0

E C

F T

G A

A V

B E

C 3

D 0

E C

F T

G A

A V

B E

C 2

D 0

E C

F T

G A

A V

B E

C 1

99

Pay special attention to the fact that N,D is actually each PAIR of

values in the DATA statement in line 80. For example, 225,250 is

the note (225) and time duration (250 jiffies) the note is played. The

next note is 226 which is also held for a duration of 250, and so on

until the computer comes to the DATA pair of -1. - 1. which is the

signal to END 1he program. There are two ways to end the music

portion of a program. To turn off the music and continue the

program you should simply POKE the speaker(s) with a zero to turn

them off when the program reaches your DATA signal (the signal

here \s -1,-1 but it could be any number). To end the entire

program when the music stops POKE the speaker(s) off with a

zero and END the program by using the END command as shown

tn line 40.

EXAMPLE 2: MUSIC USfNG MULTIPLE SPEAKERS

10 POKE 36878,15

20 S1 =36S74:S2 = 36875:

S3-36876

30 READ DTN1tN2,N3

40 IF D=-1THENPOKES1,

0:POKES2,0:POKES3,

0:END

50 POKE S1,N1

60 POKE S2,N2

70 POKE S3,N3

flO FORT = 1TOD:NEXT

90 GOTO30

100DATA500,225.225,225,

0,0,0,0,500,225,225,225,

500,232,232,232,0,0,0,0,

500,232,232r232

110DATA250,240h240,240l

250,239,239,239,

125,237.237,237,

67.5,235,235,235,

33,232,232,232

120DATA33,231,231,231,

33,228,228,228,

33,225,225.225,

33,223r223:223,

500,195,195.195

130DATA500;2407240,240

140DATA- 1,0,0,0

This program is essentially the

same as Example 1, except

several speakers are used, and

each speaker must be desig

nated separately. If you're not

familiar with DATA statements,

here's a good example of how

they work. In the previous ex-

ampfe we told the VIC to scan

through the DATA and READ

N,D where the first number was

the NOTE and the second num

ber was the DURATION. In this

example, we are rearranging

the program so the VIC reads

the DATA numbers in a slightly

different order. Line 30 instructs

the VIC to READ the data in this

order: DURATION, NOTE 1.

NOTE 2, NOTE 3. These notes

are only played on their corre

sponding speakers per lines

60-70. The music is the same as

EXAMPLE 1 except we're using

three speakers and setting the

same duration for all 3 notes so

they pfay simultaneously. Ef you

want different speakers to pJay

100

different durations, (as in most

songs) you would change fine

30 to: READ D1 ,N1 ,D2,N2,D3P-

N3 and put matching dura-

tion'note pairs in the DATA

statements. This is how you

achieve 3-voice harmony.

Notice also in Example 2 that the simple tune is played with a!l

similar notes, then speeded up by shortening the duration values.

The duration values may be any number, including decimal

numbers like the "67.5" in line 110 which is included as an example.

The note values may be any number between 128 and 255, with

notes corresponding to the note value chart earlier in this chapter.

Another parameter which you might consider changing is

volume. An example of how volume may be changed is found in ihe

"OCEAN WAVES" sound effect program on page 137 of the VIC 20

Personal Computer Guide (owner's manual).

If you want to get even more sophisticated in your music/sound

effects programming, try frequency modulation, which entails

rapidly switching back and forth between two notes to achieve the

illusion of a "middle" note between the two values. Exampfe 3

illustrates this technique and plays a "true11 scale.

EXAMPLE 3: TRUE NOTE SCALE USING FREQUENCY

MODULATION

READY.

MUSE

READY.

90 S1-36874:S2-S1 -f 1:S3 = S1 -2:V=S1 +4

100 DIMN(37J):FORI = 0TO37:READN(lF0),N(t,1):NEXT

200 FOR! = 0TO37:POKEVJ5:FORJ = 0TO49:POKES1,N(l,0):

POKES1,N(l,1):NEXTJ;POKEV.0:NEXTI

9000 DATA131,131,140,140.145.145,151,151,158.158,161,162.

166,167,173,174.178,178,181,182

9010 DATA135.186,169,190,192,195,197,197,200,200,203,203,

206,207,203,209,211,212,214,214

9020 DATA216,216,218,219,220,221,222,223,224.224.226,226,

227,228,299,229,231,231.232,232

9030 DATA233.233,234,235!235,236,237,237,237.238,239,239,

239,240,240.241

READY.

101

MUSICAL NOTE VALUES

The accompanying chart shows the two values to modulate

between to get the "true" note in the first column. Using the

program in Example 3 above, POKE the lirst value, then the second

value in line 100 to get the "true" modulated tone.

I

NOTE

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

VALUE 1

131

140

145

151

158

161

166

173

178

181

185

189

192

197

200

203

206

208

211

214

216

218

220

222

224

226

227

229

231

232

233

234

238

237

237

239

VALUE 2

162

167

174

182

186

190

195

207

209

212

219

221

223

228

235

236

238

102

c 239

240

240

241

If two note values are given, vary the sound register on the VIC

between those two values, If only one value is given, don't vary the

register (just POKE the value in twice),

i

VIC TIP: Here are a few additional comments about using

DATA statements in your programs. In Example 2 (page 100)

we show each note set (duration, note 1,2 and 3) on a separate

line to emphasize that the notes are arranged and played

simultaneously . . . when you enter this DATA in your

computer, however, you should not break up the segments

but instead type all the numbers and commas without any

spaces between the characters. Typing programs without

spaces is a good way to conserve memory and reduces the

possibility of error.

EXAMPLE 4: THE VIC PfANO

Finally, to give you a more familiar representation of how music

works on the VIC, here's a program which converts the VIC

keyboard to a "piano."

Abbreviates

the voice

registers well

need and turns

10 REM STORE SOUND REGISTERS

20 S2 = 36675

30 V -36878

40 POKE S2,0

100 REM STORE B MAJOR SCALE

110 FOR N=1 TO 8

120 READ A (N)

130 NEXT N

140 DATA 223, 227, 230

150 DATA 231, 234, 236

160 DATA 238, 239

200 REM PLAY KEYBOARD

210 POKE V, 15

220 GET AS: JF AS="" THEN 220

230 N-VAL (AS)

them off

Reads B major

scale from lines

140-160

Contains

values for B

major scale

Turns on the volume

Finds out what key

is being pressed

103

240 IF N = 0 OR N = 9 THEN 300

250 POKE S2H0

260 FOR T=1 TO 25: NEXT T

270 POKE S2, A (N)

230 GOTO 220

300 REM ENDING MODULE

310 POKE S2, 0

Ends the program

if you've pressed

"O1P or "9"

Brief silent interval

between notes. . .

Plays the tone

and returns to

look for another

h Turn off the sound*

- before you go r

Now, when you type RUN (and press RETURN), you can play

tunes on your VIC. The keys in the top row with numbers on them

control the various notes:

1

DO

2

RE

3

Ml

4

FA

5

SOL

6

LA

7

TJ

8

DO

The VIC will keep playing the note you hit last until you hit another

note. When you're done, press either 0 or 9, and it will turn off. To

start the VIC piano again, just reRUN the program.

Try the following:

115 5 6 6 5

4 4 3 3 2 2 1

5 5 4 4 3 3 2

5 5 4 4 3 3 2

115 5 6 6 5

4 4 3 3 2 2 13

9

OR:

33455432

1 12 3 3 2 2

33455432

112 3 2 11

0

!

THE WHITE NOISE GENERATOR

One of the "speakers11 we've ignored thus far is the White Noise

Generator, or Speaker 4, This fourth speaker produces a blank

notse sound like that on your television set when you fall asleep late

at night. It has the same 3 octave range as the tone generators

described above, and is used primarily for sound effects, either by

itself or in conjunction with the other speakers. The combination of

white noise and tones can produce some stunning effects. Twenty

or so sample sound effects are listed in the VIC 20 owner's manual

(PERSONAL COMPUTING ON THE VIC 20).

1

104

To try out the White Noise generator, try typing this:

10 POKE36878.15 (if you don't have vol on yet)

20 POKE36877.240

30 FORT = 1TO1000:NEXT

50 POKE36877.0

VIC TIP:

If you turn a particular speaker on it will STAY ON UNTIL YOU

TURN IT OFF. Example: POKE 36875,200 turns Speaker 2 on

with a high-pitched tone. You must POKE 36875,0 to turn the

speaker off. Just POKEing the Volume to zero will not turn the

speaker off. For example, turn the volume on (POKE36878,15)

then POKE a speaker on. Now turn the volume off

(POKE36878,0) then turn it on again (POKE36878,15). The tone

comes back on again automatically, right? That's because it

was never turned off. Just the volume was turned to zero. It's

like a radio set on the same station. Whenever you turn the

volume up the same station comes on. You have to turn the

speaker to a different tone, turn it off by pokeing zero, or poke

it to a number outside of its range to get a "silent" reading

(under 128).

MIXING SOUND AND GRAPHICS

Ninety percent of the programs being written with sound or music

will combine graphics with sound effects, so here are 3 sample

programs which combine graphics and sound:

EXAMPLE 1: CARD GRAPHICS

10 A = 97: B = 20: C-122: D = 115

20 POKE36878,15: S2-36875

30 POKES2,200:PRINTCHBS(A);

40 FORI=1TO100:NEXTI

50 POKES2,205:PRINTCHR$(B);

60 FORI=1TO100:NEXTI

70 POKES2,210:PRINTCHR$(C);

80 FORI = 1TO100:NEXTI

90 POKES2,215:PRINTCHRS(D);

100 FORI = 1TO100:NEXTI

110GOTO30

105

EXAMPLE 2: CALCULATING FORMULA WITH BLIPS

10 POKE36878.15:PRINTENTER FIRST NUMBER":INPUTA I

20 FORX - 200TO120STEP - 2:POKE36875,X:NEXT

30 PRINTENTER SECOND NUMBER":INPUTB

40 FORX = 200TO120STEP-2:POKE36875,X:NEXT

50 FORT = 1TO200:NEXT

60 PRINTA"MULTIPLIED TIMES" B '

" = "A*B:FORX=150TO250STEP2:POKE36875,

X:NEXT:POKE36875,0

70 FORT=1TO5000:NEXT:GOTO10

EXAMPLE 3: MUSICAL KEYBOARD

10 POKE36878.15:X=128

20 IFX>255THENGOTO10

30 GETAS:IFAS = ""THENGOTO30 ,

40 PRINTAS;

50 POKE36876.X

60 X = X + 5:GOTO20

!

[

I

106

MACHINE LANGUAGE

System Overview

• Introduction to Machine Lan

guage

• Writing Your First Program

■ Special Tips for Beginners

• Memory Maps

• Useful Memory Locations

• The KERNAL

• KERNAL Power Up Activities

• VIC Chips

—6560 Video Interface Chip

—6522 Versatile Interface

Adapter

i

!

I

!

i

!

I

I

!

I

I

I

SYSTEM OVERVIEW

This chapter provides an overall functional description of the VIC

20 and ties hardware and software operations together to give the

programmer more of an understanding of the way VIC 20

processes his programs within the system.

Asimplified functional block diagram of the computer is shown in

Figure 1-1. The major system components include the micropro

cessor, the program-storage read-only memories (ROMs), the

data-storage random-access memories (RAMs), the versatile

interface devices (VIAs, 6522), the character generator chip

(2332), and the VIC chip which provides video and sound for the

display.

The 6502 microprocessor is the most complex device on the

electronics printed circuit board. This device is primarily responsi

ble for controlling all computer operations. These operations are

controlled by addressing programs in the read-only memory

(ROM), and then interpreting and executing these sequential

program instructions. The interpretation and execution of instruc

tions are accomplished during the processor's fetch and execute

cycles. In the fetch cycle, a program instruction is "fetched" into the

processor's instruction register. The program counter (indicates

the location of the instruction in ROM) is counted up, ready for the

next instruction in sequence to be fetched into the instruction

register. In the execute cycle, the processor executes the

instruction which performs the operation indicated. Addresses

indicating the destination of data being transferred are derived from

the instruction, or calculated using program data and data from the

internal registers.

These controls exercised by the processor are performed by

communicating through the 16-bit address bus, the 8-bit bi-direc

tional data lines, and the write-enable line. The information on the

address bus determines the destination of the data being

transferred, the bi-directional data bus functions as a path for data

transferred into and out of the microprocessor, and the write-enable

line determines the direction of the data being transferred.

Consider the microprocessor's inputs and outputs. We can

divide these into three groups. Each of these groups forms a "bus"

which consists of a set of parallel paths used to transfer binary

information between the devices in the system.

The address bus is used to carry the address generated by the

microprocessor to the address inputs of the memory and

input/output (I 0) devices.

109

I

[

[

[

[

I

!

Figure 3-1. VIC system functional block diagram.

no

I

I

The data bus consists of eight bi-directional data lines. During a

write operation, these lines transfer data from the processor to a

memory location selected by the address lines. During a read

operation, data is transferred from memory to the processor along

the same lines. The data bus is, therefore, used to carry all data and

instructions to and from the processor, memory, and the peripheral

devices.

To understand the operation of the control lines which comprise

the control bus, we will examine one individually. Since the data bus

is bi-directional, the processor must have some method of

signalling to memory or I/O to which direction data transfer will take

place (whether memory or the I/O is to be read or written to). This

function is performed by the R/W (Read/Write) output from the
processor. When this line is high, all data transfers will take place

from memory to the processors—a read operation. If the R/W line is

low, then the processor will write data out to memory.

Other control lines which comprise the control bus are: system

clock timing—used to time the operation of the system including

data transfers; reset (RST) line—used to initialize the processor

when the machine is switched on; and interrupt (IRQ and NMI)

lines—used to cause the processor to stop its current program and

start a new program at a specified location.

The program memory is the storage for the sequence of BASIC

instructions which comprise the system programs. The micropro

cessor fetches these instructions by placing the appropriate

address on the address bus. In response, the memory puts the

instruction, in the form of a pattern of 1 's and O's, on the data bus.

The program memory is called a read-only memory because the

microprocessor cannot store information into the ROM device.

However, by addressing the ROM, the processor can cause the

corresponding 8 bits of data to be transferred on the data bus. The

ROM is a nonvolatile device, i.e., data is not destroyed when power
is disconnected from the system.

The read-write, random-access memory (RAM) provides tem

porary storage for input data, arithmetic operations, and other data

manipulations. Each RAM address corresponds to eight memory

cells. However, when power is removed from the system, all

RAM-stored data is lost; the RAM is therefore a volatile memory
device.

The versatile interface adapters provide interface for the

keyboard, user port, control port, and the serial bus. The serial bus

provides the communication for peripheral units, such as floppy

disk drives, printers and etc. Each port is assigned a unique

address to permit communication with the microprocessor (Figure
3-3).

111

z

o

lav

Figure 3-2. The 6502 microprocessor

112

3 EL o o 7
7

0
)

I
D 3 3

■
\
h
h

A
B
1

M
U
I
l

A
B
C

A
II
I

I

U
l
l
-
t

U
N

5

u
u
.
m
l
'
l
u
o
h

A P
C
L

P
C
M

I
S
P
l
'
T

D
A
T
A

L
A
K

H

I
P
L
1

L
J

D
A

I
\
U
U
.
S

B
U
F
F
E
R

,
,

.
I

I,
1

i
,

,,
i

N
0
T
L

I
(
L
O
C
K
C
t
M
R
A
T
O
R
I
S
N
O
T

I
N
C
L
U
D
E
D
O
N

\
1
C
S
6
5
0
l

:
V
D
D
R
E
S
S
I
N
f
}
C
A
P
A
B
I
L
I
T
Y
A
N
D

C
O
N
T
R
O
L
O
P
T
I
O
N
S

V
A
R
Y
W
I
T
H

E
A
C
H
O
F

I
M
E
M
t
S
O
S
O
X
P
R
O
D
U
C
T
S

1
'
R
f
X
F
.
.
S
S
O
R

S
I
A
T
L
'
S

T
I
M
I
N
I
.

t
O
N
l
H
O
L

C
L
O
C
K

G
E
N
E
R
A
T
O
R

I
N
S
T
R
U
C
T
I
O
N

H
E
C
I
S
1
E
K

»
-
D
M

-
*
.
D
M
2

-
*
■
D
B
4

-
*
■
D
B
S

-
f
c
-

D
B
f
i

-
^
■
[
)
B
7

I
(
.
S
O

I
|

■
fl
|

I
|
N
|

-
#
;
t
l
M

I
b
S
O
h

C
L
O
C
K

'
I
N
P
U
T

-
»
-

0
|

O
L
'
F

(
6
5
0
1
)

-
*
■

f
l
;
O
U
T

(
6
5
0
1
)

-
*
■

R
/
W

l
>
H
h

L
E
G
E
N
D

D
A
T
A

B
U
S

S
U
I
T

L
I
N
E

I
B
I
T
L
I
N
E

Decimal

37136

37887

38912

39936

40959

49152

57344

65535

I/O-O

1/0-2

I/O-3

BASIC

Kernal

ROM

ROM

Hex

9110

93FF

9800

9CO0

9FFF

C0O0

EOOO

FFFF

Figure 3-3. VIA port assignments.

The video interface chip (VIC) implements color video graphics

for the system. It provides all circuitry necessary for generating

color programmable character graphics with high resolution. VIC

also incorporates sound effects and A'D converters to accommo

date video games. Its on-chip sound system includes three

independent, programmable tone generators, a white-noise

generator and an amplitude modulator.

The VIC 20 character generator contains all characters used in

the system. There are two complete character sets used; (1) Upper

case with full graphics, and (2) upper case and lower case with

limited graphics. Also, each of these character sets is represented

in its reverse mode. These characters are stored in the ASCII 6-bit

code and are arranged in 8x8 bit cells. Also, each character is

stored every 8 bytes in the memory. The diagram in Figure 3-4

shows the character generator memory layout.

VIC's 6502 microprocessor can access up to 32,000 indepen

dent user-RAM memory locations (with memory expansion}. You

can think of ViC's memory as a book with up to 256 "pages," with

256 memory locations on each page. For example, page S80 is the

256 memory locations beginning at location S8000 and ending at

location S80FF. Since the 6502 uses two 8-bit bytes to form the

address of any memory location, you can think of one of the bytes

as the page number and the other as the location within the page.

The amount of active RAM may be 3.58K (addresses 4096 to

I

!

114

Decimal

32763

33792

33816

35840

36863

Upper case

graphics

Upper case

graphics

reversed

Upper case

lower case

Upper case

lower case

reversed

and

and

and

and

1K

1K

1K

1K

Hex

8000

6400

8300

8C00

8FFF

Figure 3-4. Character generator memory layout.

Decimal

0

1024

4096

7680

8192

16384

24576

32768

36863

Working Storage

RAM

Expansion RAM

User BASIC

Program RAM

Screen RAM

Expansion

RAM/ROM

Expansion

RAM/ROM

Expansion

RAM/ROM

Character ROM

1K

3K

4K

8K |

8K

8K

4K

Hex

0000

0400

1000

1EO0

2000

4000

6000

8000

6FFF

Figure 3-5- VIC2Q memory locations.

115

Decimal

36864

37136

37886

38912

39936

40960

49152

57344

65535

VIC Chip

I/O-O

Color RAM

I/O-2

I/O-3

Expansion ROM

BASIC ROM

KERNAL ROM

8K

SK

8K

Hex

9000

9110

9400

9800

9CO0

A000

C000

EGOO

FFFF

Figure 3-5, (cont).

7679}, 6,65K (addresses 1024 to 7679), or a total of 32K by adding

24K more RAM (addresses 8192 to 37267. Addresses 40960 to

49151 are allocated for the expansion of ROM. The first 1K-byte

allocation (to 1024) is fixed; the larger the memory size, the more

space is available in the user program area.

VIC has three types of memory: random-access memory (RAM),

read-only memory (ROM), and input/output locations (I/O). Figure

3-5 shows a typical VIC 20 memory, 1he different types, and the

operations for which they are used.

Each portion of the memory is described in more detail in the

following text.

The first 1K-byte of RAM (Addresses 0 - 1023) is allocated

to working storage, the stack, and tape buffers. Byte ad

dresses 4096 through 8191 are allocated to screen storage

and storage of user programs (Figure 3-6).

Locations 256 through 511 are used for the stack area for BASIC,

KERNAL and the microprocessor. The stack begins at location 511

and proceeds downward. Storage is allocated dynamically as

needed by BASIC and the hardware. An QUT-OF-MEMORY error

occurs if the stack pointer reaches the end of available space in this

area.

Locations 512 through 827 are used as additional BASIC and

KERNAL working-storage locations.

Locations 628 through 1023 form a tape buffer area for the tape

cassette.

i

i

116

Decimal

0

144

256

512

828

1024

4096

7680

8191

BASIC

Working Storage

KERNAL

Working Storage

BASIC & KERNAL

Stack

BASIC & KERNAL

Working Storage

Tape Buffer

Working Storage

Expansion RAM

User BASIC Text

Variables

&

Arrays

Strings

Screen RAM

Hex

0000

0090

0100

0200

033C

0400

1000

1E00

1FFF

Figure 3-6. Working storage and user programs.

Locations 4096 through 7679 are used for storage of the user

program and variables. The program begins at location 4096 and fs

stored upward toward the end ot memory. Variable storage begins

after the end of the program. Array storage begins at the end of

variable storage. Strings are stored beginning atthe end of memory

and working downward. An QUT-OF-MEMORY error occurs if an

upgoing pointer meets the downgoing pointer (Figure 3-6).

Addresses 1024 through 4095 are allocated tor the expansion of

RAM, Addresses 8192 through 32767 are allocated for the

expansion of either RAM or ROM, up to 32K-bytes. Addresses

40960 through 49151 are allocated for ROM expansion only

(Figure 3-7).

117

Decimal

1024

4095

8192

16384

24576

32767

40960

Expansion RAM

Expansion

RAM/ROM

Expansion

RAM/ROM

Expansion

RAM/ROW

Expansion ROM

3K

BK

8K

8K

8K

Hex

0400

OFFF

2000

4000

6000

7FFF

A000

49151 ' -J BFFF

Figure 3-7. Expansion RAM.ROM.

Locations 37136 through 37887, and 38912 through 40959 are

the memory-mapped I/O locations. Locations 49152 through

65535 comprise the BASIC interpreter and KERNAL routines

(Figure 3-8).

Decimal

37136

37887

38912

39936

40959

49152

57344

65535

f/O-0

I/O-2

I/O-3

BASIC ROM

KERNAL ROM

Hex

9110

93FF

9800

9C00

9FFF

C000

E000

FFFF

Figure 3-8. BASIC, KERNAL, and I/O locations.

118

I

Location 65535 is the end of the VIC memory.

The VIC BASIC interpreter executes a user program by

interpreting each source line stored in memory in its compressed

form. First, however, a discussion about how the program Is stored

in memory is necessary.

When a program line is entered from the keyboard, the screen

editor takes control, allowing you to edit the line until you press the

RETURN key. When the RETURN key is pressed, the BASIC

interpreter performs two actions: 1irst, the program line is translated

into its compressed form, that is, reserved words and fogicaJ-opera-

tor keywords are represented by their one-byte tokens; then, the

interpreter stores the program line in memory in its ascending line

number order. When the RETURN key is pressed, the BASIC

interpreter searches memory for the same line number, if there is a

line with the same number, It is replaced with the new line. If there is

not a line with the same number, the next higher line number is

encountered and the interpreter then inserts the new line into

memory.

Program lines are stored at the beginning of the user program

area of memory which starts at memory location 4096. Variables

are stored in memory above the program lines, and arrays are

stored above the variables. All three areas begin at lower

addresses and build upwards to higher addresses. Strings are

stored beginning at the top of memory and work downwards. The

BASIC interpreter builds all four areas, moving them as necessary

and adjusting pointers for insertions and deletions. Eight pairs of

memory locations contain pointers to the division points in the user

program area of memory. These pointers are shown in Figure 3-9.

Pointer Address

(2B.2C) Start of Text

(41,42) DATA Statement Pointer

(2DP2E) Start of variables

(2F.30) End of variables

(31,32) End of arrays

(33,34) End of strings

(37,38) Top of memory

BASIC

Statements

Variables

Arrays

Strings

Typical Values

4097

5679

5018

5144

5303

7657

7679

Figure 3*9. Principal pointers in user program area.

119

Next, we will discuss the formats in which BASIC statements,

variables, arrays, and strings are stored in their respective areas.

The BASIC statement storage table (Figure 3-10) shows the

format in which BASICstatemenis are stored. Memory location

4097 contains a pointer to the beginning of the first BASIC

statement. The pointer, like all addresses in the VIC, is stored in

law-byte, high-byte order. The pointer is a link to the memory

address ol the next [ink. A link address of zero denotes the end of

the text; i.e., there are no more links and no more statements.

BASIC statements are stored in order of ascending line numbers,

even though there are links to the next statement. Links are used to

quickly search through line numbers.

The statement line number (stored in low-byte, high-byte

order) follows the link address. Line numbers go from 0 to

63999 (stored as 0 and 0. and 255 and 249 respectively).

4097 4098

Link

Link

•

•

•

Link

0 0

Line#

Line#

Line#

(End of

two link

4099

Compressed BASIC

Compressed BASIC

Compressed BASIC

text is indicated by

bytes of zero.}

4101

Text

Text

Text

0

0

0

END

End of

statement

is flagged

by zero

byte.

Figure 3-10, BASIC statement storage.

After the line number, The BASIC statement text begins.

Reserved words and logical-operator keywords are stored in a

compressed format. A one-byte token is used to represent a

keyword. All keywords are encoded such that the high-order bit is

set to 1. Other elements of the BASIC text are represented by their

stored ASCII code. Other elements are comprised of constants,

variable and array names, and special symbols other than

operators and are coded just as they appear in the original BASIC

statement. The BASIC keywords table (Table 3-1) shows the byte

codes tor all values from 0 to 255 that may appear in the

compressed BASIC text. Codes are interpreted according to this

table except after an odd number of double quotation marks

120

I

enclosing a character string; within a character string the VIC ASCIJ

codes prevail.

Code

j dstimal)

0

1-31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

46

49

50

51

52

53

54

55

56

57

56

59

60

61

62

63

64

65

Table

Character/
Keyword

End of line

Unused

space

!

"

§

s

1

(

)

-

-

■

0

1

2

3

4

5

6

7

8

9

;

;

<

>

?

@

A

3-1. VIC 20 BASIC Keyword Codes

Cpfle

(decimal)

66

67

68

69

70

71

72

73

74

75

76

77

7B

79

60

61

82

&3

84

85

86

87

m

&9

90

91

92

93

94

&5

96-127

128

129

130

131

132

Character/

Keyword

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

Q

R

3

T

U

V

w

X

Y

z

I

i

t

Unused

END

FOR

NEXT

DATA

INPUTS

Code
idccimai]

t33

134

135

136

137

130

139

140

141

142

143

144

145

146

147

14fl

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

Character/

Keyword

INPUT

DIM

READ

LET

GOTO

RUN

IF

RESTORE

GOSUB

RETURN

REM

STOP

ON

WAIT

LOAD

SAVE

VERIFY

DEF

POKE

PR[NT#

PRINT

CONT

LIST

CLR

CMD

SYS

OPEN

CLOSE

GET

NEW

TAB(

TO

FN

SPC(

THEN

NOT

Code

(decimal)

169

170

171

172

173

174

175

176

177

170

179

130

181

182

183

184

185

186

187

186

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203-254

255

Character/
Keyword

STEP

+

-

/

1

AND

OR

>

=

<

SGN

INT

ABS

USR

FRE

POS

SQR

RNO

LOG

EXP

COS

SIN

TAN

ATN

PEEK

LEN

STR$

VAL

ASC

CHRS

LEFTS

RIGHTS

MID$

Unused

Note thai the left parenthesis is stored as part of the one-byte

token for functions TAB and SPC; however, the other functions use

a separate byte for this symbol. For example, the line

10 IF INT(A)<5 THEN PRINT TAB(X)

would be coded as the following bytes (in decimal):

121

LINK 1Q|O|139

Lino

Number

32 181 4Q|65|41J179|53

{ A) < 5

32 153 32 163 83

*

41 a

IF INT THEN PRINT TAB(

The operators (—*/< = > as well as the words AND, OR, and

NOT are given keyword codes (high-order bit set) since they

"drive" the BASIC interpreter just as reserved words do (e.g., 179

for <). The standard ASCII codes for these symbols (e.g.T 60 for <)

appear only in the text of a string.

Spaces in the source line are stored except for the space

between the line number and first keyword. This space is supplied

on LISTing when a stored statement is expanded to its original

form. You can conserve memory storage space by eliminating

blanks (but this makes the program harder to read). You can also

conserve space by putting more than one statement on a line, since

the five bytes of link, line number, and 0 end byte are stored only

once.

The size of each statement is variable and is terminated by a byte

of zero to indicate the end of the statement. (An ASCII zero

anywhere within the text is stored as 48.) Zero-byte flags are used

by the BASIC interpreter in executing a program when it goes

through the compressed BASIC text from left to fight picking ou!

keywords and performing the indicated operations. A zero byte

indicates the end of the statement; the next four bytes are the link

to the line number of the next statement. Instead of search

ing through the text and using 0 byte indicators to locate the

next statement, links are used when searching the state

ments for their line numbers. Three consecutive bytes of

zero (the last statements 0 byte followed by two zero link

bytes) flag the end of text when executing the program.

A program stored onto cassette tape is in the same format as

shown in Figure 3-10 for memory storage, Therefore, it is basically

"dumped" onto tape in a continuous block, including link addresses

and 0 end bytes.

The use of tokens in pEace of keywords is not unique to the VIC,

but there is no standard coding from one interpreter to another.

Thus, a BASIC source program SAVEd on tape by VIC BASIC is

not compatible with other BASICs, nor can BASIC programs

generated on other (non-CBM) machines normally be loaded by

the VIC BASIC interpreter.

122

I

INTRODUCTION TO MACHINE
LANGUAGE

WHAT IS MACHINE LANGUAGE?

At the heart of every microcomputer, there is a central

microprocessor, a very special microchip which is the "brain" of the

computer. The VIC 20's microprocessor is the 6502 chip. Every

microprocessor understands its own language of instructions, and

these instructions are called the machine language instructions of

that chip. To put it more precisely, machine language is the ONLY

programming language that your VIC 20 really understands. It is

the native language of the machine.

If machine language is the only language that the VIC 20

understands, then how does it understand the VIC BASIC

programming language? If VIC BASIC is not the machine language

of the VIC 20, what makes the VIC 20 understand VIC BASIC

instructions such as PRINT and GOTO?

To answer this question, we must first see what happens to your

VIC 20 when you turn it on. How does yourcomputer know what to

do when it is first turned on? Well, apart from the microprocessor

which is the brain of the VIC 20, there is a huge machine language

program which is "burnt" into a special type of memory called ROM

that cannot be changed, and does not get erased when the VIC 20

is turned off, unlike a program that you put into the VIC's RAM. This

huge program is in two parts, one taking care of the BASIC

language, and the other called the "operating system."

The operating system is in charge of "organizing" all the memory

in your machine for various tasks, looks at what characters you type

on the keyboard and puts them onto the screen, and a whole

number of other functions. The operating system can be thought of

as the "intelligence and personality" of the VIC 20 (or any computer

for that matter). So when you turn on your VIC 20, the operating

system takes control of your machine, and after it has done its

housework, it then says:

READY.

The operating system of the VIC 20 then allows you to type on the

keyboard, and use the built-in "screen editor" on the VIC 20. The

screen editor allows you to move the cursor, DELete, INSert, etc.,

and is, in fact, only one part of the operating system that is built-in

for your convenience.

123

All of the commands that are available in VIC BASIC are simply

recognized by another huge machine language program built into

your VIC 20. This huge program "RUN" hs the appropriate piece of

machine language depending on which VIC BASIC command is

being executed. This program is called the "BASIC interpreter,11

because it interprets each command, one by one, unless it

encounters a command it does not understand, and then the

familiar message appears:

7SYNTAX

ERROR

READY.

WHAT DOES MACHINE CODE LOOK LIKE?

SIMPLE MEMORY MAP OF THE VIC 20

Address Description

0 Start of memory.

to Memory used by BASIC and the operating system.

1023

1024

to This is a gap in memory for a 3K memory expansion

4095 module

4096

This fS YOUR memory. This is where your BASIC or

machine language programs, or both, are stored.

This is also where the screen memory would begin

on a VIC 20 that has at least 8K of RAM expansion

memory, in which case the screen RAM that

follows would become user memory space:

7679 continuing up to the top of the expansion memory.

124

I

You should be familiar with the PEEK, and POKE commands rn

the CBM BASIC language for changing memory locations. You will

probably have used them for graphics on the screen, and for sound .

effects. The memory locations will have been 36574r 36875,

36876, 36877, 36878 for sound effects. This memory location

number is known as the "address" of a memory location. If you can

imagine the memory in the VIC 20 as a street of houses, the number

on the door is. of course, the address, Now we will look at which

parts of the street are used for which purpose.

i

7680

to

8185

to

32768

to

36863

36864

to

36879

37136

to

37167

37338

1o

38399

38400

to

38911

38912

to

40959

40960

to

49151

49152

to

57343

57344

to

65535

This is the screen memory.

This is a gap in memory for memory expansion.

Character representations.

The VIC chip registers.

Input and output chip registers.

Character color control table in expanded VIC 20

Character color control table.

Unused.

Expansion ROM.

8K VIC BASIC Interpreter.

8K VIC KERNAL OPERATING SYSTEM

Don't worry if you don't understand what the description of each

part of memory means. This will become clear from other parts of

this manual.

Machine language programs consist of instructions which may or

may not have operands (parameters) associated with them. Each

instruction takes up one memory location, and any operand will be

contained in one or two locations following the instruction.

In your BASIC programs, words like PRINT, and GOTO do, in

fact, only take up one memory location, rather than one for each

characterof the word. The contents of the location that represents a

particular BASIC keyword is called a "token." In machine language.

125

there are different tokens for different instructions, which also take

up just one byte (memory location = byte).

Machine language instructions are very simple, i.e., each

individual instruction cannot achieve a great deal. Machine

language instructions either change the contents of a memory

location, or change one of the internal registers (special storage

locations) inside the microprocessor. The internal registers form

the very basis of machine language.

REGISTERS INSIDE THE 6502

MICROPROCESSOR

THE ACCU MULATOR—This is THE most important register in the

microprocessor. Various machine language instructions allow you

to copy the contents of a memory location into the accumulator, or

copy the contents of the accumulator into a memory location, or

modify the contents of the accumulator or some other register

directly, without affecting any memory. Also, the accumulator is the

only register that has instructions to perform math on it.

THE X INDEX REGISTER—There are instructions to do nearly all

of the transformations you can do to the accumulator, and other

instructions to do things that only the X register can do. Again,

various machine language instructions allow you to copy the

contents of a memory location into the X register, or copy the

contents of the X register into a memory location, or modify the

contents of the XF or some other register directly, without affecting

any memory.

THE Y INDEX REGISTER—There are instructions to do nearly all

of the transformations you can do to the accumulator, and the X

register, and other instructions to do things that only the Y register

can do. Again, various machine language instructions allow you to

copy the contents of a memory location into the Y register, or copy

the contents of the Y register into a memory location, or modify the

contents of the Yt or some other register directly, without affecting

any memory.

THE STATUS REGISTER—This register consists of eight 'Hags'1

(a flag = something that indicates that something has, or has not,

occurred).

THE PROGRAM COUNTER—This contains the address of the

current machine language instruction being executed. Since the

126

L

operating system is always ':RUN"ning in the VIC 20 (or. for that

matter, any computer), the program counter is always changing. It

could only be stopped by halting the microprocessor in some way.

The Stack Pointer—This register contains the location of the first

empty place on the stack. The stack is used for temporary storage

by machine language programs, and by the computer.

THE TOOLS AVAILABLE; GETTING
READY. . .

How Can You Write Machine Language Programs?

Since machine language programs reside in memory, and there

is no facility in your VIC 20 for writing and editing machine language

programs, you must use either a program to do this, or write for

yourself a BASIC program that "allows" you to write machine

language.

Most commonly used to write machine language programs are

"assemblers." These packages allow you to write machine

language instructions in a standardized "mnemonic" format, which

makes the machine language program a good deal more readable

than a stream of numbers. To recap: A program that allows you to

write machine language programs in mnemonic format is called an

"assembler," and also, a program that displays a machine

language program in mnemonic format is called a "disassembler."

Available for your VIC 20 is a machine language monitor cartridge

(with assembler disassembler, etc.) made by Commodore.

VICMon

The VICMon cartridge available from your local dealer is a

program that allows you to escape from the world of VIC BASIC,

into the land of machine language. It can display the contents of the

internal registers in the 6502 microprocessor, and it allows you to

display portions of memory, and change them on the screen, using

the screen editor. It also has a built-in assembler and disassembler,

and many other features that allow you to write and edit machine
language programs easily.

You don't HAVE to use an assembler to write machine language,

but the task is considerably easier with it. If you wish to write

machine language programs, it is advised strongly that you buy an

assembler of some sort. Without an assembler you will probably

have to "POKE" the machine language program into memory,

which, if you value your sanity, is totally inadvisable. This manual

127

will give examples in the format that VICMon uses from now on.

Nearly all assembler formats are the same, therefore the machine

language examples shown will almost certainly be compatible with

any assembler other than the one incorporated in VICMon.

Hexadecimal Notation

This is a notation which most machine language programmers

refer to when referring to a number or address in a machine

language program,

Some assemblers let you refer to addresses and numbers in

decimal (base 10), binary (base 2), or even octal (base 8) as well as

hexadecimal (or just "hex" as most people say). These assemblers

do the conversions for you.

Hexadecimal will probably seem a little hard to grasp at first, but

like most things it doesn't take long (with practice) to master it.

By looking at decimal (base 10) numbers, you will see that each

digit in that number ranges between zero and a number equal to the

base less one, i.e., > 9. THIS IS TRUE OF ALL NUMBER BASES.

Binary {base 2} numbers have digits ranging from zero to one

(which is one less than the base). Similarly hexadecimal numbers

should have digits ranging from zero to fifteen, but we do not have

any single digit figures for the numbers ten to fifteen, so the first six

letters of the alphabet are used instead:

DECIMAL HEXADECIMAL

0 —

1 —

2 —

3 —

4 —

5 —

6 —

7 —

B -

9 —

10 —

11 —

12 -

13 —

14 —

15 —

16

etc.

0

1

2

3

4 —

5

6 -

7

e —

9

A —

B

C —

D

£ —

F

10 —

BINARY

00000000

000O0001

00000010

00000011

00000100

00000101

00000110

OO000111

00001000

00001001

00001010

00001011

000O1100

00001101

000O1110

00001111

00010000

If that's confusing, let's try to look at it another way:

128

Example of how a base 10 (decimal number) is constructed.

Base raised by 3 2 10

increasing powers.. 10 10 10 10

Equals: 1000 100 10 1

Consider4569(base10)45 69 - 4x1000 + 5x100 + 6x10+ 9

Example of how a base 16 (hexadecimal number) is

constructed.

Base raised by 3 2 10

increasing powers., 16 16 16 16

Equals: 4096 256 16 1

Consider 11D9 (basei 6) 1 1 D9 = 1*4096+ r256-r13'16 +

Therefore 4569{Base10) = 11D9(Base16)

The range for addressable memory locations is 0 - 65535 (as

was stated earlier). This range is therefore 0 - FFFF in

hexadecimal notation.

Usually hexadecimal numbers are prefixed with a dollar sign, to

distinguish them from decimal numbers. Let's look at some "hex"

numbers, using VICMon by displaying the contents of some

memory. VICMon shows you:

B'

PC SR AC XR YR SP

<I 0401 32 04 5E 00 F6 (these may be different)

Then if you type in:

,M 0000 0020 (and press RETURN).

You will see rows of 6 hex numbers. The first 4 digit one is the

address of the first byte of memory being shown in that row, and the

other five numbers are the actual contents of the rnemory locations

beginning at that start address.

You should endeavor to learn to HLthink" in hexadecimal. This is

not difficult, since there is no need to think in decimal. For example,

if it is said that a particular value is stored at $14ED instead of 5357,

this shouldn't cause any headaches,

129

I
YOUR FIRST MACHINE LANGUAGE

INSTRUCTION

"LDA"—Load the Accumulator

In 6502 assembly language, mnemonics are always three

characters. LDA represents "load accumulator with. . .", and what

the accumulator should be loaded with is decided by the

parameter(s) associated with that instruction. The assembler

knows which token is represented by each mnemonic, and when it

"assembles" an instruction, it simply puts into memory (at whatever

address has been specified), the token and what parameters are

given. Some assemblers give error messages, or warnings when

the user has tried to assemble something that either the assembler

or the 6502 microprocessor cannot do.

If we put a "#" symbol in front of the parameter associated with

the instruction, this means that we wish the register specified in the

instruction to be loaded with the "value" after the "#". For

exampie:—

LDA #$05

This instruction will put $05 (decimal 5) into the accumulator

register. The assembler will put into the specified address for this

instruction, SA9 (which is the token for this particular instruction, in

this mode), and it will put $05 into the next location after ihe location

containing the instruction (SA9).

If the parameter to be used by an instruction has "#" before it,

i.e., the parameter is a "value." rather than the contents of a

memory location, or another register, the instruction is said to be in

the "immediate" mode. To put this into perspective, le! us compare

this with another mode.

If we want to put the contents of memory location 5102E into the

accumulator, we are using the "absolute" mode of instruction:

LDA S102E

The assembler can distinguish between the two different modes

because the latter does not have a "#" before the parameter. The

6502 microprocessor can distinguish between the immediate

mode and the absolute mode of the LDA instruction because they

have slightly different tokens. LDA (immediate) has $A9 (as stated

previously), and LDA (absolute) has SAD.

The mnemonic representing an instruction usually implies what it

does. For instance, if we consider another instruction, "LDX," what

do you think this does?

Ifyou said "load theXregisterwith. . .".gotothetopoftheclass.

130 1

If you didn't, then don't worry; learning machine language does take

patience, and cannot be accomplished in a day.

The various internal registers can be thought of as special

memory locations, because they too can hold one byte of

information. It is not necessary for us to explain the binary

numbering system (base 2) since it follows the same rules as

outlined for hexadecimal and decimal outlined previously, but one

"bit" is one binary digit and eight bits make up one byte.

The maximum number that can be contained in a byte is the

largest number that an eight digit binary number can be. This

number is 11111111 (binary), which equals SFF (hexadecimal),

which equals 255 (decimal). You have probably wondered why only

numbers from zero to two hundred and fifty-five could be put into a

memory location. If you try POKE 7680,260 (which is a BASIC

statement that "says":— "Put the number two hundred and sixty

into memory location seven thousand, six hundred and eighty,"

The BASIC interpreter knows that only numbers 0 - 255 can be put

in a memory location, and your VIC 20 will reply with:

7ILLEGAL QUANTITY

ERROR

READY.

If the limit of one byte is SFF (hex), how is the address parameter

in the absolute instruction "LDA S102E" expressed in memory?

Well, it is expressed in two bytes (it won't fit into one, of course).

The lower (rightmost) two digits of the hexadecimal address form

the "low byte" of the address, and the upper (leftmost) two digits

form the "high byte."

The 6502 requires any address to be specified with its low byte

first, and then the high byte. This means that the instruction "LDA

S102E" is represented in memory by the three consecutive values:

SAD, S2E, S10

We need to know one more instruction before we can write our

first program. That instruction is "BRK." For a full explanation of this

instruction, refer to M.O.S 6502 Programming Manual, You can

think of it as the "END" instruction in machine language.

If we write a program with VICMon and put the BRK instruction at

the end, the program will return to VICMon when it is finished. This

might not happen if there is a mistake in your program, or if the BRK

instruction is never reached (just like an "END" statement in BASIC

may never get executed, and thus if the VIC 20 didn't have a STOP

key, you wouldn't be able to abort your BASIC programs!)

131

WRITING YOUR FIRST PROGRAM '

I

I

If you have used the POKE statement in BASIC to put characters

onto the screen, you will be aware that the character codes for

POKEing are different to CBM ASCII character values. For

example, if you enter:

PRINT ASC("A") (and press <RETURN>)

The VIC 20 will respond with:

65

READY.
4

However, to put an "A" onto the screen by POKEing, the code is

1. Since the screen memory starts at 7680 (decimal), or 4096 if you

have 8K or more of expansion memory, by entering:

<CLR> (To clear the screen)

POKE 7680,1 (and<RETURN>) (NOTE: POKE 4096,1 on a

VIC 20

with 8K or more of

expansion memory) ■

The "P" in the POKE statement should now be an "A." We will

now do this in machine language. Type the following in VICMon:

(Your cursor should be flashing alongside a "." right now.)

.A 1400 LDA #$01 (and press <RETURN>)

The VIC will prompt you with:

.A 1402 '

Type:

.A 1402 STA S1E00 (or STA S1000 on a VIC 20

with 8K or more of expansion memory)

The STA instruction stores the contents of the accumulator in a

specified memory location. The VIC will now prompt you with:

.A 1405 "

Now enter:

.A 1405 BRK

Clear the screen, and type:

G 1400

132

I

The G should turn into an "A" if you have done everything

correctly. You have now written your first machine language

program! Its purpose is to store one character, the letter A, in the

first byte of screen memory.

ADDRESSING MODES

ZERO PAGE

As shown earlier, absolute addresses are expressed in terms of

a high order and a low order byte. The high order byte is often

referred to as the page of memory. For example, the address S1637

is in page S16 (22), and S0277 is in page S02 (2). There is, however,

a special mode of addressing known as "zero page" addressing

and it is. as the name implies, associated with the addressing of

memory locations in page zero. These addresses have a high order

byte of zero. The zero page mode of addressing only expects one

byte to describe the address, rather than two when using an

absolute address, which saves speed and time. This mode tells the

microprocessor to assume that the high order address is zero.

Therefore zero page addressing can reference memory locations

whose addresses are between SOOOO, and SOOFF.

THE STACK

The 6502 microprocessor (like almost all others) has what is

known as a "stack." This is used both by the programmer and the

microprocessor to temporarily remember things, and to remember

the order of events. The GOSUB statement in BASIC, which allows

the programmer to call a "subroutine," must remember where it is

being called from. When the RETURN statement is executed in the

subroutine, the BASIC interpreter "knows" where to go back in

order to continue executing. When a GOSUB statement is

encountered in a program by the BASIC interpreter, the BASIC

interpreter "pushes" its current position onto the stack before going

to do the subroutine, and when a RETURN is executed, the

interpreter "pulls" from the stack the information that tells it where it

was before the subroutine call was made, so that it may continue as

if nothing had happened. The interpreter uses instructions like PHA

which will push the contents ol the accumulator onto the stack, and

PLA (the inverse) which will pull a value off the stack into the

accumulator. The status register can also be pushed and pulled

with the PHP, and PLP respectively.

The stack is 256 bytes long, and is located in page one of

memory. It is therefore from S0100 to S01FF. It is organized

133

backwards in memory, f ,e., the first position in the stack is at $01FF,

and the last is at SOT 00. Another register in the 6502 microproces

sor that hasn't been mentioned yet is called the "stack pointer," and

it always points at the next available location En the stack. When

something is pushed onto the stack, it is placed where the stack

pointer points toT and the stack pointer is moved down to the next

position (decremented). When something is pulled oft the stack, the

stack pointer is incremented, and the byte pointed to by the stack

pointer (at S0100 offset by the contents of the stack pointer) is

placed into the specified register.

Up to this point, we have covered immediate, zero page, and

absolute mode instructions. We have also covered (but have not

stated) the "implied11 mode, which means that the instruction itself

tells what registers/flags/memory the instruction is referring to. The

examples we have seen are PHA, PLAT PHP, and PLP, which refer

to stack processing and the accumulator and status registers. i

The X register will be referred to as X from now on, and similarly

with A - accumulator, Y - Y index register, S - stack pointer, and

P - processor status).

INDEXING

Indexing plays an extremely important part in the running oi the

6502 microprocessor. It can be defined as "creating an actual

address from a base address plus the contents of either the X or Y

index registers."

For example, if X contains $05, and the microprocessor executes

an LDA instruction in the "absolute X indexed mode11 with base

address, e.g., S9Q0Q, then the actual location that is loaded into the

A register is S9000 + S05 = S9005. The mnemonic format of an

absolute indexed instruction is the same as an absolute [nstruction

except a ",X" or ",Y" denoting the index is added to the address,

e.g.:

LDA S9000,X

INDIRECT INDEXED ADDRESSING

This mode allows the program to choose a memory location from

256 adjacent locations. The address of the lowest location is stored

in zero page, and the value in the Y register is added to that address

to choose the final address.

For example, we will place a S45 in location $01, and a $1E in

location $02, We will use the instruction to load the accumulator in

the indirect indexed modef specifying zero page address S01 as the

134

location where the address to be used is hefd. Then the actual

address will be comprised of:

low address byte = contents of S01 = $45

high address byte « contents of S02 = $1E

Y register = S10

The actual address = S1E45 + Y = S1E55

If you think of indexed addressing like delivering Junk mail

Through a post office, here is the principle for indirect indexed

addressing:

We will deliver the letters to ail the houses on the block starting at

$1E00 Memory St. and continuing for 256 houses. Here is the

equivalent program for VICMon:

•A 1200 LDA #S00

•A 1202 STA S01

•A 1204 STASFE

•A 1206 LDA #S1E

* A 1208 STA S02

•A 120A LDA #$96

■A 120C STA $FF

•A 120E LDY #500

'A 1210 LDA #S66

* A 1212 STA (S01),Y

'A 1214 LDA #S0A

•A 1216 STA (SFE).Y

*A 1218 INY

►A 1219 BNE S1210

-A 121B BRK

•G 1200

load low order actual base address

set the low byte of the first indirect

address

set the low byte of the second address

load high order indirect address

set the high byte oi the first indirect

address

load the second address's high byte

set the high byte of the second address

set the indirect index (Y)

66 is the value of our "letter" to the first

"block11

store the "letter" in the house on the

first "block"

0A is the value of our second "letter11

store the 'letter" in the house on the

second "block"

add 1 to index

branch back & send next letter

return to VICMon when done

sends the "letter"—fills the top of the

screen with blue & red lines!

INDEXED INDIRECT ADDRESSING

This mode allows the program to choose an address from a table

in page zero. Since page zero space is limited to 256 bytes, this is a

mode that isn't used too often.

This mode only works with the X register. It is like indirect

indexed, except that the zero page location is indexed, rather than

an address stored in zero page. Therefore, the address stored in

135

page zero is the actual address because the index has already

been used in the indirection.

Let us fill location $05 with $45, and location S06 with S1E. If the

instruction to load the accumulator in the indexed indirect mode is

executed and the specified zero page address is S01, then the

actual address will be comprised of:

low order = contents of (S01 +X)

high order - contents of (S02 + X)

X register = $04

Thus the actual address will be in = S01 * X - SOS

Therefore, the actual address will be the indirect address

contained In S05 and $06 which is $1E45

This is like sending a mailing to a specific list ot addresses. We

will store a list in zero page, and send the "letter" only to those in the

list. Suppose the list of addresses starts at $00. Here is a program

to send a "letter" to one of the addresses:

LDA #500 —load low order actual base address

STA S06 —set the low byte of the indirect address

LDA #516 —load high order indirect address

STA $07 —set the high byte of the indirect address

LDX #306 —set the indirect index (X)

LDA ($00,X) —load indirectly indexed by X,

BRANCHES AND TESTING

Another very important principle in machine language is the

ability to lest, and detect certain conditions, in a similar fashion to

the "IF. . THEN" structure En VIC BASIC.

The various "flags" in the status register are affected by different

instructions in different ways. For example, there is a flag 1hat is set

when an instruction has caused a zero result, and is reset when a

result is not zero.

LDA #$00

This instruction will cause [Hthe zero result flag" to be set,

because the instruction has resulted in the accumulator containing

a zero.

There is a set of instructions that will, given a particular condition,

"branch11 to another part of the program. An example of a branch

instruction is "'BEQ11, which means "branch if result equal to zero."

The branch instructions will "branch" if the condition is true, and if

not, the program will continue onto the next instruction, as if nothing

had occurred. The branch instructions branch not by the result of

136

the previous instruction(s), but by internally examining the status

register.

As was just mentioned, there is a "zero result" flag in the status

register. The "BEQ" instruction branches if the "zero result" flag

(known as "Z") is set. Every branch instruction has an opposite

branch instruction. The BEQ instruction has an opposite instruction

"BNE" ("branch on result NOT equal to zero," i.e., "Z" not set).

The index registers have a number of associated instructions

which modify their contents. For example, the "IMX" instruction will

"increment the X index register." If the X register contained $FF

before it was incremented (the maximum number the X register can

contain), it will "wrap around" back to zero. If we wanted a program

to continue to do something until we had performed the increment

of the X index that pushed it around to zero, we could use the BNE

instruction to continue "looping" around, until X became zero.

Apart from INX, there is "DEX", which will decrement the X index

register. If it is zero, it will wrap around to SFF. Similarly, there are

"INY" and "DEY" for the Y index register.

But what if a program didn't want to wait until X or Y had reached

(or not reached) zero? Well there are comparison instructions,

"CPX" and "CPY", which allow the machine language programmer

to test the index registers with specified values, or even the

contents of memory locations. If we wanted to see if the X register

contained $40, we would use the instruction:

CPX #$40 compare X with the "value" $40.

BEQ (some other branch to somewhere else in the program, if

part of the this condition is "true."

program)

The compare and branch instructions play a major part in any

machine language program.

The operand specified in a branch instruction when using

VICMon is the address of the part of the program the branch should

go to, if taken. However, the operand is only, in fact, an "offset" from

where the program currently is. to the address specified. This offset

is just one byte, and therefore the range that a branch instruction

can branch to is limited from 128 bytes backward, to 127 bytes

forward; this is a total range of 255 bytes, which is, of course, the

maximum range of values one byte can contain. VICMon will tell

you if you branch out of range, by refusing to "assemble" that

instruction. It is unlikely that you will be doing such huge branches

for quite a while anyway. For nearly all situations this is adequate

anyway. The branch is a "quick" instruction by machine language

standards because of this "offset" principle as opposed to an

137

absolute address. VICMon allows you to lype in an absolute

address, and it calculates the correct offset. This is just one of the

"comforts11 of using an assembler.

Subroutines

In machine language (in the same way as using BASIC), you can

call subroutines. The instruction to call a subroutine is "JSR" (jump

to subroutine), followed by the specified absolute address.

Incorporated in the operating system is a machine language

subroutine that will PRINT a character to the screen. The CBM

ASCII code of the character should be in the accumulator beiore

calling the subroutine. The address of 1his subroutine ts SFFD2.

Therefore, to print 4'HI" to the screen, the following program

should be entered:

• A 1400 LDA #S48 load the CBM ASCII code of J'H"

• A 1402 JSR SFFD2 print it

• A 1405 LDA #S49 load the CBM ASCII code of T

• A 1407 JSR SFFD2 print that too

• A 140A LDA #$0D print a carriage return as well

-A 140C JSR SFFD2

• A 140F BRK return to VICMon.

• G 1400 will print "HI" and return to VICMon

The "PRINT a character1' routine we have jus1 used is part of the

KERNAL J1jump table." The Instruction similar to GOTO in BASICr

is "JMPT which means "jump to the specified absolute address/1

The KERNAL is a long list of "standardized" subroutines that

control ALL input and output of the VIC 20. Each entry in the

KERNAL JMP's to a subroutine in the operating system. This "jump

table" resides at SFF84 lo SFFF5 in the operating system. A full

explanation of the KERNAL is in the "KERNAL REFERENCE

SECTION1' in 1his manual, but certain routines will be used here to

show how easy, and effective, the KERNAL is.

We will now use these new principles in another program which

will help you to put these instructions into context:

This program will display the alphabet using a KERNAL routine.

The only new instruction introduced here is TXA "transfer the

contents of the X index register, into the accumulator."

• A 1400 LDX #S41 X-CBM ASCII of "A".

•A 1402 TXA A=X.

• A 1403 JSR SFFD2 print character.

• A 1406 INX bump count.

• A 1407 CPX #S51 have we gone past "Z" ?

138

• A 1409 BNE $1402 no—go back and do more.

• A MOB BRK yes—return to VICMon.

To see the VIC print the alphabet, type the familiar command:

.G 1400

The comments that are beside the program explain the program

flow, and logic. If you are writing a program, write it on paper first,

and lest it in small parts if possible.

139

ADC

AND

ASL

BCC

BCS

BEQ

BIT

BMI

BNE

BPL

BRK

BVC

BVS

CLC

CLD

CLI

CLV

CMP

CPX

CPY

DEC

DEX

DEY

EOR

IIMC

INX

INY

JMP

MCS6501-MCS6505 MICROPROCESSOR

Add Memorv to Accumulator with Carry

"AND" Memory with Accumulator

Shift Left One Bit {Memory or Accumulator)

Branch on Carry Clear

Branch on Carry Set

Branch on Result Zero

Test Bitt in Memory with Accumulator

Branch on Result Minus

Branch on Result not Zero

Branch on Result Plus

Force Break

Branch on Overflow Clear

Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit

Clear Overflow Flag

Compare Memory and Accumulator

Compare Memory ancf Index X

Compare Memory and Index Y

Decrement Memory by One

Decrement Index X by One

Decrement Index Y by One

"Exclusive-Or" Memory with Accumulator

Increment Memory by One

Increment Jndex X by One

Increment Index Y by One

Jump to New Location

I

I

I

I

140

I

I

I

INSTRUCTION SET - ALPHABETIC SEQUENCE

JSR

LDA

LDX

LDY

LSR

NOP

ORA

PHA

PHP

PLA

PLP

ROL

ROR

RTI

RTS

SBC

SEC

SED

SEI

STA

STX

STY

TAX

TAY

TSX

TXA

TXS

TYA

Jump to New Location Saving Return Address

Load Accumulator with Memory

Load Index X with Memory

Load Index Y with Memory

Shift Right One Bit (Memory or Accumulator)

No Operation

"OR" Memory with Accumulator

Push Accumulator on Stack

Push Processor Status on Stack

Pull Accumulator from Stack

Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumufator)

Rotate One Bit Right (Memory or Accumulator)

Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator with Barrow

Set Carry Flag

Set Decfmal Mode

Set Interrupt Disable Status

Store Accumulator in Memory

Store Index X in Memory

Store Index Y in Memory

Transfer Accumulator to Index X

Transfer Accumulator to Index Y

Transfer Stack Pointer to Index X

Transfer Index X to Accumulator

Transfer Index X to Stack Pointer

Transfer Index Y to Accumulator

141

The following notation applies to this summary:

A Accumulator

X» Y Index Registers

H Memory

P Processor Status Register

£ Stack Pointer

/ Change

No Change

+ Add

A Logical AND

Subtract

V Logical Exclusive Or

+ Transfer from Stack

+ Transfer to Stack

■+ Transfer to

+ Transfer from

V Logical OR

PC Program Counter

PCH Program Counter HigEi

PCL Program Counter Low

OPER OPERAND

it IMMEDIATE ADDRESSING HODF.

Note: At the top of each table is located in parentheses a

reference number (Kef: XX) which directs the user to

that Section in the MCS6500 Microcomputer Family

Programming Manual in which the instruction is defined

and discussed.

I

]

I

142

Add memory io accumulator with carry

Operation: &+M+C-*&»£

(Ref: 2.2.1)

ADC

/ / V _ -

Addressing

Hod*

Immediate

Zero Page

Zuro Page, X

Abwoluce

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

Assemb1y Language

Form

ADC i! Oper

ADC Dper

ADC ©per, X

ADC Oper

ADC Oper, X

ADC Oper, Y

ADC <Oper, K)

ADC (Oper), Y

OP

CODE

69

65

75

&D

7D

79

61

71

No,

Bytes

2

2

2

3

3

2

2

Cyclts

2

3

i,

4*

4*

6

5*

AND "AND" memory wiih accurrtuiafor

Logical AND to the accumulator

Operation: A AM- A NZCIDV

AND

Addr.ssi,*

Mode

I^dUte

Z*?rc Page

Zero Page. X

Absolute

Abso lute, X

Absolute, Y

(Indirect. X)

(Indirect) , Y

(Kef: 2.2.3.0)

Assetub ly Language

Form

AND # Oper

AND Oper

AND Oper. X

AND Oper

AND Oper, X

AND Oper, Y

AND Oper, X)

AND (Oper), Y

OP

CODE

29

25

35

2D

3D

39

21

31

/ /--

Mo.

Bytes

2

2

t

3

3

3

2

2

Ho.

Cycles

2

3

4

4*

4*

6

5

Add 1 if page boundary is crossed,

143

ASL Shift H'it One Bit (Memory vr Accumulator)

Operatiun: C ■ [?

ASL

N fl C L D V

: 1.0.2)

Addressing

Node

Accumulator

Zero Page

Zero Page, X

Absolute1

Absolute , X

Assembly Language

Fora

ASL A

ftSL Oper

ftSL Ciper, X

ASL Opcr

ASL Cp^r. X

OP

CODE

0A

16

<»E

IE

Bytes

1

2

2

3

No,

Cycles

i

3

6

7

BCC tfra>fc* Oil Carrv Clear

11 on: Branch on C - 0

<Ref: 4.1,1,3)

BCC
N a C I D V

Addressing

Hade

Relative

AssL-mhly Language

Form

BCC Oper

OP

CODE

N'o.

Bytes

2

Wo.

Cycles

* Add 1 If branch occurs to sane page.

* Add 2 if branch occurs to different

SCS Branch on cony

Operation: Branch on C

(Ref:

BCS

N a C I D V

Addrt-ssing

Mode

Assembly Language

Forai

BCS Oper

OP

CODE 3ytes

No.

Cycles

* Add 1 if branch occurs co s

* Add 2 if ttinch occurii to n page,

144

BEQ HF.Q Brunch on result zero

Operation: Branch on Z = 1

(Ref: 4.L.I.5)

BEQ
N £ C I D V

Addressing

Mode

R&lative

Assembly Language

fora

BEq Opcr

OP

CODE

F0

NO.

Bytes

2

No,

Cycles

2*

* Add I if branch occurs to same page,

* Add 2 if branch uccurs to next page

BIT Test bits in memory with accumulator

Operatlnn: A A H, M? ♦ H, Mfi -* V

Bit 6 and 7 ace transferred to the status register- N 2 C I D V

If the result of A AM is zero Chen Z K]t otherwise M,/ Mfi

Z " 9 (Ref: 4.2.1.1)

Addressing

Modti

Ztrro ?agc

Assembly UJfiguage

BIT Oper

flTT Oper

0?

CODE

24

2C

No.

Bytes

T

3

No.

Cycles

.1

RMI
WIT11 BMl Branch nn result minus

Operation: Branch on N = 1

(Ref: 4.1.1.1)

Addressing

Mud*

Relative

Assembly Language

Fam

bmi Oper

OP

COPE

C I D V

So.

Bytes

2

BMI

Cycles

2*

A<Id 1 if branch occurs lo

Add 2 if branch occurs to different page*

1A5

ENE Hranch <>n n:\uit mil

Operation: Branch on Z - Q

(Ref: 4,1,1-6}

BNE
S fc C I D V

Addressing

Mode

RelatIve

As s emb 3 y Language

VtiTa

BNE Opt-r

CODE

IX*

No.

Bytes

Sn.

Cycles

2*

* Add 1 if branch occurs to sjidu page.

« Add 2 if branch occurs to JIf ferent

!

BPL

Operation: Brunch on II =

branch *m n-sufi pins

{Ref: 4.1.1.2)

* Add 1 if branch occurs to satm; p^ge,

* Add 2 If branch occurs to different

BPL

Addressing

Mude

Relative

Fora

BPL Uper

OP

CODE

10

No.

Bytes

2

No.

Cycles

2*

BRK BRK Force Break

Operation: Forced Interrupt PC + 2 i p

{Ref: 9,11)

nci d v

l —

1. A BRK cuncand cannot be nucsked by netting 1.

BRK

Addressing

Hodt

Implied

Assembly Uinguage

Forn

BRK

011

CODE Bytes

1

146

UVC Branch on over/low clear

Opt fat ion: Uranch on V - 0

(Kef: 4.1.1.8)

BVC
N 2 C £ D V

Address ing

Mode

Relative

Assently Lan^ujgo

Furm

BVC Oper

OP

CODE

50

No.

Bytes

2

No.

Cycles

2*

* Add l it: branch occurs Co sam

* Add 2 If branch occurs to different page.

BVS tlrattch an overflow

Operation: Branch or V - 1

(Ref: i.1.1.7)

BVS
N 2 C I D V

Addressing

Mode

Meljtive

Assembly Language

Form

BVS Oper

0?

3>-ces

7

No.

Cycles

* Add 1 ii branch occurs to sane page

* Add 2 if branch occurs to different page.

CLC
Operation: 3 * C

CLC Ctffitf inrry

<Rcf: D.0.2)

CLC
N K C 1 D V

Addressing

Moda

Implied

Ass tmb 1 y Lan gu^gt^

CLC

OP

CODE

18

No.

Bytts

1

Ho,

Cycles

2

147

CLD
Operation: I'D

CLD Clear decimal made

(Ref: 3.3.2)

CLD
N £ C I D V

Addressing

Mode

Impiied

Assembly Language

Fora

CLD

OP

CODE

D8

No.

Bytes

l

Ho.

Cycles

2

CLI Clear interrupt disable bit CLI
Operation; 0 ■*■ I

N 2 C I D V

(Ref: 3.2.2)

Addressing

Mode

Implied

Assembly Language

Form

CLI

OP

CODE

58

Mo.

Bytes

1

No.

Cycles

2

1

CLV
Operation: fl ■* V

CLV Char overflow flag

3.6.1)

CLV
K e c I d v

Addressing

Mode

Implied

Assembly Language

Fornj

CLV

OP

CODE

B8

Mo.

Rytes

1

No.

Cycles

2

148

[

I

I

CMP GOtfffpdflS memory and accumulator

Operation: A-H H 2 C I 0 V

4.2.1) / J J

CMP

Addressing

Mods

Immediate.'

Zero Page

Zero :'.l;:'-. X

Absolute

Absolute, X

Absoluts, Tf

(Indirect, X)

(Indirect), ¥

A;i-it±rali ly Language

Form

CW #Oper

CMP Oper

CMP Oper, K

CMP Oper

CMP Oper, X

CMP Oper* Y

CMP {Oper, X)

CHF (Oper), I

OP

CODE

C9

C5

D5

CD

DO

D9

CL

DL

Mo.

Bytes

1

I

I

3

3

2

z

No.

Cycles

2

3

q

4*

6

5*

* Add 1 if page boundary Is

vrn CPX Compare Memory and index X LrA

Operation: X-M WaClDV

(Ref: 7.8)

Addressing

Mode

Immediate

Zero Page

Absolute

Assembly Language

Fora

CPX TOper

CPX Oper

CPX Oper

OP

CODE

m

KC

Ho,

Bytes

2

3

Ho.

Cycles

1

3

CPY Compart memory and index ¥ ^r

Operation: Y-H N3CTDV

(Ref: 7.9)

Addressing

Made

Immediate

Zero Page

Absolute:

Assembly Language

Forra

CPY *Oper

CPY Oper

CPY Oper

OP

CODE

C4

No.

Bytes

1

2

No.

Cycles

2

3

149

HtC Dteretnatt memory by one

ions M - 1 -* El

(Refi 10.7)

Uti.

N K C [D V

Addressing

Mode

Zero Pagt

Zero Page, X

Ah&olute

AbsoluLe, X

AHst'nibly Language

Form

DEC Oper

DEC Oper, X

DJiC Oper

DIiC Oper, X

OF

Cb

U6

cs

No.

Bytes

2

3

3

No.

Cycles

5

6

7

DEX DEX Uecrrmtn: index X by one

Operation: X - 1 ■* X
a c [d v

DEX

Addressing

Mode

Implied

(Kef: 7.6)

Assembly Language

form

DEX

//

OP

CODE

CA

No.

Bytes

1

No.

Cycles

2

OHV Dt'rrvirun; index Y by onv

Operation: Y-l-Y N 3 C T D V

Addressing

Mode

Irnplled

Austfmbly Language

J'ocei

BEY

or

CODE

88

Ho.

Bytea

1

Cycles

2

150

EOR "Exclusive-Or"memory with accumulator

Operation: AVH-^A NECIDV

(Ref: 2.2.3.2) ^ * ~

EOR

Addressing

Mode

Immediate

Zero Tage, X

Absolute

Absolute. X

Absolute. Y

(Indirect* X)

(Indirect)PY

Assembly Lvingtugc

Fora

EOR-Oper

EOR Ope r

EOR Opcr, X

EOR Optir

EOR Oper. y.

EOR Dper, Y

EOR <OpKft X)

EOR <Oper) , If

OP

CODE

49

45

55

4P

5D

59

*1

51

So.

Eyres

2

2

2

3

3

3

t

2

No.

Cycles

1

3

4

4*

4*

&

5*

* Add I if page boundary Is crossed.

INf
1™^ 1NC Increment nninory by OJM

Operation: M +■ 1 * M

(Ref: 10.6)

me

a c i d v

Addressing

Mode

Zero P.igc

Zero Piige, X

Absolute

Abuolutu, X

Assembly Language

Form

INC Oper

INC Opt>r, X

IHC Optr

IHC Oper, X

OP

CODE

F6

EE

FE

So.

Bytes

2

2

3

3

Ho,

Cycles

5

h

!",

7

InA JNX fnctement Index X by

()]jiT.iiion: X + 1 - X NHl D V

INX

Address ing

Hode

Ituplled

Assembly Language

Form

INX

OF

CODE

ES

No.

Bytes

1

Ho.

Cycles

2

151

INY focwwmsnt Index Y by one

Operation; 1 + 1 ■+■ ¥

(Red 7.5)

INY
N 3 C I D V

Addressing

KoJe

ttnp I led

Assembly Language

Form "

INY

OP

CODE

C8

No.

Bytes

1

Wo.

Cyc Les

2

JMP Jump to new locution

Operation: {PC + 1) ■* PCL

JMP
C L D V

Addressing

Mode

Absolut^

A$$embly Language

Fora

JMP Oper

JMP (Oper)

OP

CODE

ftC

6C

No.

Bytes

3

1

No-

Cycles

3

5

I

JSR Jump lo new location saving return address

Operation; PC + 2 *. (PC + 1) - PCL N g C I p V

(PC + 2) ■• PCK

(Ref: B.l)

JSR

Addressing

Mode

Absolute

Assembly Language

Form

JSB Oper

OP

COtPE

20

No.

3ytes

3

No.

Cycles

6

152

!

LDA LDA Load accumulator u ith memory

M ~ A H £ C I D V

(Ref: 2.1.1) '

LDA

Addressing

Hoda

T mmo d i a L l1

Zero 1'agL

Et.ro Page, X

Absolute

Absolute, :■:

Absolute, Y

(Indirect^ X)

(Indirect), V

Assembly Language

form

LDA * Optr

LDA Oper

LDA Oper, X

LDA Oper

LDA Oper, X

LDA Oper, V

LDA (Oper. X)

LDA (Oper), Y

DP

CODE

A9

A3

B5

AD

ED

B9

Al

111

No.

Bytes

2

2

2

3

3

3

2

No.

Cycles

2

3

4

4t

4*

&

* Add 1 LI pa Hi' boundary is

LDX Load index X with tttfttiorv

Operation; M-X HXC1DV

(Ref: 7.0) ' ^

LDX

Addressing

Hade

Immediate

Ztru Page

Zero Pagft, Y

Absolute

Absolutet Y

Assembly Lftngu^go

Fora

LUX tf Oper

LDX Oper

LE)X Oper, Y

LDX Oper

LDX Opcr, f

OP

CODE

A 2

A6

AE

BL

Bytes

2

2

■j

No.

Cycles

2

3

* Add L when page boundary is crossed

153

LDY Load index Y with memory

Operation: M+Y NZCIDV

7.1)

LDY

I
Addressing

Mode

Immediate

Zero Page

Zero Page. X

Absolute

Absolute, X

Assembly Language

Fora

LDY *Oper

LDY Oper

LDY Oper. X

LDY Oper

LDY Oper, X

O!J

CODE

Ag

A4

AC

HC

No -

Bytes

2

2

2

3

No.

Cycles

2

3

U

it*

* Add 1 when page boundary Is crossed.

I

LSR

Operation: 0 -^ |7f6 5

LSR Shift right one bit imemory oraccitrmt LSR

7 6 5 ■Ji 3 2 1 0 N K C I D V

0 / /
{Ref: 10.1)

Addressing

Mode

Ac-umulator

Zero ?age

Zero Page, X

Absolute

Absolutet X

Assembly Language

Form

LSR A

LSR oper

i.SK Oper, X

LSR Oper

LSE Optr, X

OP

CODE

4A

46

S6

4B

IB

No,

Byte*

1

2

3

3

No.

Cycles

2

5

6

6

7

NOP \'o operation

Operation: No Operation (2 cycles) N A C I D V

HOP

Addressing

Mode

rmplled

Assembly Language

Form

NOP

OP

CODE

EA

Ha,

Bytes

1

No.

Cycles

2

154

ORA OftA "OR " menwry with accumuluior ORA
Operation: A V H - A

N H C I D V

* Add 1 on pag*?

(Ref: 2,2.3,1)

Address ins
Mode

Tt_-.!-i! :.■.:■■

Zero Page

Zero Pagts X

AbfttlluCe

Absolute, ,X

Absolute. If

(Indirect, X)

(Indirect) t Y

Assembly Language

Korm

ORA ffQper

ORA Opiir

ORA Opef, K

ORA Oper

ORA Opert \<L

ORA OpLT, Y

ORA {Opcr, X)

ORA (OperJ , Y

OP

CODE

09

35

15

0n

ID

19

01

11

No.

Bytes

2

2

2

3

Cycles

2

u

k

4*

5

PHA J*HA Push iicrunmhittir 0

(Rcr: 8.5)

N K C 1 D V

PHA

Addressing

Mode

Implied

Assembly Language-

Form

FliA

OP

CODF.

No.

Bytes

I

Ho.

Cycles

PHP Push processor status on

Operation: PI

(Kef: 8.U)

155

H 3 C I D V

Address ing

Mods

Implied

Assenbly Language

Fora

PHP

OP

CODE

08

No.

Bytes

I

No.

Cycles

3

PLA
Operation: A t

PLA Pull accumulator from slack

(Ref: B.6)

PLA
K 2 C I D V

Addressing

Hods

Implied

Assembly Language

Vorai

PLA

or

CUDf

68

No,

Bytes

No.

Cycles

a.

FLP full processor status from slack I Li

Operation: P 1 N 3 C I D V

Frem Stack

tEef: 9.12)

Addressing

Made-

Implied

Assembly LimE^^K^

Ford

P1.P

OP

CODE

28

Ho.

Bytes

1

Ho.

Cycles

u

I

1

ROL

Operation:

ROL Rotate one bit left {memory or accumulator}

M or A

{Ref: 10.3)

N Z C I D V

,/ J /

ROL

Addressing

Mode

Accumulator

Zero Page

Zero Pagt > X

Absolute

Absolute, X

Assembly Language

Po rm

ROL A

ROL Opcr

rol oper, x

ROL Opcr

ROL Oper, X

OP

CODE

2A

26

36

2E

3S

No.

Bytes

1

2

2

3

3

JSt>.

Cycles

2

6

6

7

156

!

i

ROR ROR Rufa (c our bit tigh t fmemory or accumulator} ROR

Operation:
7 6 5 U 3 | 2 | 1 | g I ' N C T D V

(Ref; 10.4)

Addressing

Mode

Accumulator

Zero Page

Zero Page.X

Absolute

AbsoIuCetX

Asseobly Lingua^e

Form

ROR A

ROft Oper

ROR Oper.S

ROR Oper

ROR Oper,X

np

CODE

6A

66

76

6E

7E

Ho.

Bytes

1

2

2

3

3

No.

Cycles

2

5

6

6

7

Note: ROR Instruction will be available on HCS65OX micro

processors after June, 1976.

RTI

Operation: Pt PC+

RTI Return from interrupt

(Ref: 9.6)

RTI

N Z C I D V

From Stack.

Addressing

Mode

Implled

Assembly Language

Fottd

RTI

OP

CODE

So.

Bytes

1

Cycles

6

RTS RTS Return from subroutine

Operation; PC*, PC + 1-* PC

{Ref: 8.2)

N 2.

RTS

Addressing

Mode

ImpLied

Assembly Language

Fona

RTS

OP

CODE

60

Jio.

Bytes

1

No.

Cycles

6

157

SBC Subtract memory from accumufafor with hurruw

Operation: A - M - H •* A N 3 C 1 D V

Note: C * BOTIW (Ret: 2.2.2) / / / /

SBC

Addressing

Mode

Itaaediatt

Zero Page

Zero Page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect), Y

Assembly Language

Forte

SEC #Qper

SBC Cper

SBC Oper, X

SBC Oper

SBC Oper, X

SBC Oper, Y

SBC (Opet, X)

SBC (Oper), v

OP

CODE

E9

E5

HD

7D

F9

El

Fl

[i _

Bytes

2

2

2

3

3

2

No.

Cycles

i

3

4

A*

b

5*

* Add 1 when page boundary is crossed.

SEC
Operation: 1 -* C

SF.C Set tarty

(Ref: 3.0.1)

N Z C I D V

X

SEC

Addressing

Mode

Implied

Assembly Language

Form

SEC

OP

CODE

3S

No.

Bytes

1

Ko.

Cycl&a

2

SED ffis/ decimal mode

Operationr l ■+ D

tttef: JS.3,1)

N ?. C I D v

SED

Addressing

Mode

Implied

Assembly Language

Form

SED

OP

CODE

Pg

Mo.

Bytes

1

Nf.>,

Cycles

2

158

I

SKI AW interrupt disable status

Operation : 1 ■* I

fKef: 3,2.1)

SEI

Operation; A - M

K H C I D V

Addressing

Hodu

Imp lied

Assembly Lartgunge

Fora

SEI

OP

CODE

78

No.

Bytes

1

No.

Cycles

2

Store accumulator in memory STA
NECIDV

(Ref: 2.1.2}

Add r^sslng

Mode

Zero PAge

Zero Page, X

Absolute

Absolute, X

Absolute, Y

(Indirect, X)

(Indirect). Y

Assembly Language

Potto

STA Opcr

STA Oper, X

STA Oper

STA Opcr, X

STA Oper, Y

STA (Opcr, X)

STA (Qper), Y

OP

CODE

85

95

8D

99

SI

91

So.

Bytes

2

2

3

3

3

2

2

No.

Cycles

3

4

5

5

6

6

STX
X ■+ H

STX Store index X in memory ST3

N a C 1 D V

(Ref: 7.2)

Addressing

Mode

/'■■!■(> Page

Zero Page, Y

Absolute

Assembly Language

Form

STX Oper

STX Oper, Y

STX Opcr

OP

CODE

86

96

8E

No.

Bytes

2

2

3

No.

Cycles

3

i]

4

159

STY Storf index Y in memory

Operation; Y ■* M

{Kef: 7.3)

Addressing

Mode

Zero Page

Zero Page, X

Absolute

Assembly Language

Potto

STY Oper

STY Oper, X

STY Ope r

N Z

OP

CODE

84

94

SC

c r d v

Ho.

Bytes

1

2

STY

No.

Cycles

3

4

4

Operation:

TAX Transfer accumulator so index X

HSCIDV

/ /
: 7.11)

Address ing

Mode

Implied

Assemb1/ Language

Form

TAX

OP

CODE

AA

NO.

By tes

1

No.

Cycles

2

TAY TAY Transfer accumulator to tttCttX Y

Operation: A-Y HiCIUV

7.13)

TAY

Addmssing

Mode

Implied

Assembly Language

Form

TAT

OP

CODE

A3

Bytes

1

No.

Cycles

2

I

I

I

160

TSX Tranxjcr xiack pointer to index X

Operation: s ■- x N a c I D v

(HeF: a.9^ J '

Addressing

Mod<?

replied

Assembly L-irnju.iyt1

Form

rsx

or

cow:

BA

No.

Bytes

i

Cycles

TaA TXA

31 •* A

x .V (^ aa unmUttor TXA

8'ICIBI

(Kef: 7.12) / / "

Addressing

Mode

I"plied

As.SLrr^b 1 v Language

Form

TXA

or

CODE

No.

Bytes

j

Cycles

I Xb T XS Transfer index X ro stet A pofrttw

Uptt.it ion: X * 5 K a C I D V

EEe-f: S.S)

TXS

Addressing

Mode

Implied

Assembly Language

Forn

OP

CO1>K

9A

No.

1

Cyc lcs

2

TYA TY^ Transfer index Y Jt> accumulator

Operation: Y -- A N 2 C i D V

C: 7.U)

TYA

Addressing

Mode

I mp U e d

Forn

IV A

CODE

98

Bytes

l

Sfc,

Cycles

2

T61

>
>

a
a

a
a

o
o

w
'

■

*
*

■
■

-
•
w

■
■

■
r
o
M
M

»o
ho

a
.

2
.

-
■

■
u
i
c
j

■
■
u
i
u
u
u

t*
i

■
■

h
e
n
t
o

l
j

m
f
D

=
;
^

■
-

-
O
l

-E
b

•
■

O
)

■
■

J
*

O
>
^

-
^

?
f

?
5
'

w
-

■
c
n
^
'

*
<j
i
&
.
&
&

&
■

■
■

O
)
-
(
i
£
f
c

-
.
.
t
o

1/1
u

-
■
■
■
«
j
A
1
'
^
J
i
-
^

•
•

■
•

■
*j
^
^

oT
Q

•
•

•
•

5"
8

■
•

■
■
*

-u
*.

-^
3

"
*

*
#

*

P °-
—

•
M
W
W
W
W

M
f
O
K
)
'

■
'

=
JJ

(■
*

■
-

-
*

n
§
-
■
■
■
0
>
-
i
-
-
'
G
)

*
0
>
0
1

0=
£

S
-
j

■
-

-
-

e
n

(j
i

'
■

u
i
m

6
e
n

,

0
1

A
c
c
u
m
u
l
a
t
o
r

I
m
m
e
d
i
a
t
e

Z
e
r
o

P
a
g
e

Z
e
r
o

P
a
g
e
,
X

Z
e
r
o

P
a
g
e
,
Y

A
b
s
o
l
u
t
e

A
b
s
o
l
u
t
e
,

X

A
b
s
o
l
u
t
e
,
Y

I
m
p
l
i
e
d

R
e
l
a
t
i
v
e

(
I
n
d
i
r
e
c
t
,
X
)

(
I
n
d
i
r
e
c
t
)
,
Y

A
b
s
o
l
u
t
e

I
n
d
i
r
e
c
t

3
3

a c 2 C o -
n IESSING2 C o m w >

i

1

RELATED

JSR

LDA

LDX

LDY

LSR

NOP

ORA

PHA

PHP

PLA

PLP

ROL

ROR

RTI

RTS

SBC

SEC

SED

SEI

STA

STX*

STY##

TAX

TAY

TSX

TXA

TXS

TYA

if branching i

EXECUTION

i_
mulatoi

U

Q

2

2

2

*

-

xJiate

2

2

2

2

2

-

Page

3

3

3

5

3

5

5

3

3

3

3

•

X

Page,Zero

4

4

6

4

G

6

4

4

4

Page,Zero

4

4

TIMES (

lute
o

6

4

4

4

6

4

6

6

4

4

4

4

-

>peration cresses page

lute,XAbsol4'
4"

7

4*

7

7

4'

5

-

i

4-

4*

4*

4*

5

-

boundary

in

1

Impli
2

3

3
4

4

6

6

2

2

2

2

2

2

2

2

2

r

clock

1

Relat

■

X

*->

u
o

1

6

6

6

6

■

cycles)

^ect
—

> B.

2 —

II

5* .

5* !

6 !

■

163

00 - BHK

01 - ORA - (Indirect,X)

02 - Future Expansion

03 - Future Expansion

04 - Future Expansion

05 - ORA - Zero Page

06 - ASL - Zero Page

07 - Future Expansion

08 - PHP

09 - ORA - Immediate

0A - ASL - Accumulator

0B - Future Expansion

0C - Future Expansion

0D - ORA - Absolute

0E - ASL - Absolute

0F - Future Expansion

10 - BPL

11 - ORA - (Indirect),Y

12 - Future Expansion

13 - Future Expansion

14 - Future Expansion

15 - ORA - Zero Page.X

16 - ASL - Zero Page.X

17 - Future Expansion

18 - CLC

19 - ORA - Absolute,Y

1A - Future Expansion

IB - Future Expansion

1C - Future Expansion

ID - ORA - Absolute,X

IE - ASL - Absolute,X

IF - Future Expansion

20 - JSR

21 - AND - (Indirect,X)

22 - Future Expansion

23 - Future Expansion

24 - BIT - Zero Page

25 - AND - Zero Page

26 - ROL - Zero Page

27 - Future Expansion

28 - PLP

29 - AND - Immediate

2A - ROL - Accumulator

2B - Future Expansion

2C - BIT - Absolute

2D - AND - Absolute

2E - ROL - Absolute

2F - Future Expansion

30 - BMl

31 - AND - (Indirect),Y

32 - Future Expansion

33 - Future Expansion

34 - Future Expansion

35 _ AND - Zero Page.X

36 - ROL - Zero Page.X

37 - Future Expansion

38 - SEC

39 - AND - Absolute,Y

3A - Future Expansion

3B - Future Expansion

3C - Future Expansion

3D - AND - Absolute,X

3E - ROL - Absolute,X

3F - Future Expansion

I

i

!

I

I

164 I

40 - RTI

41 - EOR - (Indirect,X)

42 - Future Expansion

43 - Future Expansion

44 - Future Expansion

45 - EOR - Zero Page

46 - LSR - Zero Page

47 - Future Expansion

48 - PHA

49 - EOR - Immediate

4A - LSR - Accumulator

4B - Future Expansion

4C - JMP - Absolute

4D - EOH - Absolute

4E - LSR - Absolute

4F - Future Expansion

50 - BVC

51 - EOR - (Indirect),Y

52 - Future Expansion

53 - Future Expansion

54 - Future Expansion

55 - EOR - Zero Page,X

56 - LSR - Zero Page.X

57 - Future Expansion

58 - CLI

59 - EOR - Absolute,Y

5A - Future Expansion

5B - Future Expansion

5C - Future Expansion

5D - EOR - Absolute,X

5E - LSR - Absolute,X

5F - Future Expansion

60 - RTS

61 - ADC - (Indirect,X)

62 - Future Expansion

63 - Future Expansion

64 - Future Expansion

65 - ADC - Zero Page

66 - ROR - Zero Page

67 - Future Expansion

68 - PLA

69 - ADC - Immediate

6A - ROR - Accumulator

6B - Future Expansion

6C - JMP - Indirect

6D - ADC - Absolute

6E - ROR - Absolute

6F - Future Expansion

7f) - BVS

71 - ADC - (Indirect),Y

72 - Future Expansion

73 - Future Expansion

74 - Future Expansion

75 - ADC - Zero Page.X

76 - ROR - Zero Page.X

77 - Future Expansion

78 - SEI

79 - ADC - Absolute,Y

7A - Future Expansion

7B - Future Expansion

7C - Future Expansion

7D - ADC - Absolute,X

7E - ROR - Absolute,X

7F - Future Expansion

165

80 - Future Expansion

81 - STA - (Indirect,X)

82 - Future Expansion

83 - Future Expansion

84 - STY - Zero Page

85 - STA - Zero Page

86 - STX - Zero Page

87 - Future Expansion

88 - DEY

89 - Future Expansion

8A - TXA

8E - Future Expansion

SC - STY - Absolute

BD - STA - Absolute

8E - STX - Absolute

8r - Future Expansion

90 - BCC

91 - STA - (Indirect),Y

92 - Future Expansion

93 - Future Expansion

94 - STY - Zero Page.X

95 - STA - Zero Page.X

96 - STX - Zero Page.Y

97 - Future Expansion

98 - TYA

99 - STA - Absolute,Y

9A - TXS

9B - Future Expansion

9C - Future Expansion

9D - STA - Absolute,X

9E - Future Expansion

9F - Future Expansion

A0 - LDY - Immediate

Al - LDA - (Indirect,X)

A2 - LDX - Immediate

A3 - Future Expansion

A4 - LDY - Zero Page

A5 - LDA - Zero Page

A6 - LDX - Zero Page

A7 - Future Expansion

AS - TAY

A9 - LDA - Immediate

AA - TAX

AB - Future Expansion

AC - LDY - Absolute

AD - LDA - Absolute

AE - LDX - Absolute

AF - Future Expansion

E0 - BCS

Bl - LDA - (Indirect),Y

B2 - Future Expansion

B3 - Future Expansion

B4 - LDY - Zero Page.X

B5 - LDA - Zero Page.X

B6 - LDX - Zero Page.Y

B7 - Future F.xpansion

B8 - CLV

B9 - LDA - Absolute,Y

BA - TSX

BB - Future Expansion

BC - LDY - Absolute,X

BD - LDA - Absolute,X

BE - LDX - Absolute,Y

BF - Future Expansion

I

[

!

I

166

I

C0 - CPY - Immediate

Cl - CMP - (Indirect:,X)

C2 - Future Expansion

C3 - Future Expansion

Cl - CPY - Zero Page

C5 - CMP - Zero Page

C6 - DEC - Zero Page

C7 - Future Expansion

C8 - INY

C9 - CMP - Immediate

CA - DEX

CB - Future Expansion

CC - CPY - Absolute

CD - CMP - Absolute

CE - DEC - Absolute

CF - Future Expansion

D0 - BHE

Dl - CMP - (Indirect)-,Y

D2 - Future Expansion

D3 - Future Expansion

B4 - Future Expansion

D5 - CMP - Zero Page.X

D6 - DEC - Zero Page.X

D7 - Future Expansion

D8 - CLD

D9 - CMP - Absolute,Y

DA - Future Expansion

DB — Future Expansion

DC - Future Expansion

DD - CMP - Absolute,X

DE - DEC - Absolute,X

DF - Future Expansion

E0 - CPX - Immediate

El - SBC - (Indirect,X)

E2 - Future Expansion

E3 - Future Expansion

EA - CPX - Zero Page

E5 - SBC - Zero Page

E6 - INC - Zero Page

E7 - Future Expansion

E8 - IHX

E9 - SBC - Immediate

EA - NOP

EB - Future Expansion

EC - CPX - Absolute

ED - SBC - Absolute

EE - INC - Absolute

EF - Future Expansion

F0 - BEQ

Fl - SBC - (Indirect),Y

F2 - Future Expansion

F3 - Future Expansion

F4 - Future Expansion

F5 - SBC - Zero Page.X

F6 - INC - Zero Page,X

t'7 - Future Expansion

F8 - SED

F9 - SBC - Absolute,Y

FA - Future Expansion

FB - Future Expansion

FC - Future Expansion

FD - SBC - Absolute.X

FE - INC - Absolute,X

FF - Future Expansion

167

SPECIAL TIPS FOR BEGINNERS

I

ADVANTAGES OF WRITING PROGRAMS IN
MACHINE LANGUAGE

1. Speed—Machine fanguage is hundreds, and in some cases

thousands, o! times faster than a high level language such as

BASIC.

2. Tightness—A machine language program can be made totally

"watertight," i.e., the user can be made to do ONLY what the

program allows, and no more. With a high level language, you are

relying on the user not "crashing1' the BASIC interpreter by

entering, for example, a zero which later causes a:

7DIVISION BY ZERO

ERROR IN LINE 630

READY.

166

I

Learning to write machine language programs is a discipline

which is very useful in programming. Since machine language is at

the same level as the internal workings of the machine, your brain is

stretched that much further, when trying to organize things in your

mind and in the VIC-20.

One of the best ways to learn machine language is to look at

other people's machine language programs. These are published

all the time, in magazines and newsletters, even if Ihe article is for a

different computer that also has the 6502 microprocessor (there

are many). You should make sure that you thoroughly understand

the code that you look at. This may require perseverance,

especially when you see a new technique that you have never

come across before. This can be infuriating, but if patience prevails,

you will be the Victor (sorry about that).

Having looked at other machine language programs, you MUST

write your own. These may be utilities for your BASIC programs, or

may be an all machine language program. You should also use the

utilities that are available, either in your computer, or in a program,

that aid you in writing, editing, or tracking down errors in a machine

language program. An example would be the KERNAL, which

allows you to check the keyboard, print text, control peripheral

devices like disk drives, printers, modems, etc., manage memory

and the screen. It is extremely powerful and it is advised strongly

that it is used (refer to KERNAL section).

I

In essence, the computer belongs to the machine language

programmer.

APPROACHING A LARGE TASK

When approaching a large task in machine language, a certain

amount of subconscious thought has usually taken place, in

thinking about how certain processes would be implemented in

machine ianguage. When the task is started, it \s usually a good

idea to set out on paper block diagrams of memory usage,

functional modules of code required, and a program flow. LetJs say

that we wanted to write a roulette game in machine language. We

can outline this as shown below.

Display title

Ask if player requires instructions

YES—display them—Go to START

NO—Go to START

START Initialize everything

MAIN display roulette table

Take in bets

Spin wheel

Slow wheel to stop

Check bets with result

Inform player

Player any money left

YES—Go to MAIN

NO—Inform user!, and Go to START

This is the main outline, which, as each module is approached,

can then be broken down further. If you look upon a large

indigestible problem as something that once broken down into

small enough pieces can alf be eaten, then this will enable you to

approach something that seems impossible, and you will be

surprised at how swiftly it all ialls into place. This process obviously

improves with practice, but KEEP TRYING.

159

MEMORY MAPS

The following memory maps provide a guide which shows which

special locations are set aside for use by the VIC's operating

system . . . and what those locations are used for.

HEX

Memory Map

DECIMAL DESCRIPTION

0000

0001-0002

0003-0004

G005-0006

0007

0008

0009

C00A

0008

oooc

oood

00OE

OOOF

0010

0011

0012

0013

■0014-0015

0016

0017-0018

0019-0021

0022-0025

0026-002A

'002B-002C

•002D-002E

'Q02F-0030

'0031-0032

•0033-0034

0035-0036

-Q037-0038

OO39-003A

003B-003C

0O3D-003E

OO3F-0O40

0041-0042

'0043-0044

0

1-2

3-4

5-6

7

6

9

10

11

12

13

14

15

16

17

18

19

20-21

22

23-24

25-33

34-37

38-42

43-44

45-46

47-48

49-50

51-52

53-54

55-56

57-58

59-60

61-62

63-64

65-66

67-68

Useful memory location

Jump for USR

Vector for USR

Float-Fixed vector

Fixed-Float vector

Search character

Scan-quotes flag

TAB column save

0-LOAD, 1 =VERIFY

Input buffer pointer/* subscript

Default DIM flag

Type: FF = string. 00 = numeric

Type: 80 = integer, 00 = floating point

DATA scan/LIST quote/memory flag

Subscript/FNx flag

0 - INPUT;$40 - GET;S98 = READ

ATN sign/Comparison eval flag

Current I/O prompt fiag

Integer value

Pointer: temporary string slack

Last temp string vector

Stack for temporary strings

Utility pointer area

Product area for multiplication

Pointer: Start of Basic

Pointer: Start of Variables

Pointer: Start of Arrays

Pointer: End of Arrays

Pointer: String storage {moving down)

Utility string pointer

Pointer: Limit of memory

Current Basic line number

Previous Basic line number

Pointer: Basic statement for CONT

Current DATA line numbar

Current DATA address

Input vector

170

i

i

I

I

HEX DECIMAL DESCRIPTION

0045-0045

0047-0048

0049-004A

004B-004C

004D

004E-0053

0054-0056

0057-0060

'0061

'0062-0065

"0066

0067

0068

■OO69-0O6E

006F

0070

0071-0072

'OO73-008A

007A-007B

008B-00SF

0091

0092

0093

0094

0095

0098

0097

'0093

0098

0O9C

009D

009E

009F

'0OA0-00A2

0OA3

00A4

00A5

0OA6

00A7

0OA8

00A9

69-70

71-72

73-74

75-76

77

73-83

B4-86

87-96

97

98-101

102

103

104

105-110

111

112

113-114

115-138

122-123

139-143

144

145

146

147

148

149

150

1St

152

153

154

155

156

157

158

159

160-162

165

166

167

168

169

Current variable name

Current variable address

Variable pointer for FOR/NEXT

Y-save; op-save; Basic pointer save

Comparison symbol accumulator

Misc work area, pointers, etc

Jump vector for functions

Misc numeric work area

Accum#1: Exponent

Accum#1: Mantissa

Accum#1: Sign

Series evaluation conslanl pointer

Accum#i hi-order (overflow)

Accum#2; Exponent, etc.

Sign comparison, Acc#1 vs #2

Accum#1 fo-order (rounding)

Cassette buffer length/Series pointer

CHRGET subroutine (get BASIC char)

Basic pointer (within subroutine)

RND seed value

Status word ST

Keyswitch P1A; STOP and RVS flags

Timing constant for tape

Load = O. Verily-1

Serial output: deferred char flag

Serial deferred character

Tape EOT received

Register save

How many open files

Input device (normally 0)

Output (CMD) device, normally 3

Tape character parity

Byte-received flag

Direct = $80/RUN=0 output control

Tape Pass 1 error log/char buffer

Tape Pass 2 error log corrected

Jiffy Clock (HML)

Serial bit courrt/EQI flag

Cycle count

Countdown, tape write bit count

Pointer: tape buffer

Tape Write Idr count/Read pass/inbit

Tape Write new byte/Read error/inbit

cnt

Wrile start bit/Read bit err/stbit

Useful memory location

171

rlEX

OOAA

OOAB

00AC-00AD

00AE-OOAF

OOBO-OOB1

*00B2^00B3

00 B4

00 B5

00B6

■00B7

'00B8

'00 B9

•OOBA

■OOBB^OOBC

OQBD

OOBE

00 BF

OOCO

00C1-00C2

O0C3-0OC4

*00C5

'00C6

-0OC7

ooce

OOC9-O0CA

*OOCB

OOCC

OOCD

OOCE

OOCF

OODO

"Q0D1-00DZ

'C0D3

00 D4

*00D5

•00D6

00D7

■0OD6

"00D9-00F0

00F1

00F2

'0OF3-OOF4

00F5-00F6

00F7-00F8

00F9-00FA

DECIMAL

170

171

172-173

174-175

176-177

178-179

180

181

182

183

184

185

186

187-188

189

190

191

192

193-194

195-196

197

198

199

200

201 -202

203

204

205

206

207

208

209-210

211

212

213

214

215

216

217-240

241

£42

243-244

245-246

247-248

249-250

DESCRIPTION

Tape Scan;Cnt;Ld;Endbyte assy

Write lead length/Rd checksum/parity

Pointer: tape buffer, scrolling

Tape end addresses End oi program

Tape liming constants

Pointer: start of tape buffer

Tape timer (1 = enable); bit cnt

Tape EOT'RS-232 next bit to send

Read character error/outbyte buffer

characters in file name

Current logical file

Current secondary address

Current device

Pointer: to file name

Write shift word/Read input char

4 blocks remaining to Write-'Read

Serial word buffer

Tape motor interlock

I--O start addresses

KERNAL setup pointer

Current key pressed

cnars in keyboard buffer

Screen reverse flag

Pointer; End-of-line for input

Input cursor log (row, column)

Which key: 64 if no key

cursor enable (0 = flash cursor)

Cursor liming countdown

Character under cursor

Cursor in blink phase

Input from screen/from keyboard

Pointer to screen line

Position of cursor on above line

Q- direct cursor, else programmed

Current screen line length

Row where cursor lives

Last inkey/checksunrvbuffer

of INSERTS outstanding

Screen line link table

Dummy screen link

Screen row marker

Screen color pointer

Keyboard pointer

RS-232 Rev pointer

RS-232 Tx pointer

I

I

' Useful memory location

172

HEX

'OOFB-OOFE

OOFF

0100-01OA

0100-013E

0100-01FF

■0200-0258

'0259-0262

'0263-026C

'026D-0276

•0277-0280

•0281-0282

■0283-0284

0285

"0286

0287

•0288

•0289

. -028A

■028B

028C

•028D

028E

028F-0290

"0291

0292

0293

0294

0295-0296

0297

0298

0299-029A

i 029 B

029C

029D

029E

029F-02AO

02A1-02FF

■0300-0301

0302-0303

0304-0305

0306-0307

0308-0309

" Uselul memon

DECIMAL

251-254

255

256-266

256-318

256-511

512-600

601-610

611 -620

621-630

631-640

641-642

643-644

645

646

647

648

649

650

651

652

653

654

655-656

657

658

659

660

661-662

663

664

665-666

667

668

669

670

671 -672

673-767

768-769

770-771

772-773

774-775

776-777

location

DESCRIPTION

Operating system free zero page space

Basic storage

Floating to ASCII work area

Tape error log

Processor stack area

Basic input buffer

Logical file table

Device # table

Secondary Address table

Keyboard buffer

Start of memory for op system

Top of memory for op system

Serial bus timeout flag

Current color code

Color under cursor

Screen memory page

Max size of keyboard buffer

Key repeat (128 = repeat all keys)

Repeat speed counter

Repeat delay counter

Keyboard Shift/Control flag

Last keyboard shift pattern

Pointer: decode logic

Shift mode switch (0 = enabled, 128-

locked)

Auto scroll down Hag (0 = on, <>0 = off)

RS-232 control register

RS-232 command register

Nonsiandard (Bit time/2-100)

RS-232 status register

Number of bits to send

Baud rate (full) bit time

RS-232 receive pointer

RS-232 input pointer

RS-232 transmit pointer

RS-232 output pointer

Holds IRQ during tape operations

Program indirects

Error message link

Basic warm start link

Crunch Basic tokens link

Print tokens link

Start new Basic code link

173

HEX

030A-030B

030C

030D

030 E

030 F

0310-0313

03U-03T5

0316-0317

0318-0319

031A-031B

031C-031D

031E-031F

0320-0321

0322-0323

0324-0325

0326-0327

0328-0329

032A-032B

032C-032D

032E-032F

0330-0331

0332-0333

0334-033B

'033C-03FB

0400-OFFF

1000-1DFF

1E00-1FFF

2000-3 FFF

4000-5 FFF

6O0O-7FFF

DECIMAL

778-779

780

781

782

783

784-767

783-789

790-791

792-793

794-795

796-797

798-799

800-801

802-803

804-805

806807

806-809

810-811

812-813

814-815

816-817

818-819

620-827

826-1019

1024-4095

4096-7679

7680-8191

8192-16383

16384-24575

24576-32767

DESCRIPTION

Get arithmetic element link

Storage for 6502 .A register

Storage for 6502 .X register

Storage for 6502 .Y register

Storage lor 6502 .P register

??

Hardware (IRQ) interrupt vector (EABF)

Break interrupt vector

NMI interrupt vector

OPEN vector

CLOSE vector

Set-input vector

Set-output vector

Restore l>O vector

INPUT vector

Output vector

Test-STOP vector

GET vector

Abort I O vector

user vector

Link to load RAM

Link to save RAM

??

Cassette buffer

3K expansion RAM area

User Basic area

Screen memory

(FED2)

(FEAD)

(F40A)

(F34A)

(F2C7)

(F309)

(F3F3)

(F20E)

(F27A)

<F770)

{F1F5)

{F3EF)

(FED2)

(F549)

(F685)

8K expansion RAM ROM block 1

8K expansion BAM/ROM block 2

8K expansion HAMROM block 3

NOTE: When additional memory is added to block 1 {and 2 and 3), the

KERNAL relocates the following things for BASIC:

1000-1 IFF

12Q0-?

9400-95FF

4096-4607

4608-?

37888 - 38399

Screen memory

User Basic area

Color RAM

8000-8FFF

8000-83FF

8400-87FF

8800-8BFF

SC00-BFFF

900O93FF

32768-36863 4K Character generator ROM

32768-33791

33792-33815

33816-35839

35840-36863

36864-37887

Upper case and graphics

Reversed upper case and graphics

Upper and lower case

Reversed upper and lower case

\O BLOCK O

[

Usefuf memory location !

HEX DECIMAL DESCRIPTION

9000-900 F

9000

9001

9002

9003

9004

9005

9006

9007

9008

9009

900A

9008

900C

900D

900E

900 F

36S64-36S79

36864

36865

36866

36867

36866

36869

36870

36871

36872

36873

36874

36675

36876

36877

36878

36S79

Address of VIC chip registers

bits 0-6 horizontal centering

bit 7 sets interlace scan

vertical centering

bits 0-6 set # ol columns

bit 7 is part of video matrix address

bits 1-6 set # ol rows

bit 0 sets 8 x 8 or 16 x 8 chars

TV raster beam line

bits 0-3 start of character memory

(default - 0)

bits 4-7 is rest of video address

(default = F)

SITS 3,2,1,0 CM starting address

HEX DEC

OCOG

0001

0010

0011

1000

1001

1010

1011

1100

1101

1110

Till

ROM

RAM

eooo

8400

8800

8C00

0000

xxxx

xxxx

xxxx

1000

1400

1800

1C00

32768

33792

34816

35840

0000

unavail.

4096

5120

6144

7168

I

horizontal position of light pen

vertical position ol light pen

Digitized value of padd!e X

Digitized value oi paddle Y

Frequency for oscillator 1 (low)

(on: 128-255)

Frequency for oscillator 2 (medium)

(on: 128-255)

Frequency for oscillator 3 (hfgh)

on: 128-255)

Frequency of noise source

bit 0-3 sets volume of afl sound

bits 4-7 are auxrliary color information

Screen and border color register

bits 4-7 select background color

bits 0-2 select border cofor

bit 3 sefects inverted or normal mode

175

HEX

9110-911F

9110

9111

DECIMAL

37136-37151

37136

PIN

ID

C

D

E

F

H

J

K

L

B

M

A

N

37137

6522

ID

PBO

PB1

PB2

PB3

PB4

PB5

PB6

PB7

CB1

CB2

GND

GNO

DESCRIPTION

6522 V!A#1

Port B output registe.f

(user port and RS-232 lines)

DESCRIPTION

Received data

Request to Send

Data terminal ready

Ring indicator

Received line signal

Unassigned

Clear to send

Data set ready

Interrupt for Sin

Transmitted data

Protective ground

Signal ground

Port A output reqiste

EIA

(BB)

(CA)

(CD)

(CE)

(CF)

()
(CB)

(CC)

(BB)

(BA)

(AA)

<AB)

r

ABV

Sin

RTS

DTR

Rl

DCD

XXX

CT3

DSR

Sin

Sout

GND

GND

!

i

9112

9113

9114

9115

9116

9117

9118

9119

911A

911B

911C

37138

37139

37140

37141

37142

37143

37144

37145

37146

37147

37148

911D 37149

(PAO) Bit 0 = Serial CLK IN

(PA1) Bit 1=Serial DATA IN

(PA2) Bit 2 = JoyO

(PA3) Bit 3 = Joy 1

(PA4) Bit 4 = Joy 2

(PA5) Bit 5 = Lightpen'Fire button

(PA6) Bit 6 = Cassette switch sense

(PA7) Bit 7-Serial ATN out

Data direction register B

Data direction register A

Timer 1 low byte

Timer 1 high byte & counter

Timer 1 low byte

Timer 1 high byte

Timer 2 low byte

Timer 2 high byte

Shift register

Auxiliary control register

Peripheral control register

(CA1, CA2, CB1, CB2)

CA1 = restore key (Bit 0)

CA2 = cassette motor control (Bits 1 -3)

CB1 = interrupt signal for received

RS-232 data (Bit 4)

CB2 -transmitted RS-232 data (Bits

5-7)

Interrupt flag register

!

I

[

I

[

176

1

1

I

!
1

1

HEX

911E

911F

9120-912F

9120

9121

9122

9123

9124

9125

9126

9127

9128

9129

912A

912B

912C

912D

912E

912F

9400-95FF

9600-97FF

9S0O-9BFF

9C00-9FFF

AOOO-BFFF

C0OO-DFFF

EOOO-FFFF

DECIMAL

37150

37151

37152-37167

37152

37153

37154

37155

37156

37157

37158

37159

37160

37161

37162

37163

37164

37165

37166

37167

37888-38399

38400-38911

38912-39935

39936-40959

40960-49152

49152-57343

57344-65535

DESCRIPTION

Interrupt enable register

Port A (Sense cassette switch)

6522 VIA#2

Port B output register

keyboard column scan

(PB3) Bit 3 ^cassette write line

(PB7) Bit 7 -Joy 3

Port A output register

keyboard row scan

Data direction register B

Data direction register A

Timer 1, low byte latch

Timer 1, high byte latch

Timer 1, low byte counter

Timer 1. high byte counter

timer 1 is used for the

60 time'second interrupt

Timer 2, low byte latch

Timer 2. high byte latch

Shift register

Auxiliary control register

Pertpriera! control register

CA1 Cassette read line (Bit 0)

CA2 Serial clock out (Bits 1-3)

CB1 Serial SRQ IN (Bit 4)

CB2 Serial data out (Bits 5-7)

Interrupt flag register

Interrupt enable register

Port A output register

location of COLOR RAM with

additional RAM at blk 1

Normal location of COLOR RAM

I.0 block 2

I.O btock 3

8K decoded block lor expansion ROM

8K Basic ROM

8K KERNAL ROM

177

USEFUL MEMORY LOCATIONS

This is a more in-depth guide lo some of the memory locations

you can use.

HEX

0014-0015

002B-002C

009A

DECIMAL

20-21

43-44

002D-002E 45-46

002F-0030 47-48

0031 -0032

0033-0034

0037-0033

0043-0044

0061-0066

0069-006E

0073-00BA

0090

0098

0099

49-50

51-52

55-56

67-68

97-102

105-110

115-138

144

152

153

154

DESCRIPTION

Where BASIC stores integer variables

used in calculations. The fixed-float and

float-fixed routines (vectors at 3-4 and

5-6) use the value in this area.

The start of the BASIC program in

memory. Location 43 contains the low

byte, and location 44 has the high byte.

To compute the start of BASIC in

decimal, use the formula: PEEK(43) -

256 - PEEK(44)

The start of the numeric variables,

which is usually immediately after the

end of the BASIC program.

The start of arrays in memory, usually

immediately following the numeric vari

ables.

The end of the arrays in memory.

Bottom of string storage, moving from

the top of available memory down to the

top of arrays.

The top of free RAM. By lowering this

value, some RAM can be "protected"

against BASIC putting values here.

Jump vector for INPUT statement.

Floating point accumulator #1 for cal

culations.

Floating point accumulator #2.

The CHRGET subroutine resides here.

This routine gets the next BASIC

character from machine language.

Status word ST.

Number of open files.

Device number for input, normally 0

(keyboard).

Output (CMD) device, normally 3

(screen).

178

I

I

HEX

00A0-00A2

O0B2-0OB3

00B7

00B9

00 BA

, 00BB-00BC

DECIMAL

160-162

17B-179

183

195

186

187-188

00C5 197

DESCRIPTION

3 byte jiffy clock. The Tf and Tl$

variables are translations of these loca

tions.

Points to the start of the tape buffer. Can

be used as an indirect zero-page jump

to a routine in the buffer.

Number of characters in 'iEename.

Which secondary address is currently

being used.

Current device number being accessed.

Points lo location of filename in memo

Current key being held down. There will

be a 64 here if nothing is held down. If

more than 1 key is down, the key with

the highest number on the chart is what

shows up here.

#

0

1

a

3

4

5

e

7

8

9

10

11

12

13

14

15

key

1

3

5

7

9

+

£

DEL

**-

W

R

Y

I

P

RETURN

#

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

key

none

A

D

G

J

L

m
STOP

none

X

V

N

,

#

32

33

34

35

36

37

3B

39

40

41

42

43

44

45

46

47

key

space

Z

c

B

M

•

none

fl

none

S

F

H

K

=

f3

#

48

48

50

51

52

53

54

55

56

57

5B

58

60

61

62

63

key

Q

E

T

U

o

@

t

f5

2

4

6

8

0

HOME

f7

°°C7 199

00CB

OOD1-00D2

00D3

00D5

203

209-210

211

213

Number of characters currently in key

board buffer.

FJag for reverse on/off. A 1 here is on. a

0 is off.

Same as 197.

Address of start of line where cursor is.

Position of cursor on line.

Current screen line length—either 21,

43, 65. or 87.

179

HEX

00D6

00 DB

0288

0289

Q26A

028B

026D

DECIMAL

214

216

00D9-00F0 217-240

00F3-00F4

Q0FB-QOFE

0200-0258

0259-0262

0263-026C

026D-0276

0277-02B0

243-244

251-254

512-600

601-610

611-620

621-630

631-640

0281-0282

0283-0384

0286

641-642

643-644

646

648

649

650

651

653

DESCRIPTION

Screen row where cursor is. To change

Ihe cursor position, locations 201. 210n

211. and 214 must be changed.

Number of spaces left in INSERT mode.

POKEing this to a zero will turn off insert

mode.

Screen line link table, A158 means that

the line is finished at the end of that line,

and a 30 means that the line continues

on the next line.

Pointer to the current space in color

memory.

Available locations in zero page.

BASIC input buffer—where the charac

ters being INPUT will go.

Logic 1 file tabfe for OPEN files.

Device # table for OPEN files.

Secondary address table

Keyboard buffer. If characters are

POKEd in here and location 198 (# of

characters in buffer) is changed, it will

be as if the characters were typed from

the keyboard.

Start of memory pointer.

Top of memory pointer.

Current color code. This holds the color

number that goes into color memory

during PRINT operations.

Screen memory page. If you want the

operating system to know where screen

memory is, this must be changed as well

as the VIC chip.

Maximum size of keyboard buffer. If this

is set greater than 10, vital pointers will

be destroyed,

Keyboard repeat ffag. If this \s a 0, only

cursor controls repeat: if 12Br all keys

repeat.

This determines how long the VIC waits

before repeating key.

Keyboard SHIFT, CTRL Commodore

flag. The SHIFT sets the 1 bit, Commo

dore sets the 2 bit, and the CTRL sets

the 4 bit.

180

HEX DECIMAL DESCRIPTION

0291 657 Setting this location to 128 will disable

switching case, and a 0 here enables

the ability to switch.

0300-0301 768-769 This is the jump vector for errors. By

changing this vector, a routine can

intercept any error condition.

033C-03FB 828-1019 Cassette buffer. This is where data files

are held before they are INPUT. When

not using files, this is available for

POKEing or machine language pro

grams.

181

THE KERNAL

One of the toughest problems facing programmers in the

microcomputer field is the question of what to do when changes are

made to the operating system of the computer by the company.

Machine language programs which took much time to develop

might no longer work, forcing major revisions in the program. To

alleviate this problem, Commodore has developed a method of

protecting software writers called the KERNAL.

Essentially, the KERNAL is a standardized JUMP TABLE to the

input, output, and memory management routines in the operating

system. The locations of each routine in ROM might change as the

system is upgraded. But the KERNAL jump table will be changed to

match, tf your machine language routines only use the system

ROM routines through the KERNAL, it will take much less work to i

modify them. The KERNAL is the operating system of the VIC

computer. All input, output, and memory management are

controlled by the KERNAL.

To simplify the machine language program you write, and to

make sure that future versions of the VIC operating system don't

make your machine language programs obsolete, the KERNAL

contains a jump table for you to use. By taking advantage of the 39

input/output routines and other utilities accessible from the table,

not only will you save time, but you will also make it easier to

translate your programs from one Commodore computer to

another.

The jump table is located on the last page of memory, in

read-only memory.

To use the KERNAL jump table, first you set up the parameters

that the KERNAL routine needs to work. Then JSR to the proper

place in the KERNAL jump table. After performing its function, the

KERNAL transfers control back to your machine language

program. Depending on which KERNAL routine you are using,

certain registers may pass parameters back to your program. The

particular registers for each KERNAL routine may be found in the

individual descriptions of KERNAL subroutines.

A good question at this point is why use the jump table at all? Why

not just JSR directly to the KERNAL subroutine involved? The jump

table is used so that if the KERNAL or BASIC is changed, your

machine language programs will still work. In future operating

systems the routines may be moved in memory ... but the jump

table will still work correctly!

182

I

HOW TO USE THE KERNAL

When writing machine language programs it is often convenient

to use the routines which are already part of the operating system

for input output, access to the system clock, memory management,

and similar operations. It is an unnecessary duplication of effort to

write these routines again, so easy access to the operating system

heips speed machine language programming.

As mentioned before, the KERNAL is a jump table. This is just a

collection of JMP instructions to many operating system routines.

To use a KERNAL routine you must first make all preparations

that the routine demands... if the routine says that you must have

called another KERNAL routine first, then thai routine must be

called. If the routine expects you to put a number in the

accumulator, then that number must be there. Otherwise your

routines have little chance of working the way you expect them to

work.

After all preparations are made, you must call the routine by

means of the JSR instruction. All KERNAL routines you can access

are structured as SUBROUTINES, ending with an RTS instruction,

When the KERNAL routine has finished its task, control will be

returnee1 to your program at the instruction after the JSR.

Many of the KERNAL routines return error codes in the status

word or the accumulator in case of problems. Good programming

practice and the success of your machine language programs

demand that you handle this properly. If you ignore an error return,

the rest of your program might bomb.

That's all there is in using the KERNAL—these three steps—

1. Set up

2. Call the routine

3. Error handling

The following conventions are used in describing the KERNAL

routines.

FUNCTION NAME: Name of the KERNAL routine.

CALL ADDRESS: This is the call address of the KERNAL routine,

given in hexadecimal.

COMMUNICATION REGISTERS: Registers listed under this

heading are used to pass parameters to and trom the KERNAL

routines.

PREPARATORY ROUTINES: Certain KERNAL routines require

that data be set up before they can operate. The routines needed

are tisted here.

1B3

ERROR RETURNS: A return from a KERNAL routine with the

CARRY set Indicates that an error was encountered in processing.

The accumulator will contain the number of the error.

STACK REQUIREMENTS: This is the actual number of stack

bytes used by the KERNAL routine.

REGISTERS AFFECTED: All registers used by the KERNAL

routine are listed here.

DESCRIPTION: A short tutorial on the function of the KERNAL

routine is given here.

The list of the KERNAL routines follows.

i

ACPTR

CHKIN

CHKOUT

CHRIN

CHROUT

CIOUT

CLALL

CLOSE

CLRCHN

GETIN

HEX

SFFA5

SFFC6

SFFC9

SFFCF

SFFD2

SFFA8

SFFE7

3FFC3

DECIMAL

65445

65478

65481

654B7

65490

65448

65511

65475

SFFCC 65404

SFFE4 55512

USER CALLABLE KERNAL ROUTINES

NAME ADDRESS FUNCTION

Input byte from serial port

Open channel for input

Open channel for output

Input character irom channel

Output character to channel

Ouput byte to serial port

Close all channels and files

Close a specified logical file

Close input and output channels

Get character from keyboad queue

(keyboard buffer)

Returns base address of I/O de

vices

Command devices on the seriaf

bus to LISTEN

Load RAM irom a devfce

Read/set the bottom of memory

Read/set the top of memory

Open a logical file

Read/set X,Y cursor position

React real time clock

Read I/O status word

Restore default 10 vectors

Save RAM tc device

Scan keyboard

Return X,Y organization of screen

i

IOBASE SFFF3 65523

LISTEN SFFB1 65457

LOAD

MEMSOT

MEMTQP

OPEN

PLOT

RDTIM

READST

RESTOR

SAVE

SCNKEY

SCREEN

SFFD5

SFF9C

SFF99

SFFCO

SFFFO

65493

65436

65433

65472

65520

SFFDE 65502

SFFB7

SFF8A

SFFD8

SFF9F

SFFED

65463

65415

65496

65439

65517

I

184

NAME ADDRESS FUNCTION

HEX DECIMAL

SbUUND

SETLFS

SETMSG

SETNAM

SETTIM

SETTMO

STOP

TALK

TKSA

UDTIM

UNLSN

UNTLK

VECTOR

SFF93

SFFBA

SFF90

SFFBD

SFFDB

SFFA2

SFFE1

SFFB4

SFF96

SFFEA

SFFAE

SFFAB

SFF84

65427

65466

65424

65469

65499

65442

65505

65460

65430

65514

65454

65451

65412

Send secondary address after

LISTEN

Set logical, first, and second ad

dresses

Control KERNAL messages

Set filename

Set real time clock

Set timeout on serial bus

Scan stop key

Command serial bus device to

TALK

Send secondary address after

TALK

Increment real time clock

Command serial bus to UNLISTEN

Command serial bus to UNTALK

Read/set vectored I/O

B-1. Function name: ACPTR

Purpose: Get data from the serial bus

Call address: SFFA5

Communicaiion registers: .A

Preparatory routines: TALK ,TKSA

Error returns: See READST

Stack requirements; 13

Registers affected: A .X

Description: This is the routine to use to get information from a

device on the serial bus (like the disk). This routine gets a byte of

data off the serial bus using full handshaking. The data is returned

in the accumulator. To prepare for this routine the TALK routine

must have been called first to command the device on the serial bus

to send data on the bus. If the input device needs a secondary

command, it must be sent by using the TKSA KERNAL routine

before calling this routine. Errors are returned in the status word.

The READST routine is used to read the status word.

To use this routine;

0) Command a device on the serial bus to prepare to send data

to the VIC.

(Use the TALK and TKSA kernal routines).

1) Call this routine (using JSR)

2) Store or otherwise use the data.

185

EXAMPLE:

Get a byte from the bus

1) JSR ACPTR

2) STA DATA

B-2. Function name: CHKIN

Purpose: Open a channel for input

Calf address; SFFC6

Communication registers: ,X

Preparatory routines: (OPEN)

Error returns: 3,5,6

Stack requirements: None

Registers affected: A .X

Description: Any logical file that has already been opened by

the KERNAL OPEN routine can be defined as an input channel by

this routine. Naturally, the device on the channel must be an input

device. Otherwise, an error will occur, and the routine will abort.

If you are getting data from anywhere other than the keyboard,

this routine must be called before using either the CHRIN or the

GETIN KERNAL routines for data input. If input from the keyboard

is desired, and no other input channels are opened, then the calls to

this routine, and to the OPEN routine, are not needed.

When this routine is used with a device on the serial bus, this

routine automatically sends the talk address (and the secondary

address if one was specified by the OPEN routine) over the bus.

To use this routine:

0) OPEN the logical file (if necessary; see description above).

1) Load the .X register with number of the logical file to be used.

2) Call this routine (using a JSR command}.

Possible errors are:

#3: File not open

#5: Device not present

#6: File not an input file

EXAMPLE:

; PREPARE FOR INPUT FROM LOGICAL FILE 2

1) LDX #2

2) JSR CHKIN

B-3. Function name: CHKOUT

Purpose; Open a channel for output

Call address: SFFC9

Communication registers: .X

186

Preparatory routines: (OPEN)

Error returns: 3,5,7

Stack requirements: None

Registers Affected: .A, .X

Description: Any logical file number which has been created by

the KERNAL routine OPEN can be defined as an output channel.

Of course, the device you intend opening a channel to must be an

output device. Otherwise, an error will occur, and the routine will be

aborted.

This routine must be called before any data is sent to any output

device unless you want 1o use the VIC screen as your output

device, If screen output is desired, and there are no other output

channels already defined, then the calls to this routine, and to the

OPEN routine are not needed.

When used to open a channel to a device on the serial bus, this

routine will automatically send the LISTEN address specified by the

OPEN routine (and a secondary address if there was one).

How to use: Remember: this routine is NOT NEEDED to send

data to the screen. 0) Use the KERNAL OPEN routine to specify a

logical file number, a LISTEN address, and a secondary address (if

needed).

1} Load the .X register with the logical file number used in the

open statement,

2) Call this routine (by using the JSR instruction).

;DEFINE LOGICAL FILE 3 AS AN OUTPUT CHANNEL

1) LDX #3

2) JSR CHKOUT

Possible error returns:

3; File not open

5: Device not present

7: Not an output file

B-4. Function name: CHRIN

Purpose: Get a character from the input channel

Call address: SFFCF

Communication registers: .A

Preparatory routines: (OPEN, CHKIN)

Error returns: See READST

Stack requirements: None

Registers affected: .A, .X

Description: This routine wtll get a byte of data from the channel

already set up as the input channel by the KERNAL routine CHKIN.

187

If the CHKIN has not been used to define another input channel,

data is expected from the keyboard. The data byte is returned in the

accumulator. The channel remains open after the call.

Input from the keyboard is handled in a speciai way. First, the

cursor is turned on, and will blink until a carriage return is typed on

the keyboard. All characters on the line (up to 88 characters) will be

stored in the BASIC input buffer. Then 1he characters can be

retrieved one at a time by calling this routine once for each

character. When the carriage return is retrieved, the entire line has

been processed, The next time thrs routine is called, the whole

process begins again, i.e., by Hashing the cursor.

How to use:

FROM THE KEYBOARD

1) Call this routine (using the JSR instruction).

2) Retrieve a byte of data by calling this routine,

3) Store the data byte.

4) Check if it is the last data byte (rs it a CR 7). If not, go to step 2,

EXAMPLE:

1) LDX S#00 ;Store 00 in the .X register

2) RD JSR CHRIN

STA DATA.X ;store the Xth data byte in the Xth

INX ^location in the data area.

3) CMP #CR ;ls it a carriage return? i

4) BNE RD ;no, get another data byte

EXAMPLE:

JSR CHRIN

STA DATA

FROM OTHER DEVICES

0) Use the KERNAL OPEN and CHKIN routines,

1) Call this routine (using a JSR instruction)-

2) Store the data.

EXAMPLE;

JSR CHRIN

STA DATA

B-5. Function name: CHROUT

Purpose: Output a character

Call address: SFFD2

188

I

Communication registers; .A

Preparatory routines: (CHKOUT, OPEN)

Error returns: See READST

Stack requirements: None

Registers affected: None

Description: This routine will output a character to an already

opened channel, Use the KERNAL OPEN and CHKOUT routines

to set up the output channel before calling this routine. If this call is

omitted, data will be sent to the default output device (number 3, on

the screen). The data byte to be output is loaded into the

accumulator, and this routine is called. The data is then sent to the

specified output device. The channel is left open after the call,

NOTE: Care must be taken when using this routine to send

data to a serial device since data will be sent to all open output

channels on the bus. Unless this Is desired, all open output

channels on the serial bus other than the actually intended

destination channel must be closed by a call to the KERNAL

close channei routine.

How to use:

0) Use the CHKOUT KERNAL routine if needed (see

description above).

1) Load the data to be output into the accumulator.

2) Call this routine.

EXAMPLE:

;Duplicale the BASIC instruction CMD 4, ILA";

LDX #4 LOGICAL FILE #4

JSR CHKOUT ;OPEN CHANNEL OUT

LDA #'A

JSR CHROUT ;SEND CHARACTER

B-6. Function name: CIOUT

Purpose: Transmit a byte over the serial bus

Call address; SFFAS

Communication registers: .A

Preparatory routines: LISTEN, [SECOND]

Error returns: See READST

Stack requirements: None

Registers affected: .A

Description: This routine is used to send information to devices

on the serial bus. A call to this routine wilt put a data byte onto the

serial bus using full serial handshaking. Before this routine is called,

the LISTEN KERNAL routine must be used to command a device

189

on the serial bus to get ready to receive data. (If a device needs a

secondary address, it must also be sent by using the SECOND

KERNAL routine.)

The accumulator is loaded with a byte to handshake as data on

the serial bus. A device must be listening or the status word will

return a timeout. This routine always buffers one character. (The

routine holds the previous character to be sent back,) So when a

call to the KERNAL UNLSN routine is made to end the data

transmission, the buffered character is sent with EOl set. Then the

UNLSN command is sent to the device.

How to use:

0) Use the LISTEN KERNAL routine (and the SECOND routine

if needed),

1) Load the accumulator with a byte of data.

2) Call this routine to send the data byte.

EXAMPLE:

;Send an X to the serial bus

LDA #'X

JSR CIOUT

B-7. Function name: CLALL

Purpose: Close all files

Call address; SFFE7

Communication registers: None

Preparatory routines: None

Error returns: None

Stack requirements: 11

Registers affected: A .X

Description: This routine closes all open files. When this routine

is called, the pointers into the open file table are reset, closing all

files. Also, the routine automatically resets the I/O channels.

How to use:

1) Call this routine.

EXAMPLE:

;USED AT START OF EXECUTION FOR INITIALIZATION

JSR CLRCHN ;CLOSE FILES

JMP RUN ;BEGIN EXECUTION

B-8. Function name: CLOSE

Purpose: Close a logical file

Call address: $FFC3

190

i

Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: None

Registers affected: .A, .X

Description: This routine is used to close a logical file after all f/O

operations have been completed on that file. This routine is called

after the accumulator is loaded with the logical ii!e number to be

cfosed (the same number used when the file was opened using the

OPEN routine).

How to use:

1} Load the accumulator with the number of the logical file to be

closed,

2) Cail this routine.

EXAMPLE:

iCLOSE 15

LDA #15

JSR CLOSE

B-9, Function name: CLRCHN
Purpose: Clear I/O channels

Call address: SFFCC

Communication registers: None

Preparatory routines: None

Error routines: Mone

Stack requirements: 9

Registers affected: .A, .X

Description: This routine is called to clear all open channels and

restore the I/O channels to their original default values. It is usually

called after opening other I/O channels (like to the disk or tape

drive) and using them for input-output operations. The default input

device is 0 (keyboard). The default output device is 3 (the VIC

screen).

If one of the channels to be closed is to the serial port, an

UNTALK signal is sent first to clear the input channel or an

UNLISTEN is sent to clear the output channel. By not calling this

routine (and leaving listeners} active on the serial bus) several

devices can receive the same data from the VIC at the same time.

One way to take advantage oi this would be to command the printer

to TALK and the disk to LISTEN. This would allow direct printing of a

disk 1ile.

191

How to use:

1) Cafl this routine using the JSR instruction .

EXAMPLE:

JSR CLRCHN

B-1G. Function name: GETIN

Purpose: Get a character from the keyboard buffer

Call address: SFFE4

Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements; None

Registers affected: .A, .X

Description: This subroutine removes one character from the

keyboard queue and returns it as an ASCII value in the

accumulator. If the queue is empty, the value returned in the

accumulator will be zero. Characters are put into the queue

automatically by an interrupt driven keyboard scan routine which

calls the SCNKEY routine. The keyboard buffer can hold up to ten

characters. After the buffer is filled, additional characters are

ignored until at least one character has been removed from the

queue.

How to use:

1) Call this routine using a JSR instruction

2) Check for a zero in the accumulator (empty buffer)

3) Process 1he data

EXAMPLE:

;WAIT FOR A CHARACTER

WAIT JSR GETIN

CMP #0

BEQ WAIT

B-11. Function name: IOBASE

Purpose: Define I/O memory page

Call address: SFFF3

Communication registers: XPY

Preparatory routines: None

Error returns: None ,

Stack requirements: 2

Registers affected: .X, .Y

Description: This routine will set the X and Y registers to the

address of the memory section where the memory mapped I/O

devices are located. This address can then be used with an offset to

192

i

access the memory mapped I/O devices in the VIC, The offset will

be 1he number of locations from the beginning of the page that the

desired I/O register is located. The .X register will contain the fow

order address byte, while the .Y register will contain the high order

address byte.

This routine exists to provide compatibility between the VIC 20

and future models of the VIC. IF the I/O locations for a machine

language program are set by a call to this routine, they should still

remain compatible with future versions of the VIC, the KERNAL and

BASIC.

How to use:

1) Call this routine by using the JSR instruction,

2) Store the ,X and the .Y registers in consecutive locations.

3) Load the .Y register with the offset.

4) Access that I/O location.

EXAMPLE:

; Set the data direction register of the user port to 0 (input)

1) JSR IOBASE

2} STX POINT ;set base registers

STYPQINT+1

3) LDY #2

4) LDA #0 ;offset for DDR of the user port

STA (POINT)Y ;Set DDR to 0

B-12. Function name: LISTEN

Purpose: Command a device to LISTEN

Call Address: SFFB1

Communication registers: ,A

Preparatory routines: None

Error returns: See READST

Stack requirements: None

Registers affected: ,A

Description; This routine will command a device on the serial

bus to receive data. The accumulator must be loaded with a device

number between 4 and 31 before calling the routine. LISTEN will

OR the number bit by bit to convert to a listen address, then transmit

this data as a command on the serial bus. The specified device will

then go into listen mode, and be ready to accept information.

How to use:

1) Load the accumulator with the number of the device to

command to LISTEN.

2) Call this routine using the JSR instruction.

193

EXAMPLE:

;COMMAND DEVICE #8 TO LISTEN

LDA #8

JSR LISTEN

B-13, Function name: LOAD

Purpose: Load RAM from device

Call address: SFFD5

Communication registers: .A, .X, .Y

Preparatory routines: SETLFS. SETNAM

Error returns: 0,4,5,8,9

Stack requirements: None

Registers affected: .A, .XN .Y

Description: This routine will load data bytes from any input

device directly into the memory of the VIC. It can also be used for a

verily operation, comparing data from a device with the data

already in memory, leaving the data stored in RAM unchanged. The

accumulator (.A) must be set to 0 for a load operation, or 1 for a

verify. If the input device was OPENed with a secondary address

(SA) of 0n the header information from device will be ignored. In this

case, the .X and .Y registers must contain the starting address for

the load. If the device was addressed with a secondary address of

0,1, or 2 the data will load into memory starting at the location

specified by the header, This routine returns the address of the

highest RAM location which was loaded,

Before this routine can be called, the KERNAL SETLFS, and

SETNAM routines must be called.

How to use

0) Call the SETLFS, and SETNAM routines. If a relocated load

is desired, use the SETLFS routine to send a secondary address ot

3. I
1) Set the .A register to 0 for load, 1 for verify,

2) If a relocated load is desired, the .X and .Y registers must be

set to the start address for the load.

3) Call the routine using the JSR instruction.

EXAMPLE:

;LOAD A FILE FROM TAPE

0) LDA

LDX

LDY

JSR

LDA

#DEVICE1

#FILENO

CMD1

SETLFS

#NAME1 -NAME

;set devtce number

;set logical file number

;set secondary address

;load .A with number of char

acters

;in filename

194

1)

2)

3)

NAME

NAME 1

LDX

LDY

JSR

J_DA

LDX

LDY

JSR

SIX

STY

JMP

.BYT

■

#<NAME

#>NAME

SETNAM

#0

#$FF

#SFF

LOAD

VARTAB

VARTAB+1

START

FILE NAME1

;Load ,X and *Y with address of

^filename

;set flag for a load

;default start

;end of load

B-14. Function name: MEMBOT

Purpose: Set bottom of memory

Call address: SFF9C

Communication registers: ,X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: None

Registers affected: X, .Y

Description: This routine is used to set the bottom of the

memory. If the accumulator carry bit is set when this routine is

called, a pointer to the lowest byte of RAM will be returned in the .X

and .Y registers. On the unexpancted VIC the initial value of this

pointer is $1000. If the accumulator carry bit is dear (= 0} when this

routine is called, the values of the .X and .Y registers will be

transferred to the low and high bytes respectively of the pointer to

the beginning of RAM.

How to use:

TO READ THE BOTTOM OF RAM

1) Set the carry.

2) Call this routine.

TO SET THE BOTTOM OF MEMORY

1) Clear the carry.

2) Call this routine.

EXAMPLE:

; MOVE BOTTOM OF MEMORY UP 1 PAGE

SEC :READ MEMORY BOTTOM

JSR MEMBOT

INY

CLC ;SET MEMORY BOTTOM TO NEW VALUE

JSR MEMBOT

195

B-15. Function name: MEMTOP

Purpose: Set the top of RAM

Call address: SFF99

Communication registers: .X,.Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .X, .Y

Description: This routine is used to set the top of RAM. When

this routine is called with the carry bit of the accumulator set, the

pointer to the top of RAM will be loaded into the .X and.Y registers.

When this routine is called with the accumulator carry bit clear, the

contents of the .X and .Y registers will be loaded in the top of

memory pointer, changing the top of memory.

EXAMPLE:

;DEALLOCATE THE RS-232 BUFFER

SEC

JSR MEMTOP ;READ TOP OF MEMORY

DEX

CLC

JSR MEMTOP ;SET NEW TOP OF MEMORY

8-16. Function name: OPEN

Purpose: Open a logical file

Call address: SFFCO

Communication registers: None

Preparatory routines: SETLFS, SETNAM

Error returns: 1,2,4,5,6

Stack requirements: None

Registers affected: A .Xp .Y

Description: This routine is used to open a logical file. Once the

logical file is set up, it can be used for input/output operations. Most

of the I/O KERNAL routines call on this routine to create the logical

fites to operate on. No arguments need to be set up to use this

routine, but both the SETLFS and SETNAM KERNAL routines

must be called before using this routine.

How to use:

0) Use the SETLFS routine.

1) Use the SETNAM routine.

2) Call this routine.

196

EXAMPLE:

This is an implementation of the BASIC statement: OPEN

15,8,15/1/0"

LDA #NAME2-NAME ;LENGTH OF FILE NAME FOR

SETLFS

LDY #>NAME

JSR SETNAW

LDA #15

LDX #8

LDY #15

JSR SETLFS

JSR OPEN

NAME ,BYT'I/O:

NAME2

B-17. Function name; PLOT

Purpose: Set cursor location

Call address: SFFFO

Communication registers: .ApXrY

Preparatory routines; None

Error returns: None

Stack requirements: 2

Registers affected: A .X. .Y

Description: A call to this routine, with the accumulator carry flag

set, loads the current position of the cursor on the screen (in X,Y

coordinates) into the .X and .Y registers. X is the column number of

the cursor location (0-21), and Y is the row number of the location of

the cursor (0-22). A call with the carry bit clear moves the cursor to

X,Y as determined by the .X and .Y registers.

How to use:

READING CURSOR LOCATION

1) Set the carry flag.

2) Call this routine.

3) Gel the X and Y position from the .X and ,Y registers

respectively.

SETTING CURSOR LOCATION

1) Clear carry flag.

2) Set the .X and .Y registers to the desired cursor location.

3) Call this routine.

197

1

i

I

EXAMPLE:

; MOVE THE CURSOR TO 5,5

LDX #5

LDY #5

CLC

JSR PLOT

B-18, Function name: RDTIM

Purpose; Read system clock

Call address: SFFDE

Communication registers: .A, .X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A, .X, .Y

Description: This routine is used to read the system clock. The

clock's resolution is a 60th of a second. Three bytes are returned by

the routine. The accumulator contains the most significant byte, the

X index register contains the next most significant byter and the Y

index register contains the least significant byte.

EXAMPLE:

JSR RDTIM

STY TIME

STXTIME + 1

STA TIME + 2

TIME " = ' + 3

B-19. Function name: READS!

Purpose: Read status word

Call address: SFFB7

Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A

Description: This routine returns the current status of the I O

devices in the accumulator. The routine is usually called after new

communication to an I/O device. The routine will give information

about device status, or errors that have occurred during the I/O

operation.

198

The bits returned in the accumulator contain the following

information {see table befow):

How to use:

1) Call this routine.

2) Decode the information in the .A register as it refers to your

program.

EXAMPLE:

; CHECK FOR END OF FILE DURING READ

JSR READST

AND #64 ;check eof bit

BNE EOF ;branch on eof

ST

Bit

Position

0

write

1

read

2

3

4

5

6

7

ST

Numeric

Value

1

2

4

8

16

32

64

-128

Cassette

Read

Short block

Long block

Unrecoverable

read error

Checksum

error

End of file

End of taoe

Serial/RW

Time out

Time out

EOI line

Device not

Tape

Verify

+ Load

Short block

Long block

Any

mismatch

Checksum

error

End of

present tape

B-20. Function name: RESTOR

Purpose: Restore default system and interrupt vectors

Call address: SFF8A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A, .X, .Y

Description: This routine restores the default values of all

system vectors used in KERNAL and BASIC routines and

fnterrupts. (See appendix D for the default vector contents}. The

KERNAL VECTOR routine is used to read and alter individual

system vectors.

199

How to use;

1) Call this routine.

EXAMPLE:

JSR RESTOR

B-21. Function name: SAVE

Purpose: Save memory to a device

Call address: SFFD8

Communication registers: A X, .Y

Preparatory routines: SETLFS, SETNAM

Error returns: 5,8,9

Stack requirements: None

Registers affected: .A, .X, .Y

Description: This routine saves a section of memory. Memory is

saved from an indirect address on page 0 specified by the

accumulator to the address stored in the .X and .Y registers to a

logical file (an input/output device). The SETLFS and SETNAM

routines must be used before calling this routine. However, a file

name is not required to SAVE to device 1 (the cassette tape

recorder). Any attempt to save to other devices without using a file

name results in an error,

NOTE: Device 0 (the keyboard) and device 3 (the screen) cannot

be SAVEd to. If the attempt is made, an error will occur, and the

SAVE stopped.

How to use;

0) Use the SETLFS routine and the SETNAM routine (unless a

SAVE with no file name is desired on a save Jo the tape recorder).

1) Load two consecutive locations on page 0 with a pointer to

the start ol your save (in standard 6502 low byte first, high byte next

format).

2) Load the accumulator with the single byte page zero offset to

the pointer.

3) Load the .X and .Y registers with the low byte and high byte

respectively of the location of the end of the save.

4) Call this routine.

EXAMPLE:

LDA #1 ;DEVICE - 1: CASSETTE

JSR SETLFS

LDA #0 ;NO FfLE NAME

JSR SETNAM

LDA PROG ;LOAD START ADDRESS OF SAVE

STA TXTTAB ; (LOW BYTE)

LDA PROG + 1

STA TXTTAB -t-1 (HIGH BYTE)

200

LDX VARTAB ;Load .X WITH LOW BYTE OF END OF SAVE

LDY VAR

TAB + 1 ; .Y WITH HIGH BYTE

LDA

#<TXTTAB ;LOAD ACCUMLATOR WITH PAGE 0 OFF

SET

JSR SAVE

B-22. Function name: SCNKEY

Purpose: Scan the keyboard

Call address: SFF9F

Communication registers: None

Preparatory routines: None

Error returns; None

Stack requirements: None

Registers affected: .A, .Xt .Y

Description; This routine will scan the VIC keyboard and check

for pressed keys. It is the same routine called by the interrupt

handler. If a key is down, its ASCII value is placed in the keyboard

queue.

How to use;

1) Call this routine

EXAMPLE:

GET JSR SCNKEY ;SCAN KEYBOARD

JSR GETIN ;GET CHARACTER

CMP #0 ;IS IT NULL?

BEQ GET ;YES, . .SCAN AGAIN

JSR CHROUT ;PRINT IT

B-23. Function name: SCREEN

Purpose: Return screen format

Call address: SFFED

Communication registers: X..Y

Preparatory routines: None

Stack requirements: 2

Registers affected: .X, .Y

Description: This routine returns the format of the screen, e.g.,

22 columns in ,X and 23 lines in ,Y. This routine can be used to

determine what machine a program is running on, and has been

implemented on the VIC to help upward compatibility in programs.

Mow to use:

1) Call this routine.

EXAMPLE:

JSR SCREEN

201

STX MAXCOL

STY MAXROW

B-24. Function name: SECOND

Purpose: Send secondary address for LISTEN

Call address: SFF93

Communication registers: .A

Preparatory routines: LISTEN

Error returns: See READST

Stack requirements: None

Registers affected: .A

Description: This routine is used to send a secondary address

to an I/O device after a call to the LISTEN routine is made, and the

device commanded to LISTEN. The routine cannot be used to send

a secondary address after a call to the TALK routine.

A secondary address is usually used to give set-up information to

a device before I;O operations begin.

When a secondary address is to be sent to a device on the serial

bus, the address must first be ORed with $60.

How to use: i

1) Load the accumulator with the secondary address to be

sent.

2) Call this routine.

EXAMPLE:

;ADDRESS DEVICE #8 WITH COMMAND (SECONDARY

ADDRESS) #15 r

LDA #8

JSR LISTEN

LDA #15

ORA #60

JSR SECOND I

B-25. Function name: SETLFS i

Purpose: Set up a logical file

Call address: SFFBA

Communication registers: .A, .X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers afiected: None

Description: This routine will set the logica! file number, device

address, and secondary address (command number) for other

KERNAL routines.

The logical fife number is used by the system as a key to the file

table created by the OPEN file routine. Device addresses can

202

range from 0 to 30. The following codes are used by the VIC to

stand for the following CBM devices.

ADDRESS

0

1

2

3

4

8

DEVICE

Keyboard

Cassette #1

RS-232C device

CRT display

Serial Bus printer

CBM Serial bus disk drive

Device numbers4 or greater automatically refer to devices on the

serial bus.

A command to the device is sent as a secondary address on the

serial bus after the device number is sent during the serial attention

handshaking sequence. It no secondary address is to be sentt the

,Y index register should bs set to 255.

How to use:

1) Load the accumulator with the logical file number.

2) Load the .X index register with the device number.

3) Load the ,Y index register with the command.

EXAMPLE:

For logical file 32, device #4, and no command:

LDA #32

LDX #4

LDY #255

JSR SETLFS

B-26. Function name: SETMSG

Purpose: Control system message output

Call address: SFF90

Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A

Description: This routine controls the printing of error and

control messages by the KERNAL. Either print error messages or

print control messages can be selected by setting the accumulator

when the routine is called. FILE NOT FOUND is an example of an

error message. PRESS PLAY ON CASSETTE is an example of a

control message.

Bits 6 and 7 of this value determine where the message will come

from, ft bit 7 is 1, one of the error messages from the KERNAL wilf

be printed. If bit 6 is set, a control message wifl be printed.

203

How to use;

1) Set accumulator to desired value.

2) Call this routine.

EXAMPLE:

LDA #S40

JSR SETMSG TURN ON CONTROL MESSAGES

LDA #SB0 ;

JSR SETMSG TURN ON ERROR MES

SAGES

LDA #0

JSR SETMSG ;TURN OFF ALL KERNAL MESSAGES

B-27. Function name; SETNAM

Purpose: Set up file name

Call address: SFFBD i

Communication registers: .A, .X, .Y

Preparatory routines: None

Stack requirements: None

Registers affected: None

Description; This routine is used to set up the file name for the

OPEN, SAVE, or LOAD routines. The accumulator must be loaded

with the length of the file name. The .X and .Y registers must be

loaded with the address of the file name, in standard 6502 low byte,

high byte format. The address can be any valid memory address in

the system where a string of characters for the f fie name is stored. If

no file name is desired, the accumulator must be set to 0,

representing a zero file length. The .X and . Y registers may be set to

any memory address in that case.

How to use:

1) Load the accumulator with the length of the file name.

2) Load the .X index register with the low order address of the

file name.

3) Load the .Y index register with the high order address.

4) CaH this routine.

EXAMPLE: i

LDA #NAME2-NAME ;LOAD LENGTH OF FILE NAME

LDX #<NAME

LDY #>NAME

JSR SETNAM

B-28. Function name: SETTIM

Purpose: Set the system clock

Call address: SFFDB

204

Communication registers: .A, .X, .Y

Preparatory routines: None

Error returns: None

Stack requirements; 2

Registers affected: None

Description: A system clock is maintained by an interrupt

routine that updates the clock every 1/60th of a second (one 'jiffy').

The clock is three bytes long, which gives it the capability to count

up to 5,184,000 jiffies (24 hours). At that point the clock resets to

zero. Before calling this routine to set the clock, the accumulator

must contain the most significant byte, the .X index registerthe next

most significant byte, and the .Y index register the least significant

byte of the initial time setting (in jiffies).

How to use:

1) Load the accumulator with the MSB of the 3 byte number to

set the clock.

2) Load the .X register with the next byte.

3) Load the .Y register with the LSB.

4) Call this routine.

EXAMPLE:

;SET THE CLOCK TO 10 MINUTES - 3600 JIFFIES

LDA #0 ; MOST SIGNIFICANT

LDX #>3600

LDY #<3600 ; LEAST SIGNIFICANT

JSR SETTIM

B-29. Function name: SETTMO

Purpose: Set serial bus timeout flag

Call address: SFFA2

Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: None

Description: This routine sets the timeout flag for the serial bus.

When the timeout flag is set, the VIC will wait for a device on the

serial port for 64 milliseconds. If the device does not respond to the

VIC's DAV signal within that time the VIC will recognize an error

condition and leave the handshake sequence. When this routine is

called when the accumulator contains a 0 in bit 7, timeouts are

enabled, A 1 in bit 7 will disable the timeouts. NOTE: The VIC uses

the timeout feature to communicate that adisk file is not found on an
attempt to OPEN a file,

205

How to use:

TO SET THE TIMEOUT FLAG

1) Set bit 7 of the accumulator to 0,

2) Call this routine.

TO RESET THE TIMEOUT FLAG

1) Set bit 7 of the accumulator to 1.

2) Call this routine,

EXAMPLE:

;DISABLE TIMEOUT

LDA#0

JSR SYSTMO

B-30. Function name: STOP

Purpose: Check if stop key is pressed

Call address: SFFE1 i

Communication registers; .A

Preparatory routines: None

Error returns: None

Stack requirements: None

Registers affected: A X

Description: Jf the STOP key on the keyboard is pressed when

this routine is called, the Z flag will be set. Ail other flags remain

unchanged. If the STOP key is not pressed then the accumulator

will contain a byte representing the last row of the keyboard scan.

The user can also check for certain other keys this way.

How to use this routine:

1) Call this routine,

2) Test for the zero flag.

EXAMPLE:

JSR STOP

BNE * + 5 ;KEY NOT DOWN

JMP READY ;=. . ,STOP

B-31. Function name: TALK

Purpose: Command a device on the serial bus to TALK

Call address: SFFB4

Communication registers: ,A

Preparatory routines: None

Error returns: See READST

Stack requirements: None

Registers affected: .A [

206

Description: To use this routine the accumulator must first be

loaded with a device number between 4 and 30. When called, 1his

routine then ORs bit by bits to convert this device number to a talk

address. Then this data is transmitted as a command on the Serial

bus.

How to use:

0)

1) Load the accumulator with the device number.

2) Call this routine.

EXAMPLE:

;C0MMAND DEVICE #4 TO TALK

LDA #4

JSR TALK

B-32. Function name: TKSA

Purpose: Send a secondary address to a device commanded to

TALK

Call address: SFF96

Communication registers: .A

Preparatory routines: TALK

Error returns: See READST

Slack requirements: None

Registers affected: .A

Description: This routine transmits a secondary address on the

serial bus for a TALK device. This routine must be called with a

number between 4 and 31 in the accumulator. The routine wilf send

this number as a secondary address command over the serial bus-

This routine can only be called after a call to the TALK routine, it will

not work after a LISTEN.

How to use:

0} Use the TALK routine.

1) Load the accumulator with the secondary address.

2) Call this routine.

EXAMPLE:

;TELL DEVICE #4 TO TALK WITH COMMAND #7

LDA #4

JSR TALK

LDA #7

JSR TALKSA

207

B-33. Function name: UDTIM

Call address; SFFEA

Purpose: Update the system clock

Communication registers: None

Preparatory routines: None

Error returns: None

Stack requirements; 2

Registers affected: .A, .X

Description: This routine updates the system clock. Normally

this routine is called by the normal KERNAL interrupt routine every

1 /60th of a second. If the user program processes its own interrupts

this routine must be called to update the time. Also, the STOP key

routine must be called, if the stop key is to remain functional.

How to use:

1) Call this routine.

EXAMPLE:

JSR UDTIM

B-34. Function name: UNLSN

Purpose: Send an UNLISTEN command

Call address: SFFAE

Communication registers: None

Preparatory routines: None

Error returns: See READST

Stack requirements: None

Registers affected: .A

Description: This routine commands all devices on the serial

bus to stop receiving data from the VIC. (i.e., UNLISTEN}. Calling

this routine results in an UNLISTEN command being transmitted on

the serial bus. Only devices previously commanded to [isten wilt be

affected. This routine is normally used after the VIC is finished

sending data to external devices. Sending the UNLISTEN will

command the listening devices to get off the serial bus so it can be

used for other purposes.

How to use:

1) Call this routine.

EXAMPLE:

JSR UNLSN

i

208

B-35. Function name: UNTLK

Purpose: Send an UNTALK command

Call address; SFFAB

Communication registers: None

Preparatory routines; None

Error returns: See RHADST

Stack requirements: None

Registers affected: .A

Description: This routine will transmit an UNTALK command on

the serial bus. All devices previously set to TALK will stop sending

data when this command is received.

How to use:

1) Call this routine.

EXAMPLE:

JSR UNTALK

B-36. Function name: VECTOR

Purpose: Manage RAM vectors

Call address: SFF8D

Communication registers: ,X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A, .X, .Y

Description: This routine manages all system vector jump

addresses stored in RAM, Calling this routine with the accumulator

carry ait set wili store the current contents of the RAM vectors in a

list pointed to by the .X and . Y registers. When this routine is called

with the carry clear, the user list pointed to by the X and.Y registers

is transferred to the system RAM vectors. NOTE: This routine

requires caution in its use. The best way to use it is to first read the

entire vector contents into the user area, alter the desired vectors,

and then copy the contents back to the system vectors.

How to use:

READ THE SYSTEM RAM VECTORS

1) Set the carry.

2) Set the .X and ,Y registers to the address to put the vectors.

3) Call this routine.

209

LOAD THE SYSTEM RAM VECTORS

1) Clear the carry bit.

2) Set the .X and .Y registers to the address of the vector list in

RAM thai must be loaded

3) Call this routine.

EXAMPLE:

CHANGE THE INPUT ROUTINES TO NEW SYSTEM

LDX #<USER

LDY #>USER

SEC

JSR VHCTOR ;read old vectors

LDA #<MYINP ;change input

STA USER-5-10

LDA #>MYINP

STA USER +11

LDX #<USER

LDY #>USER

CLC

JSR VECTOR ;alter system

USER * = * + 26

ERROR CODES

The following is a list of error messages which can occur when

using the KERNAL routines. If an error occurs during a KERNAL

routine, the carry bit ot the accumulator is set and the number of the

error message is returned in the accumulator.

NUMBER

0

1

2

3

4

5

6

7

8

9

MEANING

Routine terminated by the STOP key

Too many open files

File already open

File not open

File not found

Device not present

File is not an input file

File is not an output file

File name is missing

Illegal device number

I

210

KERNAL POWER UP ACTIVITIES

1) KERNAL checks for the presence of ROM at 5A000

The KERNAL looks in memory at $A000 for the AUTO START

ROM SEQUENCE, if this sequence is present, control is

transferred to the ROM program.

If this AUTO START ROM code is not present normal system

initialization continues.

2) RAM test

The RAM TEST routine first clears memory from S0000-S00FF

and from S0200-S03FF. The cassette buffer pointer is initialized to

S033C.

The RAM test starts at location $0400 and works upward,

checking for the first byte of RAM memory (start-of-RAM). If this

location is greater than $1000, then memory is considered bad and

an error screen is shown.

Once the test has found the start of RAM it continues, checking

upward for the first non-RAM location (top-of-RAM). If this focation

is <$2000P then memory is considered bad and an error screen is

shown.

If the top-of-RAM location is greater or equal to $2100, then the

screen is set to start at $1000, the bottom-of-memory is set to

$1200, and the top-of-memory is set to the top-of-RAM location.

If the top-of-RAM location is less than S2100, then the screen is

set to start at $1E00, the bottom-of-memory is set to start-of-RAM,

and the top-of-memory is set to S1E00.

3) Other Activities

I/O vectors are set to default values.

The indirect jump table in low memory is established.

The GETCHAR routine is created on page zero.

The screen is then cleared, and the 'BYTES FREE1 power up

message is displayed. Control of the system is turned over to

BASIC and the user.

211

VIC CHIPS

6560 VIDEO INTERFACE CHIP I

The 6560 Video Interface Chip (VIC) is designed for color video

graphics applications such as low cost CRT terminals, biomedical

monitors, control system displays and arcade or home video

games. It provides all of the circuitry necessary for generating color

programmable character graphics with high screen resolution. VIC

also incorporates sound effects and A'D converters for use in a

video game environment.

FEATURES '
• Fully expandable system with a 16K byte address space

• System uses industry standard 8 bit wide ROMS and 4 bit wide

RAMS

• Mask programmable sync generation, NTSC-6560, PAL-6561

• On-chip color generation (16 colors)

• Up to 600 independently programmable and movable back

ground locations on a standard TV

• Screen centering capability

• Screen grid size up to 192 Horizontal by 200 Vertical dots

• Two selectable graphic character sizes

• On-chip sound system including:

a) Three independent, programmable tone generators

b) White noise generator

c) Amplitude modulator .

Two on-chip 8 bit A/D converters

ON-chip DMA and address generation

No CPU wait states or screen hash during screen refresh

interlaced. Non-interlaced switch

16 addressable control registers

Light gurvpen for target games

2 modes of color operation

212

PIN CONFIGURATION

N.C.

COMPCOLOR

SYNC & LUMIN

R/W

DB
11

DBB
0B7

DB6

D64

DB3

DE^

DB1

POT X

pqt y

COMPSND

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1B

19

20

6560

40

39

38

37

3S

35

34

33

32

31

30

29

2B

27

26

25

24

23

22

21

IN

OPTION

3 P*.

A: Interlace mode: A normal video frame is sent to the TV 60

times each second. Interlace mode cuts the number ol repetilions

in half. When used with multiplexing equipment, this allows the VIC

picture to be blended with a picture from another source.

To turn off: POKE 36864, PEEK(36864) AND 127

To turn on: POKE 36G64. PEEK(36864) OR 128

B: Screen origin—horizontal: This determines the positioning

of the image on the TV screen. The normal value is 5, Lowering the

value moves the screen to the left, and increasing it moves the

image to the right.

To change value: POKE 36864, PEEK(36864) AND 12B OR X

213

VIC CHIP

LOC

Hex

9000

9001

9002

9003

9004

9005

9006

9007

9008

9009

900A

900B

900C

900D

900E

900F

START VALUE-5K

Binary

00000101

00011001

10010110

vOtO1110

wvwwv

11110000

00000000

00000000

11111111

11111111

00000000

00000000

00000000

00000000

00000000

00011011

A: Interface mode: 0 =

1 = on

VIC

Decimal

5

25

150

46 or

V

240

0

0

255

255

0

0

0

0

0

27

off,

B: Screen origin—horizontal

C: Screen origin—vertical

D: Number of video columns

E: Number of video rows

F: Character size: 0 = 8

1=8x16

G: Raster value

x8,

H: Screen memory location

I: Character memory location

J: Light pen—horizontal

K: Light pen—vertical

L: PaddJe 1

M: Paddle 2

176

Bit

Function

ABBBBBBB

CCCCCCCC

HDDDDDDD

GEEEEEEF

GGGGGGGG

HHHHIIII

JJJJJJJJ

KKKKKKKK

LLLLLLLL

MMMMMMMM

NRRRRRRR

OSSSSSSS

Pi i i i i i i

QUUUUUUU

WWWWVVVV

XXXXYZZZ

N: Bass sound switch

O: Alto sound switch

P: Soprano sound switch

Q: Noise switch

R; Bass Frequency

S: Alto Frequency

T; Soprano Frequency

U: Noise Frequency

V: Loudness of sounds

W: Auxiliary color

X; Screen color

Y; Reverse mode: 0 = on, 1 = off

Z; Border coior

I

C: Screen origin—vertical: This determines the up-down

placement of the screen image. The normal value is 25. Lower

ing this causes the screen to move up by 2 rows of dots for

each number lowered, and raising it moves the screen down.

To change value: POKE 36865, X

D: Number of video columns: Normally, this is set to 22.

214

Changing this wilf change the display accordingly. Numbers over

27 will give a 27 column screen. The cursor controls are based on a

fixed number of 22 columns, and changing this number makes the

cursor controls misbehave.

To change: POKE 36866, PEEK(36866) AND 128 OR X.

E: Number of video rows: The number of rows may range from

0 to 23, A larger number of rows causes garbage to appear on the

bottom of the screen.

To change: POKE 36667, PEEK(36867) AND 129 OR (X*2)

F: Character size: This bit determined the size of the matrix

used for each character. A 0 here sets normal mode, in which

characters are 8 by 8 dots. A 1 sets 8 by 16 mode, where each

character is now twice as tall. 8 by 16 mode is normally used for

high resolution graphics, where it is likely to have many unique

characters on the screen.

To set 8 by 8 mode: POKE 36867, PEEK(36867) AND 254

To set 8 by 16 mode: POKE 36867, PEEK(36867) OR 1

G: Raster value: This number is used to synchronize the light

pen with the TV picture.

H: Screen memory location: This determines where in memory

the VIC keeps the image of the screen. The highest bit in location

36869 must be a 1. Bits 4-6 of location 36869 are bits 10-12 of the

screens address, and bit 7 of location 36866 is bit 9 of the address

of the screen. To determine the location of the screen, use the

formula:

S = 4* (PEEK (36866) AND 12a) + 64" (PEEK (36869) AND

112}

Note that bit 7 of location 36866 also determines the location of

color memory. If this bit is a G, color memory starts at location

378B8. If this bit is a 1T color memory begins at 38400. Here is a

formula for this:

C - 37888 + 4* (PEEK {36866} AND 126)

I: Character memory location: This determines where

information on the shapes of characters are stored. Normally this

pointer is to the character generator ROM, which contains both the

upper case graphics or the upper lower case set. However, a

simple POKE command can change this pointer to a RAM location,

allowing custom character sets and high resolution graphics.

To change: POKE 36869. PEEK(36869) AND 15 OR(X*16)

(See chart on next page,)

J: Light pen horizontal: This contains the latched number of the

dot under the light pent from the left of the screen.

K: Light pen vertical; The latched number of the dot under the

pen, counted from the top of the screen.

215

X

Value

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Location

HEX

8000

8400

8800

ecoo

9000

9400

9800

9400

0000

1000

1400

1800

1C00

Decimal

32768

33792

34816

35840

36864

37388

38912

39936

0

4096

5120

6144

7168

Contents

Upper case normal characters

Upper case reversed characters

Lower case normal characters

Lower case reversed characters

unavailable

unavailable

VIC chip-unavailable

ROM-unavailable

unavailable

unavailable

unavailable

unavailable

RAM

RAM

RAM

RAM

I

L: Paddle X: This contains the digitized vaiue of a variable

resistance (game paddle). The number reads from 0 to 255.

M: Paddle Y: Same as Paddle X. for a second analog input.

N: Bass switch: If this bi1 is a 0, no sound is played from Voice 1.

A 1 in this bit results in a tone determined by Frequency 1.

To turn on: POKE 36874, PEEK(36874) OR 128

To turn off: POKE 36874, P£EK(36874) AND 127

O: Alto switch: See Bass switch.

To turn on; POKE 36875, PEEK(36875) OR 128

To turn off: POKE 36875, PEEK(36875) AND 127

P: Soprano switch: See Bass switch.

To turn on: POKE 36876, PEEK(36876) OR 128

To turn off: POKE 36876, PEEK(36876) AND 127

Q: Noise switch: See Bass switch,

To turn on: POKE 36877, PEEK(36677) OR 12S

To turn off: POKE 36877. PEEK(36877) AND 127

R: Bass Frequency: This is a value corresponding to the

frequency of the tone being played. The larger the number, the

higher the pitch of the tone.

The actual frequency of the sound in cycles per second (hertz) is

determined by the following formula:

I

I

I

I

Frequency =
Clock

(127-X)

216

I

I

X is the number from 0 to 127 that is put into the frequency

register. If X is 127, then use -1 for X in the formula. The value of

Clock comes from the following table:

Register

36874

36875

36876

36877

NTSC (US TV's)

3995

7990

15980

31960

PAL (European)

4329

8659

17320

34640

To set: POKE 36874, PEEK(36874) AND 128 OR X

S: Alto Frequency: This is a value corresponding to the

frequency of the tone being played. The larger the number, the

higher the pitch of the tone.

T: Soprano Frequency: This is a value corresponding to the

frequency of the tone being played. The larger the number, the

higher the pitch of the tone.

To set: POKE 36876, PEEK(36876) AND 128 OR X

U: Noise Frequency: This is a value corresponding to the

frequency of the noise being played. The larger the number, the

higher the pitch of the noise.

To set: POKE 36877, PEEK(36877) AND 128 OR X

V: Loudness of sounds: This is the volume control for all the

sounds playing. 0 is off, and 15 is the loudest sound.

To set: POKE 36878, PEEK(36878) AND 240 OR X

W: Auxiliary color: This register holds the color number of the

auxiliary color. The value can be from 0 to 15.

To set: POKE 36878, PEEK(36878) AND 15 OR {16'X}

X: Screen color: A number from 0 to 15 sets the color of the
screen.

To set: POKE 36879, PEEK(36879) AND 240 OR X

Y: Reverse mode: A 1 in this bit indicates normal characters,

and a 0 here causes all characters to be displayed as if reversed.

To turn on reverse mode: POKE 36879, PEEK(36879) AND 247

To turn off reverse mode: POKE 36879, PEEK(36879) OR 8

2: Border color: A number from 0 to 7 sets the color of the

screen.

To set: POKE 36879, PEEK(36879) AND 248 OR X

217

6522 VERSATILE INTERFACE ADAPTER

The 6522 Versatile Interface Adapter (VIA) provides the VIC with

two peripheral ports with input latching, two powerful interval

timers, and a serial-to-parallel parallel-to-serial shift register.

Basically, the VIC chip handles Audio'Video inputoutput, and

the 6522 handles the rest. . .cassette operations, joysticks,

RS-232, and user port.

i

i

6522 Versatile Interface Adapter Description

ADDRESS

9110

9111

9112

9113

9114

9115

9116

9117

9118

9119

911A

911B

911C

911D

911E

911F

DESCRIPTION

Port B

Port A {with handshaking)

Data Direction B

Data Direction A

Timer #1, low byte

Timer #1, high byte

Tinner #1, low byte to load

Timer #1, high byte to bad

Timer #2, low byte

Timer #2, high byte

Shift Register

Auxiliary Control

Peripheral Control

Interrupt Flags

Interrupt Enable

Port A (no handshaking)

REGISTER

AAAAAAAA

BBBBBBBB

CCCCCCCC

DDDDDDDD

EEEEEEEE

FFFFFFFF

GGGGGGGG

HHHHHHHH

IIIJIIII

JJJJJJJJ

KKKKKKKK

LLMNNNOP

QQQRSSST

UVWXYZab

cdefghij

kkkkkkkk

PORT A I/O REGISTER

These eight bits are connected to the eight pins which make up

port B. Each pin can be set for either input or output.

Input latching is available on this port. When latch mode js

enabled the data in the register freezes when the CB1 interrupt flag

is set. The register stays latched until the interrupt ftag is cleared.

Handshaking is available lor output from this port. CB2 will act as

a DATA READY SIGNAL. This must be controlled by the user

program, CB1 acts as the DATA ACCEPTED signal, and must be

controlled by the device connected to the port. When DATA

ACCEPTED is sent to the 6522, the DATA READY line is cleared,

and the interrupt flag is set.

i

218

PORT B I/O REGISTER

These eight bits are connected to the eight pins which make up

port A. Each pin can be set for either input or output. Handshaking is

available for both read and write operations. Write handshaking is

similar to that on PORT B. Read handshaking is automatic. The

CA1 input pin acts as a DATA READY signal. The CA2 pin (used for

output) is used for a DATA ACCEPTED signal. When a DATA

READY signal is received a flag is set. The chip can be set to

generate an interrupt or the flag can be polled under program

control. The DATA ACCEPTED signal can either be a pulse or a DC

level. It is set low by the CPU and cleared by the DATA READY

signal.

DATA DIRECTION FOR PORT B

This register is used to control whether a particular bit in PORT B

is used for input or output. Each bit of the data direction register

(DDR) is associated with a bit of port B. If a bit in the DDR is set to 1,

the corresponding bit of the port will be an OUTPUT. If a bit in the

DDR is 0, the corresponding bit of the port will be an INPUT.

For example, if the DDR is set to 7, port B will be set up as follows:

BITS NUMBER

0

1

2

3

4

5

6

7

DDR

1

1

1

0

0

0

0

0

PORT B FUNCTION

OUTPUT

OUTPUT

OUTPUT

INPUT

INPUT

INPUT

INPUT

INPUT

DATA DIRECTION REGISTER FOR PORT A

This is similar to the DDR for port B, except that it works on PORT

A.

E,F,G,H: TIMER CONTROLS

There are two timers on the 6522 chip. The timers can be set to

count down automatically or count pulses received by the VIA. The

mode of operation is selected by the Auxiliary Control register.

TIMER T1 on the 6522 consists of two 8-bit latches and a 16-bit

counter. The various modes of the TIMER are selected by setting

the AUXILIARY CONTROL REGISTER (ACR). The latches are

219

used to store a 16-bit data word to load into the counter. Loading a

number into the latches does not affect the count in progress.

After it is set, the counter will begin decrementing at 1 MHz. When

the counter reaches zero, an interrupt flag will be setT and the IRQ

will go low. Depending on how the TIMER is set, either further

interrupts will be disabled, or it will automatically load the two

latches into (he counter and continue counting. The TIMER can

also be set to invert the output signal on a peripheral pin each time it

reaches zero and resets.

The TIMER locations work differently on reading and writing.

WRITING TO THE TIMER:

E: Write into the low order latch. This latch can be loaded into the

low byte of the 16-bit counter.

F: Write into the high order latch, write into the high order counter,

transfer low order latch into the low order counter, and reset the

Tl MER T1 interrupt flag. In other words, when this location is set the

counter is loaded.

G: Same as E.

H: Write into the high order latch and reset the TIMER T1

interrupt flag.

READ TIMER T1 I

E: Read theTIMERTI low order counter and reset the TIMER

T1 interrupt ffag.

F: Read the TIMER T1 high order counter,

G: Read the TIMER T1 low order latch.

H: Read the TIMER T1 high order latch.

TIMER T2

This TIMER operates as an interval timer (in one-shot mode), or

as a counter for counting negative pulses on PORT B pin 6. A bit in

the ACR selects which mode TIMER T2 is in.

WRITING TO TIMER T2

I: Write TIMER T2 low order byte o1 latch.

J; Write TIMER T2 high order counter byte, transfer low order

latch to low order counter, clear TIMER T2 interrupt flag.

READING TIMER T2

I: Read TIMER T2 low order counter byte, and clear TIMER T2 .

interrupt 1lag.

220

7

0

0

1

1

6

0

1

0

1

J: Read TIMER T2 high order counter byte,

K: SHIFT REGISTER

A shift register is a register which wiil rotate itself through the CB2

pin. The shift register can be loaded with any 3-bit pattern which can

be shifted out through the CB1 pin, or input to the CB1 pin can be

shifted into the shift register and then read. This makes it highly

useful for serial to parallel and parallel lo serial conversions.

The shift register is controlled by bits 2-4 of the Auxiliary Control

register,

L,M,N,O,P: AUXILIARY CONTROL REGISTER

L; TIMER 1 CONTROL

BIT

One-shot mode (output to PB7 disabled)

Free running mode (output to PB7 disabled)

One-shot mode (output to PB7 enabled)

Free running mode (output to PB7 enabled)

M: TIMER 2 CONTROL

TIMER 2 has 2 modes. Jf this bit is 0, TIMER 2 acts as an interval

timer in one-shot mode. If this bit is 1, TIMER 2 will count a

predetermined number of pulses on pin PB6.

N: SHIFT REGISTER CONTROL

BIT #

SHIFT REGISTER DISABLED

SHIFT IN (FROM CB1) UNDER CON

TROL OF TIMER 2

0 1 0 SHIFT IN UNDER CONTROL OF SYS

TEM CLOCK PULSES

0 1 1 SHIFT IN UNDER CONTROL OF EX

TERNAL CLOCK PULSES

1 0 0 FREE RUN MODE AT RATE SET BT

TfMER 2

1 0 1 SHIFT OUT UNDER CONTROL OF

TIMER 2

1 1 0 SHIFT OUT UNDER CONTROL OF

SYSTEM CLOCK PULSES

1 1 1 SHIFT OUT UNDER CONTROL OF

EXTERNAL CLOCK PULSES

221

4

0

0

3

0

0

2

0

1

O: PORT B LATCH ENABLE

As long as this bit is 0, the PORT B register will directly reflect the

data on the pins.

!f this bit is set to one, the data present on the input pins of PORT

A will be latched within the chip when the CB1 INTERRUPT FLAG

is set. As long as the CB1 INTERRU PT FLAG is set, the data on the

pins can change without affecting the contents of the PORT B

register. Note that the CPU always reads the register (the latches)

rather than the pins.

Input latching can be used with any of the input or output modes

available lor CB2.

P; PORT A LATCH ENABLE

As long as this bit is 0, the PORT A register will directfy reflect the

data on the pins.

If this bit is set to one, the data present on the input pins of PORT

A will be latched within the chip when the CA1 INTERRUPT FLAG

is set, As long as the CA1 INTERRUPT FLAG is set, the data on the

pins can change without affecting the contents of the PORT A

register. Note that the CPU always reads the register (the latches}

rather than the pins.

Input latching can be used with any of the input or output modes

available 1or CA2.

Q,R,S,T THE PERIPHERAL CONTROL REGISTER .

Q: CB2 CONTROL

i 5 DESCRIPTION

Interrupt Input Mode

Independent Interrupt Input Mode

Input Mode

Independent Input Mode

Handshake Output Mode

Pulse Output Mode

Manual Output Mode (CB2 is held

LOW)

1 1 1 Manual Output Mode (CB2 is held

HIGH)

INTERRUPT INPUT MODE:

The CB2 interrupt flag (IFR bit 3) will be set on a negative

(high-to-low) transition on the CB2 input line. The CB2 interrupt bit

will be cleared on a read or write 10 PORT B.

222 I

Q

7

0

0

0

D

l

1

1

Q

6

0

0

1

1

0

0

1

Q

5

0

1

0

1

0

1

0

INDEPENDENT INTERRUPT INPUT MODE:

As above, the CB2 interrupt flag will be set on a negative

transition on the CB2 input fine. However, reading or writing to

PORT B does not clear the flag.

INPUT MODE:

The CB2 interrupt Mag {IFR bit 3) wifl be set on a positive

(low-to-high) transition of the CB2 line. The CB2 flag will be cleared

on a read or write of PORT B.

INDEPENDENT INPUT MODE:

As above, the CB2 interrupt flag will be seton a positive transition

on the CB2 line. However, reading or writing PORT B does not

affect the flag.

HANDSHAKE OUTPUT MODE:

The CB2 line will be sel low on a write to PORT S. It will be reset

high again when there is an active transition on the CB1 line.

PULSE OUTPUT MODE:

The CB2 line is set low for one cycle after a write to PORT B.

MANUAL OUTPUT MODE:

The CB2 line is held low.

MANUAL OUTPUT MODE:

The CB2 line is held high.

R: CB1 CONTROL

This bit selects the active transition of the input signal applied to

the CB1 pin. If this bit is 0, the CB1 interrupt flag will be set on a

negative transition (high-to-low). If this bit is a 1, the CB1 interrupt

flag wil[be set on a positive (low-to-high) transition,

S: CA2 CONTROL

s

BIT # 3

0

0

0

0

s

2

0

0

1

1

s

1

0

1

0

1

DESCRIPTION

Interrupt Input Mode

Independent Interrupt Input Mode

Input Mode

Independent Input Mode

223

1

1

1

1

0

0

1

1

0

1

0

1

Handshake Output Mode

Pulse Output Mode

Manual Output Mode

LOW)

Manual Output Mode

HIGH)

(CA2 is

(CA2 is

held

helo

I

I

i
INTERRUPT INPUT MODE:

The CA2 Interrupt flag (IFR bit 0) will be set on a negative

(high-to-low) transition on the CA£ input line. The CA2 interrupt bit

will be cleared on a read or write to PORT A.

INDEPENDENT INTERRUPT INPUT MODE:

As above, the CA2 interrupt flag will be set on a negative

transition on the CA2 input line. However, reading or writing to

PORT A does not clear the flag.

INPUT MODE:

The CA2 interrupt flag {IFR bit 0) will be set on a positive

(low-to-high) transition of the CA2 line. The CA2 flag will be cleared

on a read or write of PORT A.

INDEPENDENT INPUT MODE: .

As above, the CA2 interrupt flag wilE be set on a positive transition

on the CA2 line. However, reading or writing PORT A does not

affect the flag, i

HANDSHAKE OUTPUT MODE; '
The CA2 line will be set low on a read or write to PORT A. It will be

reset high again when there is an active transition on the CA1 line.

PULSE OUTPUT MODE:

The CA2 line is set low for one cycle after a read or write to PORT

A.

MANUAL OUTPUT MODE:

The CA2 line ts held low.

MANUAL OUTPUT MODE:

The CA2 line Is held high.

224

T: CA1 CONTROL

This bit of the PCR selects the active transition of the input signal

applied to the CA1 input pin. If this bit is 0r the CA1 interrupting (Bit)

wtlf be set by a negative transition (high-to-low) on the CA1 pin. If

this bit is 1, the CA1 interrupt flag will be set by a positive transition

(low-to-high).

There are two registers associated with interrupts: The

INTERRUPT FLAG REGISTER {IFR) and the INTERRUPT

ENABLE REGISTER (IER). The IFR has eight bits, each one

connected to a register in the 6522. Each bit in the IFR has an

associated bit in the iER. The Hag is set when a register wants to

interrupt. However, no interrupt will take place unless the

corresponding bit in the IER is set.

UVWXYZab: INTERRUPT FLAG REGISTER

When the flag is set, the pin associated with that flag is

attempting to interrupt the 6502. Bit U is not a normal flag, tt goes

high if both the flag and the corresponding bit in the INTERRUPT

ENABLE REGISTER are set. It can be cleared only by clearing all

the ffags In the IFR or disabling all active interrupts in the IER.

u

V

w

X

Y

z

a

b

SET BY

IRO STATUS

TIMER 1 time-out

TIMER 2 time-out

CB1 pin active transition

CB2 pin active transition

Completion of 8 shifts

CA1 pin active transition

CA2 pin active transition

CLEARED BY

Reading TIMER 1 low order

counter and writing TIMER

1 high order latch

Reading TIMER 2 low order

counter and writing TIMER

2 high order counter

Reading or writing PORT B

Reading or writing PORT B

Reading or writing the shift

register

Reading or writing PORT A

(BBBBBBBB in above

chart)

Reading or writing PORT A

(BBBBBBBB in above

chart)

cdefghij: INTERRUPT ENABLE REGISTER

c: ENABLE CONTROL

If this bit is a 0 during a write to this register, each 1 in bits 0-6

225

clears the corresponding bit In the IER. If this bit is a 1 during this

register, each 1 in bits 0-6 will set the corresponding IER bit.

d TIMER 1 time-out enable

e TIMER 2 time-out enable

f CB1 interrupt enable

g CB2 interrupt enable

h Shift interrupt enable

i CA1 interrupt enable

j CA2 interrupt enable

kkkkkkkk: PORT A

This is similar to BBBBBBBB, except that the handshaking lines

(CA1 and CA2) are unaffected by operations on this port.

I

I
226

I

I

I

I

[

i

!

I

i

I

I

I

I

i

I

THE USER PORT

The user port is meant to connect the VIC to the outside world. By

using the lines available at this port, you can connect the VIC to a

printer, a Votrax Type and Talk, a MODEM, a second joystick, even

another computer.

The port on the VIC is directly connected to one of the 6522 VIA

chips. By programming, the VIA will connect to many other devices.

Port Pin Description

PtN #

UPPER SIDE

1 GROUND

2 +5V

3 RESET

JOYO

DESCRIPTION

5

6

7

e

9

10

11 &

12

JOY 1

JOY 2

LIGHT

PEN

CASSETTE

SWITCH

SERIAL

ATN IN

9VAC

9VAC

GND

BOTTOM SIDE

A

B

C

D

E

F

H

J

K

GND

CB1

PBO

PB1

PB2

PB3

PB4

PB5

PB6

(100mA MAX.)

By grounding this pin, the VIC will do a

COLD START, resetting completely

and erasing any program in memory.

This pin is connected to joystick

switch 0 (See GAME PORT).

(See GAME PORT,)

(See GAME PORT.)

This pin also acts as the input for the

joystick FIRE button (See GAME PORT).

This pin is connected to the SENSE cassette

switch line.

This pin is connected to the ATN IN line

of the serial bus.

Connected directly to the VIC transformer

The VIC gives you complete control over

Port Bon VIA chip #1. Eight lines for input or

output are available, as weEi as 2 lines for

handshaking with an outside device. The I'O

fines for PORT B are controlled by two

locations. One is the PORT itself, and is

Eocated at 37136 (S9110 HEX). Naturally you

PEEK it to read an INPUT, or POKE it to set

an OUTPUT. Each of the eight i.-0 lines can

£29

L

M

N

PB7

CB2

GND

be set up as either an INPUT or an OUTPUT

by setting the DATA DIRECTION REGIS

TER property. It is located at 37136 ($9112

hex).

Each of the eight lines in the PORT has a BIT in the 3 bit DATA

DIRECTION REGISTER (DDR) which controls whether that line

will be an input or an output. 11 a bit in the DDR is a ONE, the

corresponding line of the PORT wilE be an OUTPUT. If a bit in the

DDR is a ZERO, the corresponding line of the PORT will be an

INPUT. For example, if bit 3 of the DDR is set to 1, then line 3 of the

PORT will be an output. As another example, if the DDR is set like

this:

BIT#: 7 6 5 4 3 2 10

VALUE: 0 0 1110 0 0

You can see that lines 5,4, and 3 will be outputs since those bits are

ones. The rest of the lines will be inputs, since those Sines are zeros,

To PEEK or POKE the USER port, it is necessary to use both the

DDR and the PORT itself.

Remember that the PEEK and POKE statements want a number

from 0-255. The numbers given in the example must be translated

into decimal before they could be used. (The value would be: 25 + 2*

+ 23 = 32 + 16+8 =56* See Section 1 on numbers for more

details.)

The other two lines, CB1 and CB2 are different from the rest of

the USER PORT. These two lines are mainly for HANDSHAKING,

and are programmed differently from port B.

Handshaking is needed when two devices communicate. Since

one device may run at a different speed than another device, it is

necessary to give the devices some way of knowing what the other

is doing. Even when the devices are operating at the same speed,

handshaking is necessary to let the other know when data is to be

sent, and if it has been received. Both the CB1 and CB2 lines have

special characteristics which make them well suited for handshak

ing.

CB1 is usually used as an input (except under SHIFT REG ISTER

control). CB2 can be used both for input and output, but is usually

used for output.

It is not possible to read CB1 directly. CB1 is designed to set a

flag (bit 4) in the INTERRUPT FLAG register (located at 37149 or

$911D HEX) when a transition occurs on the CB1 line. Bit 4 of the

PERIPHERAL CONTROL REGISTER (PCR) located at 37148

(S911C hex) determines whether CB1 will set the ilag on a

230

low-to-high transition or on a high-to-low transition. Once the CB1

flag is set, it will stay set until you clear it by a Peek or POKE to

PORT B which resets the CB1 flag bit. If bit 4 in the INTERRUPT

ENABLE register is set, and interrupts are enabled, the transition

will aiso cause an INTERRUPT REQUEST (IRQ).

CB2 is controlled by the PCR. Bits 7,6 control whether CB2 will

be an input or an output Bit 5 controls the setting of CB2.

BIT# 7

0

0

0

0

1

1

1

1

6

0

0

1

1

0

0

1

1

5

0

1

0

1

0

1

0

1

DESCRIPTION

Interrupt Input Mode

Independent Interrupi Input Mode

Input Mode

Independent Input Mode

Handshake Output Mode

Pulse Output Mode

Manual Output Mode (CB2 is held LOW)

Manual Output Mode CB2 is held HN3H)

INTERRUPT INPUT MODE:

The CB2 interrupt flag (IFR bit 3) will be set on a negative

(high-to-low) transition on the CB2 input line. The CB2 interrupt bit

will be cleared on a read or write to PORT B.

INDEPENDENT INTERRUPT INPUT MODE:

As above, the CB2 interrupt flag will be set on a negative

transition on the CB2 input line. However, reading or writing to

PORT B does not clear the flag.

INPUT MODE:

The CB2 interrupt flag (IFR bit 3) will be set on a positive

(low-to-high) transition of the CS2 Sine. The CB2 flag will be cleared

on a read or write of PORT B.

INDEPENDENT INPUT MODE:

As above, the CB2 interrupt flag will be set on a positive transition

on the CB2 line. However, reading or writing PORT B does not

affect the flag.

HANDSHAKE OUTPUT MODE:

The CB2 line will be set low on a write to PORT B. It will be reset

high again when there is an active transition on the CB1 line.

231

I
PULSE OUTPUT MODE:

The CB2 line is set low lor one cycle after a write to PORT B.

MANUAL OUTPUT MODE:

The CB2 line is held low.

MANUAL OUTPUT MODE:

The CB2 line is held high.

MORE MUSIC FOR THE VIC

Now that you know about the USER PORT, there is little surprise

left. Up to nowt the VIC has had 4 musical voices . . . three music

registers and a white noise register. By connecting a small amplifier

and speaker to the USER PORT, and doing a Sittle programming,

you can get another musical voice.

THEORY

Most music is made up of square waves of different amplitudes

and frequencies, One of the functions of the 6522 chip is to

generate square waves through the CB2 line. If we connect the

CB2 line to a speaker, we will be able to hear the square waves

generated by the VIC.

NOTE: Connecting a speaker directly to CB2 may damage your

VIC. You must connect the speaker through an amplifier to protect

the VIC.

PARTS NEEDED

1. Small battery powered speaker amplifier

2. User Port Connector (12 position, 24 contact edge connector

with .156" spacing

3. Wire

CONNECTING TO YOUR VIC

1. Wire the GROUND ofihe amplifier to the GROUND of the USER

PORT (pin N).

2. Wire the SIGNAL of the amplifier to the CB2 output of the USER

PORT (pin M).

You are now ready to add your other voice through a BASIC

program.

232 I

BASIC PROGRAM STEPS:

1. Set the 6522 shift register to free running mode by:

POKE 37147,16

2. Set the shift rate by:

POKE 37144.C where C is an integer from 0 to 255

C is the note to be played,

3. Load the shift register by:

POKE 37146.D where D =15t 51, or 85 lor a square wave.

This step sets the octave for 1he note.

This step must be done last, since as soon as it is set, the VIC

starts generating the square waves.

The frequency of the square wave can be tound by the foiiowing

formula:

FREQUENCY - 500000 Hz Where D1 =8 when D=15

D1 ^4 wnen D = 51(C + 2) <D1)
D1=2 when D = 85

When you are in this mode, the VIC will not read or write to

cassette. To restore normai operations, you must:

POKE 37147,0

The following program demonstrates music using this method.

By hitting a letter the note will be pfayed.

10 PRINT "MUSICAL USING CB2."

15 PRINT 11HIT + TO GO UP AN OCTAVE"

16 PRINT <LHIT - TO GO DOWN AN OCTAVE"

17 PRINT: PRINT "USE E TO EXIT."

20 POKE37147,16:DIMA(30):FORK=1TO30:READA(K):

NEXT

40 GETAS:IFA$ = +"THEN40

42 IFAS = "E" THEN POKE37147,0:END

45 IFAS-11^" THEN SF= SF-(SF<2):GOTO40

50 IFAS = "-ri THEN SF= SF~(SF<0):GOTO40

60 A = 8-ASC(AS) + 64:IF A>7 OR A<1 THEN 40

70 POKE 37144,A(A-(SF-1)#10-(SF = 2r20)

80 POKE37146,-(SF = 0)M5-(SF=1)*51 -(SF=2}*85

90 GOTO40

100 DATA 59,61,65,69,7377,82,87,90,93

110 DATA 99,104,111,117,120,124,132,140,149,157

120 DATA 167,177,182,188,199,211,224,237,244,251

233

THE SERIAL BUS

The serial bus is a daisy chain arrangement designed to let the

VIC communicate with the VIC-1540 DISK DRIVE and the

V1C-1515 GRAPHICS PRINTER. Up to 5 devices can be

connected to the serial bus at one time.

All devices connected on the serial bus will receive all the data

transmitted over the bus. To allow the VIC to route data to its

intended destination, each device has a bus ADDRESS, By using

this device address, the VIC can control access to the bus.

Addresses on the serial bus range from 4 to 31.

The VIC can COMMAND a particular device to TALK or LISTEN.

When the VIC commands a device to TALK, the device will begin

putting data onto the serial bus. When VIC commands a device to

LISTEN, the device addressed will get ready to receive data (from

the VIC or Irom another device on the bus). Only one device can

TALK on the bus at a time; otherwise the data will collide and the

system will crash in confusion. However, any number of devices

can LISTEN at the same time to one TALKER.

COMMON SERIAL BUS ADDRESSES

Number Device

4 or 5 VIC-1515 GRAPHIC PRINTER

8 VIC DISK DRIVE

Other device addresses are possible. Each device is wired to an

address. Certain devices (like the VIC printer) provide a choice

between two addresses for the convenience of the user.

The SECONDARY ADDRESS is to let the VIC transmit set up

information to a device. For example, to OPEN a connection on the

bus toihe printer, and have it print in UPPER/LOWER case, usethe

following;

OPEN 1,4,7

Where 1 is the logical file number (the number you PRINT#to)

4 is trie ADDRESS of the printer

and 7 is the SECONDARY ADDRESS that tells the printer to

go into UPPER LOWER case mode.

SERIAL BUS PINOUTS

PIN #

1 SERIAL SRQ IN

2 GND

234

3 SERIAL ATN IN/OUT

4 SERIAL CLK IN/OUT

5 SERIAL DATA IN/OUT

6 NO CONNECTION

SERIAL SRQ IN: (SERIAL SERVICE REQUEST IN)

Any device on the serial bus can bring this signal LOW when it

requires attention from the VIC. The VIC will then take care of the

device.

SERIAL ATN IN/OUT: (SERIAL ATTENTION IN/OUT)

The VIC uses this signal to start a command sequence for a

device on the serial bus. When the VIC brings this signal LOW, all

other devices on the bus start listening for the VIC to transmit an

address. The device addressed must respond in a preset period of

time; otherwise the VIC will assume that the device addressed is

not on the bus, and will return an error in the STATUS WORD.

SERIAL CLK IN/OUT: (SERIAL CLOCK IN/OUT)

This signal is used for timing on the serial bus.

SERIAL DATA IN/OUT:

Data on the serial bus is transmitted one bit at a time on this line.

235

USING THE VIC GRAPHIC '
PRINTER

The VIC Graphic Printer connects to the serial port on the back of

the VIC and is used for printing out listings ot programs, statistical

data, graphs, charts and even graphic plotting. The VIC printer can

also be used with the VICWriter wordprocessing cartridge to write

reports, transcribe school notes, write letters and other documents.

Programmers use dot matrix printers to make paper copies of

program listings which are easier to debug and edit on paper. It's

also helpful to print out text and graphics displayed on the screen

through what is called a "screen dump to the printer."

Several short programs which demonstrate the use of the printer

are included below. We've even included a special "typing"

program which lets you use the VIC as a typewriter to enter words

or graphics directly from the keyboard.

LISTING DATA ON YOUR VIC PRINTER .

The proper format for printing out a listing of a program which

resides in memory is to enter the following line and type RUN.

OPEN4,4:CMD4:LIST

Note that if you have left a printer file open you will get a FILE

OPEN error. If this happens, type CLOSE4, and hit RETURN. Then

retype the above.

If you're developing a new program, you probably want to list out

each revision so you can edit it on paper before proceeding to the

next step. A good way to do this is to (1) type in your program, (2}

include an END statement at the end of the program, (3) include the

list-to-printer instruction at a high line number above the END

statement, and (4) RUN the line with the printer instruction

whenever you want to list out the program. This technique lets you

RUN and edit your program normally, but it saves you the trouble of

having to type in the LIST line every time you want a listing on

paper. In the following example, if you type RUN, the program will

print out line 10. If you type RUN 5000, the program will list to the

printer.

10 PRINT'THIS IS MY PROGRAM'

20 END

5000 CLOSE4; OP£N4,4:CMD4:LIST

236

VIC GRAPHIC PRINTER COMMAND CHART

The VIC Graphic Printer includes a strong "language" of special

print commands, as described in the following chart. Insert the

CHRS command to use these commands:

10 PRINT#4,CHR$ (14) "PUT DATA HERE".

PRINT COMMAND

CHRS (10)

CHRS (13)

CHRS (6)

CHRS (14)

CHRS (15)

CHRS (16)

CHRS (27)

CHRS (26)

CHRS (145)

CHRS (17)

CHRS (18)

CHRS (146)

DESCRIPTION

Line feed after printing

Carriage return

Graphic mode command

Double width characters

Standard character mode

(type this to get back to normal)

Print start position addressing

When followed by the CHRS (16) position

code this command is used to specify a

start position by dot address (in contrast to

character address)

Repeat graphic select command

Cursor up (Upper case) mode

Cursor down (UpperVLower case) mode

Reverse field on command

Reverse field off command

PRINTING DOT PROGRAMMABLE GRAPHICS

There are two fairly easy ways to print your own graphic

characters—in other words, "dot programmable graphics.11 One

way is to purchase Commodore's PROGRAMMABLE CHARAC

TER SET & GAMEGRAPHICS EDITOR, which is available on tape

at an economicaf price. The other way is to define your own

characters TO THE PRINTER using a character matrix of 7x7

dots. You have to define each character in terms of its binary code

and the best way to do this is to use DATA statements. Look at the

following matrix and decide which dot pattern you would fike to

design. A sample is shown. Now, to print this out, you have to add

up the binary values lor each cofumn. Count zero for empty blocks,

count the value shown on the left of the pattern if there is a dot theret

then add up all the values for the column. The total of each column

is shown at the bottom in our sample on page 236.

237

PRINTING IN DIRECT MODE

You can use your printer like a typewriter by printing in the DIRECT

MODE. In this mode, the printer prints everything between the

quotation marks including graphics and reversed characters.

Here's a sample of how it's done:

SAMPLE PROGRAM

13 OTTRI36,162.153,193,182,162

20 F0RIMT06

, 39 RERDR

— 40 fi*»R*+CHR$<R>

_j 58 NEXT

J 60 0PEN4,4

-2 70 F0RI-1T04

-Jj 80 PRlNT»4,CHR»fl*J
90 PRINT»4,CHR*<13>" COMMODORE"

-^ 100 NEXT

YOU TYPE:

After typing RUN, you get this result:

0 COMMODORE

C COMMODORE

C COMMODORE

C COMMODORE

SCREEN DISPLAYS: PRINTER

PRINTS:

OPEN4.4

CMD4

PRINT#4, "HELLO,

LOVE

CLOSE4

OPEN4.4

READY.

No Response.

PR!NT#4, "HELLO,

LOVE

CLOSE4

READY.

No response.

READY.

HELLO,LOVE

READY.

PRINTING DOUBLE WIDTH CHARACTERS

Double width characters have many applications, from enlarging

graphics on paper to printing bold face headlines and titles. The

following program demonstrates how to use CHRS (14) to print

double spaced letters. . .and also shows how togetbackto normal

letters by typing CHRS (15).

10 OPEN4,4:PRINT#4,CHRS (14) "DOUBLE LETTERS"

20 PRINT#4, "STILL DOUBLE"

I

I

I

I

238

30 PRINT#4, CHR$ (15) ■'NORMAL AGAIN"

40 PRINT"HELLO AGAfN IN NORMAL MODE"

(If you change PRINT#4 to CMD4 in line 30 it still works.)

PRINTING REVERSE CHARACTERS

You may use the codes shown in the VIC Graphic Printer

Command chart to tell the printer to print reverse characters by

including these lines:

Reverse On: 10 OPEN4.4: PRINT#4,CHRS (18)

Print Info: 20 PRINT#4. "VIC 20"

Reverse Off: 30 PRINT#4.CHRS(146)

Normal Again: 40 PRINT#4,"VIC 20"

PRINTING WHAT IS DISPLAYED ON THE SCREEN

Type and run these lines as a program or as a subroutine to get a

printout of what is displayed on the screen from your program.

When you use it, add a line or command that says: GOSUB 60000

and enter this program as shown. Lines 10 through 25 are included

to give you an example of how (his can work and are not part of the

screen dump program. Your own program would have different

commands here, of course.

You can type different "screens" of information in the course of a

program. One way to do this is to add a line in your program that

would scan the keyboard and look for a function key. Try adding this

line as the first line of your program: 10 GETXS:IFXS = CHRS (133)

THEN GOSUB60000. This line lets you print out whatever is on the

screen whenever you hit Function Key 1.

10 PRINT ■SAMPLE"

20 GOSUB60000

25 END

60000 REM SCREEN COPY

60010 RS = CHR$(145):VS = CHRS(146):OPEN4,

4:PRINT#4:G-PEEK(648)*256:PRINT#4,RSFORP =

GTOG - 505

60020 C = PEEK(P):C$ = "'1:IF(P-G)/22 = INT((P-G)/22)THEN

PRINT#4,CHR$(8)~CHRS(13}-CHR$(15):

60030 IFC>128THENC = C-128:CS = CHRS(18)

60040 IFC<320RC>95THENC = C 4- 64:GOTO60060

60050 !FC>63ANDC<96THENC = C + 128

60060 CS = CS-CHRS(C):IFLEN{CS)>1THENCS = CS-
VS-rRS

60070 PRINT#4,CS; :NEXT:PRINT#4:CLOSE4:RETURN

239

PRINTING VIC PROGRAMS

Many VIC programs work with the VIC Graphic Printer. Our

Home Calculation programs, for example, let you hit a function key

to print out a screen full of data for your records and files. This is

helpful in keeping paper records of home inventory lists, personal

budget information, etc. These programs give you the ability to

compile, calculate, edit and delete information on your VIC 20, then

print out the results. A powerful combination!

I

!

I

i

I

240

VIC EXPANSION PORT

THE EXPANSION CONNECTOR

The expansion connector is a 48 pin (24,24) female edge

connector on the back of the VIC. With the VIC facing you, the

expansion connector es on the far right of the back. To use the

connector, a 44 pin (22/22) male edge connector is required.

The expansion bus is arranged as follows:

1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22

ABCDEFHJ KLMNPRSTUVWXYZ

PIN#

1

2

3

4

5

6

7

e

9

10
11

TYPE

GND

CD0

CD1

CD2

CD3

CD4

CD5

CD6

CD7

BLK1

BLK2

PIN #

12

13

14

15

16

17

18

19

20

21

22

TYPE

BLK3

BLK5

RAM1

RAM2

RAM3

VR/W

CR/W

IRQ

NC

+ 5V

GND

PIN #

A

B

C

D

E

F

H

J

K

L

M

TYPE

GND

CA0

CA1

CA2

CA3

CA4

CAS

CA6

CA7

CAS

CA9

PIN #

N

P

R

S

T

U

V

w

X

Y

Z

TYPE

CA10

CA11

CA12

CA13

I/02

I/03

S02

NMI

RESET

NC

GND

241

This port is used for expansions of the VIC system which require

access to the address bus or the data bus of the computer. Caution

is necessary when using the expansion bus, as it is possible to

damage the VIC by malfunctioning user equipment,

The signals available on the connector are as follows:

NAME PIN # DESCRIPTION

GND

CDO

CD1

CD2

CD3

CD4

CDS

CD6

CD7

BLK1

BLK2

BLK3

BLK5

RAM1

RAM2

RAM3

VR/W

CRW

1

2

3

±

5

6

7

a

9

10

11

12

13

14

15

16

17

18

IRQ

(NC)

+ 5V

GND

GND

CAO

CA1

CA2

CA3

CA4

13

20

21

22

A

e

c

D

E

F

System ground

Data bus bit 0

Data bus bit 1

Data bus btt 2

Data bus bit 3

Data bus bit 4

Data bus Dit 5

Data bus bit 6

Data bus bit 7

SK decoded RAM/ROM block 1T @ S2000

(active low)

SK decoded RAM ROM block 2, @ S4000

(active low)

BK decoded RAM.'ROM block 3, (a S6000

(active low)

8K decoded ROM block 5. (a SAO0O

(aclive low)

1K decoded RAM block, (a S0400

(active low)

1K decoded RAM block @ S0800

(active low)

1K decoded RAM block (5 SQCOO

(active low)

Read Write line from VIC chip

(higrweadr low-write)

Read Write Eine from CPU

(high-read, low-write)

Interrupt Request line to 6502 [active low)

i

Address bus bit 0

Address bus bit 1

Address bus bit 2

Address bus bit 3

Address bus bit 4

I

I

I

i

I

I

i

242

I

CAS

CA6

CA7

CAS

CA3

CA10

CA11

CA12

CA13

f/02

I'03

S02

NMI

RESET

(NC)

GND

H

J

K

L

M

N

P

=l

3

T

U

V

w

X

Y

z

Address bus bit 5

Address bus bit 6

Address bus bit 7

Address bus bit 8

Address bus bit 9

Address bus bit 10

Address bus bit 11

Address bus bit 12

Address bus bit 13

I/O block 2 (located at $9600)

I/O block 3 {located at S9C00)

Phase 2 system dock

6502 Non Maskable Interrupt (active low)

6502 RESET pin (active low)

RAM Signals—RAM 1, 2, and 3 are active low signals which are

used to decode memory placed in the 3K block from $0400 to

S1000. Each of the RAM signals controls a 1K block of memory.

When a RAM signal goes !owF it indicates that the block of memory

it controls is being addressed.

BLK Signals—The lour block signals are also for memory

expansion of the system. In this case, however, each decodes a

different 8K block of memory. As with the RAM signals, each is

active low. Blocks 1, 2, and 3 can be used for either RAM or ROM,

Memory in those locations can (and will) be used by BASIC.

Memory in Block 5T however, should be ROM, as this area is not

accessible to BASIC. If RAM is placed here it can only be utilized by

machine language programs.

IMPORTANT MOTE: ii the additional memory is added to the VIC

using the BLOCK decoding signals, memory added by using the

RAM signals can not be used by BASIC for storage of BASIC text.

This is because BASIC demands a continuous area for programs.

With additional memory in the BLOCK decoded areas, the screen

moves to $1000, breaking up the area. Memory placed in those

RAM areas can stilJ be used by machine language programs.

IRQ—This is the interrupt request line. The VIC uses this internally

for keyboard scan and the system clock.

RESET—When this line is grounded, it causes a COLD START of

the VIC. Everything is RESET, including memory, so any program

in the VIC at that time is destroyed.

243

NMJ—When this line is grounded, it causes a VIC WARM START

(just like RUN STOP-RESTORE).

Address Bus—The address bus controls what memory loation or

I/O device the VIC will read from or write to. Only 14 bits appear on

the connector, even though the address bus size is 16 bits,

because two bits are decoded into the BLOCK and I/O signals.

Data Bus—The data bus is used by the VIC to move data to or from

memory or I'O devices.

I/O Signals—These two signals can be used to add additional I/O

devices to the VIC. The IEEE adapterfrom Commodore uses these

signals.

Read/Write Signals—These signals inform the memory or the

device being addressed whether the VIC wants to write data or read

data. If the signal is high, a read is expected. If the signal is low, a

write es desired.

There are two RA/V signals available on the expansion port. One

(CR/W) is connected to the 6502. The other (VR/W) is connected to

the VICchip. Memory expansion will normally use the VR/Wsignal.

Other devices may need the CRW signal.

WHAT HAPPENS WHEN MEMORY IS

EXPANDED

The VIC comes with 5K of random access memory (RAM)

located from 0 to 1023 (SOOOO to S03FF) (or operating system use,

4096-8192 (S1000 to S1FFF) which is BASIC program area, and

from 38400 to 38911 (S9600 to S97FF) which is COLOR memory

area.

When additional memory is added the VIC screen location, color

memory location, or the start of BASIC might change.

Start of Start of Start of Start of

Added MemoryScreen Color Memory BASIC

1024-4095 7680 ($1 E00) 38400 (S9600) 1024 (S0400)

8192 on up 4096 ($1000) 37888 (S9400) 4608 (S1200)

(S2000-3FFF)

(S4000-5FFF)

(36000-7FFF)

The VIC has 2 areas to add additional memory—a 3K space from

1024 to 4095 (S0400 to $0FFF) and a 24K section from 8192 to

244

32767 (S2000 to S7FFF). When the large expansion area is used,

BASIC cannot use the 3K area as program area.

When memory is added in the 3K area, the BASIC program area

will start at the beginning of the new RAM area. The screen will still

begin at 7680 and color memory will still begin at 38400. However,

the start of BASIC will be at 1024.

The VIC chip cannot access any of this new memory, so screen

memory and programmable character memory must be in VIC

internal memory (4096 to 8191}.

Memory is added to the larger expansion area in 8K blocks,

beginning at 8192 ($2000). BASIC demands a continuous area for

programs. This is why the screen is moved—otherwise, the video

screen will be in the middle of your program- The same reason

prevents the 3K RAM area from being used by BASIC when

additional memory is added to the large expansion area. However,

machine language programs can still use this area though.

The start of BASIC will begin at 4608 ($1200), the video screen

will start a 4096 (S1000) and color memory will start at 37888

(S9400).

See Section 3 for the formulas to use to calculate the screen start

address. If you want your programs to work on any VIC memory

configuration, your program must use these formulas in POKEs

and PEEKs to the screen. The best way to use this is at the

beginning, set a variable to the start of screen memory and one to

the start of color memory. Then, do any POKEs or PEEKs to the

screen relative to those variables. (Example: if C is the start of the

screen, to put an 'A' on the first line on the 10th column of the

screen, type: POKEC + 10,1.)

245

GAME CONTROLLERS

USING A JOYSTICK ON THE VIC '

Like all other input and output, the joysticks are controlled using

the VIC'S 6522 Versatile Interface Adapters (VIAs). The 6522 is a

very versatile and complex device. Fortunately, it isn't necessary to

delve deeply into the mysteries of the 6522 VIA to read the

joysticks.

Each 6522 has two Input/Output ports, called port A and port B.

Each of the ports has a control register attached, called the DATA

DIRECTION REGISTER (DDR). This highly important register

controls the direction of the port. By using this register you can use

the port for input, output, or both at the same time. To set one bit of

the port to output, set the corresponding bit of the Data Direction

Register to 1. To set a bit of the port for input, set the corresponding

bit of the DDR to 0. For example, to set bit 7 of port A to input, and

the rest of the bits to output, poke 127 in the DDR for port A.

To read the joystick, one port (and one DDR) of each of the 6522

VIAs on the VIC must be used.

The joystick switches are arranged as follows:

!

TOP

FIRE BUT

TON

Switch 4

(FR)

Switch 0

(SO)

Switch 2 Switch 3

(S2) ! (S3)

!

i

£81)
Switch 1

Switch 0, Switch 1, Switch 2, and the Fire button can be read from

VIA #1, which is located beginning at location S9110. Switch 3

must be read from the other 6522 (VIA #2) which is located

beginning at location S9120.

246

I

Now, the key locations for the joystick are as follows:

HEX DECIMAL PURPOSE

9113 37139 Data direction register for 1,0 port A on

VIA#1

9111 37137 Output register A

Bit 2 Joy switch 0

Bit 3 Joy switch 1

Bit 4 Joy switch 2

Bit 5 Fire button

9122 37154 Data direction register lor I/O port B on

VIA #2

9120 37t52 Output register B

Bit 7 Joy switch 3

To read the joystick inputs, you first set the ports to input mode by

setting the DDR to 0. This oar) be done by a POKE. Then the value

of the switches can be read by two peeks. Sounds easy, right?

There is only one problem . . . VIA#2 is also used lor reading the

keyboard. Setting the DDR can mess up the keyscan rather badly.

So you have to make sure you restore the DDR to the original

condition if you want to use the keyboard afterwards.

To make things really easyr you can use the following program.

Lines 10 to 25 are initialization. The rest of the program, beginning

at line 9000t can be called as a subroutine whenever you want to

read the joystick.

10 DIM JS(2,2):POKE37139,0:DD = 37154;PA-37137:
PB = 37152

20 FORI = 0TO2:FORJ = 0TO2:READJS (J,I):NEXTJ,I

25 DATA - 23. -22,-21,-1,0,1,21,22,23

3D GOSUB9000:PRINT JS(X-1,Y-1):GOTO30

9000 POKEDD,127:S3= -((PEEK(PB)AND128) = 0)-

POKEDD.255

9020FR=-({PAND32) = 0):X

The variables SO, Si, S2« and S3 will be 0 normally, and will be

set to 1 (or -1) when the joystick is pointed in that direction. Two of

247

the variables will be set to 1 on diagonal moves. FR will be 1 when

the firing button is pressed, 0 otherwise.

The AND function is used to pick out one bit of the joystick port.

The bits are numbered from 7 (most significant bit) to 0 (least

significant bit). By ANDing the 6522 port with a number whose

value is a power of two, a single bit is selected. (For example, to pick

bit 3, AND using 2,3 or 8).

The JS array in the program is set up to make moving around the

screen using the joystick easy. The numbers in the DATA

statement of line 25 can easily be changed for other purposes. For

example . . .

To "decode1' the joystick in this pattern:

TOP

FIRE

0

7 ! 1

6—8—2

5 ! 3

4

The data statement should be changed to;

25 DATA 7.0,1,6,8,2,5,4,3

USING PADDLES ON THE VIC

The paddles are read using both the VIC chip and the VIC's 6522

Versatile Interface Adapters (VIAs),

The values of the paddles are read through the VIC chip, There

are two registers, one for each paddle, which will contain the

current value of the paddle. This data will be in digitized form, as a

value from 0 to 255.

The switches on each paddle are read from the via chips. Each

VIA has two INPUT/OUTPUT ports, called PORT A and PORT B.

Each of the ports has a control register attached, called the DATA

DIRECTION REGISTER (DDR). This registercontrols the direction

of the port. By using this register you can use the port for input,

output, or both at the same time. To set one bit of the port to output,

set the corresponding bil of the Data Direction Register to 1. To set

a bit oi the part for input, set the corresponding bit of the DDR to 0.

For example, to set bit 7 o! port A to input, and the rest of the bits to

output, poke 127 in the DDR for port A.

To read the paddle switches, one port (and one DDR) of each of

the 6522 VIAs on the VIC must be used.

348

The joystick switches are arranged as follows:

Paddle X Paddle Y

(S2) (S3)

Switch 2 can be read from VIA #11 which is located beginning at

location S9110. Switch 3 must be read from theother 6522 (VIA #2)

which is located beginning at location S9120.

Now, the key locations 1or the paddle are as follows;

HEX

9008

9009

9113

DECIMAL

36872

36873

37139

PURPOSE

Digitized value of PADDLE X

Digitized value of PADDLE Y

Data direction register for I/O port A on

VIA #1

9111 37137 Output register A

Bit 4 PADDLE SWITCH X

9122 37154 Data direction register for I/O port B on

VIA #2

9120 37152 Output register B

Bit 7 PADDLE SWITCH Y

To read the paddle inputs, you first set the ports to input mode by

setting the DDR to 0. This can be done by a POKE. Then the value

of the switches can be read by two peeks. Sounds easy, right?

There is only one problem . . . VIA#2 is also used for reading the

keyboard. Setting the DDR can mess up the keyscan rather badly.

So you have to make sure you restore the DDR to the original

condition if you want to use the keyboard afterwards.

To make things really easy, you can use the following program.

Lines 10 to 25 are initialization. The rest of the program, beginning

at line 9000, can be called as a subroutine whenever you want to

read the paddle,

10 POKE37139P0:DD = 37154:PA = 37137:PB =

20 PX = 36S72:PY = 36873

30 GOSUB9000:PRINT PEEK(PX);PEEK (PY);X;Y:GOTO30

9000POKEDDh127:Y = -((PEEK{PB)AND12B) = 0):PG

KEDD,255

9010 X = -{(PEEK(PA)AND16) = 0);RETURN

The variables X and Y witl be 0 normallyt and will be setto 1 when

that paddle button is pressed.

249

The AND function is used to pick out one bit of the paddle port.

The bits are numbered from 7 (most significant bit) to 0 (least

significant bit). By ANDing the 6522 port with a number whose

value is a power of two, a single bit is selected. (For example, to pick

bit 3, AND using 9.)

USING A LIGHT PEN ON THE VIC

One of the benefits of using the VIC chip as the controller lor the

VIC 20 is that it is easy to add certain input/output devices for

games and educational software. It is as easy to add a light pen as it

is to add game paddles and joysticks.

The principle behind the light pen is simple. Basically, the pen is a

light detector, set to detect either the presence or absence of light.

The television picture is not put on the screen all at once—rather, it

is put on the screen one row at a time, scanning from left to right

very quickly.

When the scan passes the area where the pen is, a signal is sent

to the VIC chip. When this signal is received, the VIC chip, which

keeps track of where the scan line is at any particular moment, will

record the exact location of the scan in two registers, 36870 (9006

HEX) for the X direction and 36871 (9007} in the Y direction. You

can read and use this information in your programs.

The light pen trigger is connected to pin 6 of the game port, The

light pen trigger input can also be reached from pin 7 o1 the user

port. Note that you can't use a joystick and a light pen at the same

time, because the same line that is used as the light pen trigger

input is used as the joystick fire button input (you would get false

readings).

The VIC chip constantly keeps track of the scan position on the

television in two registers. When the light pen trigger input is

brought low, the VIC freezes the two registers. You can then read

and use this information. After reading the two registers, the trigger

line will be cleared, so that scan information can be placed again in

the two registers.

250

RS-232 INTERFACE

DESCRIPTION —built-in software

GENERAL OUTLINE

The VIC has a built-in RS-232 interface for connection to any

RS-232 modem, printer, or other device. To connect the device to

the VIC a cable is required, as well as some programming.

RS-232 on the VIC is standard RS-232 format, but the voltages

are TTL levels (0 to 5V) ratherthan the normal RS-232 -121012 volt

range, The cable between the VIC and the RS-232 device should

take care of the voltage conversions needed. The Commodore VIC

RS-232 interface cartridge handles this properly.

The RS-232 interface software can be accessed from BASIC or

from the KERNAL for machine language programming. RS-232 on

the BASIC level uses the normal BASIC commands: OPEN.

CLOSEf CMD, INPUTS, GET#. PRINT#, and the reserved

variable ST. INPUT#(CHRIN for the machine language program

mers in the audience) and GET#(GETtN) fetch data from the

receiving buffer, while PRINT# (chrout) and CMD place data into

the transmitting buffer. The use of these commands (and

exampfes) will be described more fully later.

The RS-232 KERNAL byte bit level handlers run under the

control of the 6522 device timers and interrupts. The 6522

generates NMI requests for RS-232 processing. This allows

background RS-232 processing to take place during BASIC and

machine language programs. There are built-in hold-offs in the

KERNAL cassette and serial bus routines to prevent disruption of

data storage transmission by the NMI's generated by the RS-232

routines. During cassette or serial bus activities data cannot be

received from RS-232 devices. Because these hold-offs are only

local (assuming care is taken in programming) no interference

should result.

There are two buffers in the VIC RS-232 interface to help prevent

Eoss of data when transmitting or receiving RS-232. The VIC 20

RS-232 KERNAL buffers consist of two first-in.first-out (FIFO)

buffers, each 256 bytes long, at the top of memory. The OPENing of

an RS-232 channel automatically allocates 512 bytes of memory

for these buffers. If there is not enough free space beyond the end

of your BASIC program no error message will be printed, and the

end of your program will be destroyed. SO BE CAREFUL!

These buffers are automatically removed by the CLOSE

command.

251

OPENING AN RS-232 CHANNEL

Only one RS-232 channel should be open at any time; a second

OPEN statement will cause the buffer pointers to be reset. Any

characters in either the transmit buffer or the received buffer will be

lost.

Up to 4 characters may be sent in the fifename field. The first two

are the control and command register characters; the other two are

reserved for future system options. Baud rate, parity, and other

options can be selected through this feature.

No error-checking is done on the control word to detect a

nonimplemented baud rate, so that any illegal control word will

cause the system output to operate at a very slow rate (below 50

baud),

BASIC SYNTAX

GPENIf.^O.'^control registerxcommand reg?ster>"

if—Normal logical file id (1-255). If if>127 then linefeed follows

carriage return.

<control register>—Single byte character {see Figure 1)

(required to specify baud rate)

<command register>—Single byle character (see Figure 2)

(this character is NOT required)

KERNAL ENTRY

OPEN (SFFCO)—See KERNAL spec, for more information

on entry conditions and instructions.

NOTE

IMPORTANT: In a BASIC program, the RS-232 OPEN com

mand should be performed before using any variable or DIM

statement, since an automatic CLR is performed when an

RS-232 channel is OPENed (because of the allocation of 512

bytes at the top of memory.) Also remember that your program

will be destroyed if 512 bytes of space are not available at the

time of the OPEN statement.

GETTING DATA FROM RS-232 CHANNEL

When getting data, the VIC receiver buffer will hold 255

characters before a buffer overflow. This is indicated in the RS-232

status word (ST from BASIC, rsstatfrom machine language). If this

occurs, all characters received during a full buffer condition are lost.

Obviously it pays to keep the buffer as clear as possible.

252

If you wish to receive RS-232 data at high speeds (BASIC can

only go so fast, especially considering garbage collects. This can

cause the receiver buffer to overflow), you will have to use machine

language routines to handle the data bursts.

1 0

STOP BITS '

0-1 STOP BIT

1-2 STOP BITS

WORD LENGTH

BIT

6

0

0

1

1

5

0

1

0

1

DATA

WORD LENGTH

8 BITS

7 BITS

6 BITS

5 BITS

UNUSED

I I
0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

3AUD RATE

USER RATE[NI]

50 BAUD

75

110

134-5

150

300

600

1200

(1800) 2100

2100

3600 [Nl]

4800 [Nl]

7200 [Nl]

9600 [Nlj

19200 [Nl]

Figure 4-1. Control register.

BASIC SYNTAX

Recommended: GET#lf,<string variable>

NOT Recommended: INPUT#If,<variable list>

253

PARITY OPTIONS

BIT

7

-

0

0

1

1

BIT

6

-

0

1

0

1

BIT

5

0

1

1

1

1

OPERATIONS

PARITY DISABLED, NONE

GENERATED/RECEIVED

ODD PARITY

RECEIVER/TRANSMITTER

EVEN PARITY

RECEIVER/TRANSMITTER

MARK TRANSMITTED

PARITY CHECK DISABLED

SPACE TRANSMITTED

PARITY CHECK DISABLED

DUPLEX

0-FULL DUPLEX

1-HALF DUPLEX

UNUSED

UNUSED

UNUSED

I

^HANDSHAKE

0-3 LINE

1-X LINE

Figure 4-2. Command register.

KERNAL ENTRIES

CHKIN (SFFC6)—See Section 3 for more information on entry

and exit conditions.

GETIN (SFFE4)—See Section 3 for more intormation on entry

and exit conditions.

CHRIN (SFFCF)—See Section 3 for more information on entry

and exit conditions.

264
!

NOTES

If the word length is less than 8 bits, all unused bit(s) will be

assigned a value of zero.

If a GET# does not find any data in the buffer, the character"" (a

null) is returned.

If INPUT# is used, then the system will hang until a non-null

character and a following carriage return is received. Thus, if the

CTS or DSR line(s) disappear during character INPUT#, the

system will hang in a RESTORE-only state. This is why the

INPUT# and CHRIN routines are NOT recommended.

The routine CHKIN handles the x-line handshake which follows

the EIA standard (August 1979) for RS-232-C interfaces. (The

RTS, and DCD lines are implemented with the VIC computer

defined as the Data Terminal device,)

i

255

SENDING DATA TO AN RS-232 CHANNEL

When sending data, the output buffer can hold 256 characters

before a full buffer hold-off occurs. The system will wait in the

CHROUT routine until transmission is allowed or the RUN/STOP-

RESTORE keys are used to recover the system through a WARM

START.

BASIC SYNTAX

CMD If—acts same as in BASIC spec.

PRINT#lf,<varrable list>

KERNAL ENTRIES

CHKOUT (SFFC9)—See Section 3 for more information on entry

and exit conditions.

CHROUT (SFFD2)—See Section 3 for more information on entry

conditions.

NOTES

IMPORTANT: There is no carriage-return delay built into the output

channel so a normal RS-232 printer cannot correctly print, unless

some form of hold-off (asking the VIC to wait) or internal buffering is

implemented by the printer. The hold-off can easily be implemented

in your program. If a CTS (x-)ine) handshake is implemented, the

VIC buffer will fill and hold off more output until transmission is

allowed by the RS-232 device.

The routine CHKOUT handles the x-line handshake, which

follows the EIA standard (August 1979) for RS-232-C interfaces.

The RTS. and DCD lines are implemented with the VIC defined as

the Data Terminal Device.

CLOSING AN RS-232 DATA CHANNEL

Closing an RS-232 file discards all data in the buffers at the time

of execution (whether or not it had been transmitted or printed out),

stops all RS-232 transmitting antf receiving, sets the RTS and Sout

Sines high, and removes both RS-232 buffers.

BASIC SYNTAX

CLOSE If

256

I

I

KERNAL ENTRY

CLOSE (SFFC3)—See Section 3 for more information on entry

and exit conditions.

NOTE

Care should be taken to ensure all data is transmitted before

closing the channel. A way to check this from BASIC is:

100 IF ST-0 ANO (PEEK(37151) AND 64)= 1 GOTO 100

110 CLOSE if

Table 4-1. USER-PORT LINES

(6522 DEVICE #1 loc S9110-911F)

PIN 6522 IN/

ID ID DESCRIPTION EfA ABV OUT

MODES

c

D

E

F

H

J

K

L

B

M

A

N

PB0

PB1

PB2

PB3

PB4

PBS

PB6

PB7

CB1

CB2

GND

GND

RECEIVED DATA

REQUEST TO SEND

DATA TERMINAL READY

RiNG INDICATOR

RECEIVED LINE SIGNAL

UNASSIGNED

CLEAR TO SEND

DATA SET READY

RECEIVED DATA

TRANSMITTED DATA

PROTECTIVE GROUND

SIGNAL GROUND

(BB) Sin IN 1 2

(CA} RTS OUT 1*2

(CD)DTROUT1*2

(CE) Rl IN 3

(CF) DCD IN 2

(} XXX IN 3

(CB) CTS IN 3

(CC) DSR IN 2

(BB) Sin IN 1 2

(BA) Sout OUT 1 2

(AA) GND 1 2

(AB) GND 1 2 3

MODES

1)—3-LINE INTERFACE (Sin,Sout,GND)

2) —X-LINE INTERFACE (Full handshaking)

3)—USER AVAILABLE ONLY {Unused/unimplemented in code,;

*—These lines are held high during 3-LINE mode.

"Note; PB6 CLEAR TO SEND is not implemented and must

be read with a short machine language routine.

257

[7][6][5][4][3)[2][1] [0] (Machine lang.—rsstat)

—PARITY ERROR BIT

FRAMING ERROR BIT

-RECEIVER BUFFER

OVERRUN BIT

-UNUSED BIT

-CTS SIGNAL MISSING

BIT

UNUSED BIT

DSR SIGNAL MISSING BIT

BREAK DETECTED BIT

Figure 4-3. RS-232 Status Register

NOTES

If the BIT^O, then no error has been detected.

The RS-232 status register can be read from BASIC using the

variable ST.

If ST is read by BASIC or by using the KERNAL READST routine

the RS-232 status word is cleared upon exit. If multiple uses of the

STATUS word are necessary the ST shouEd be assigned to another

variable, i.e.

SR= ST: REM ASSIGNS ST TO SR

The RS-232 status is read (and cleared) only when the RS-232

channel was the last external I/O used.

SAMPLE BASIC PROGRAM

10 HEM THIS PROGRAM SENDS AND RECEIVES DATA

TO/FROM A SILENT 700 TERMINAL MODIFIED FOR PET

ASCII

20 REM TJ SILENT 700 SET-UP: 300 BAUD. 7-BIT ASCII,

MARK PARITY, FULL DUPLEX

258

30 REM SAME SET-UP AT COMPUTER USING 3-LINE

INTERFACE

100OPEN212,3lCHRS(6 + 32)^-CHRS(32+128): REMOPEN
THE CHANNEL

110 GET#2,AS: REM TURN ON THE RECEIVER CHANNEL

(TOSS A NULL)

200 REM MAIN LOOP

210 GET BS: REM GET FROM COMPUTER KEYBOARD

220 IF BK>" THEN PRlNT#2?B$;: REM IF A KEY

PRESSED, SEND TO TERMINAL

230 GET#2,CS: REM GET A KEY FROM THE TERMINAL

240 PRINT B$;C$;: REM PRINT ALL INPUTS TO THE

COMPUTER SCREEN

250 SR-ST: IF SR = 0 THEN 200: REM CHECK STATUS, IF

GOOD THEN CONTINUE

300 REM ERROR REPORTING

310 PRINT "ERROR: ";

320 IF SR AND 1 THEN PRINT "PARITY"

330 IF SR AND 2 THEN PRINT "FRAME"

340 IF SR AND 4 THEN PRINT "RECEIVER BUFFER FULL11

350 IF SR AND 128 THEN PRINT "BREAK11

360 IF (PEEK(37151) AND 64) -1 THEN 360; REM WAIT

UNTIL ALL CHARS TRANSMITTED

370 CLOSE 2: END

RECEIVER/TRANSMITTER BUFFER BASE

LOCATION POINTERS

S0QF7-RIBUF A two byte pointer to the Receiver Buffer base

location.

S00F9-ROBUF A two byte pointer to the Transmitter Buffer base

location,

The two locations above are set up by the KERNAL OPEN

routine, each pointing to a different 256 byte buffer. They are

de-allocated by writing a zero into the high order bytes, (S00F8 and

S00F9)r which is done by the KERNAL CLOSE entry. They may

also be altocated'de-allocated by the machine language program

mer for his/her own purposes, removing 'creating only the buffer(s)

required. Both the OPEN and CLOSE routines will not notice that

their jobs might have been done already. When using a machine

language program that allocates these buffers, care must be taken

to make sure that the top o! memory pointers stay correct,

especially if BASIC programs are expected to run at the same time.

£59

ZERO-PAGE MEMORY LOCATIONS AND

USAGE FOR RS-232 SYSTEM INTERFACE

S00A7-INBIT Receiver input bit temp storage.

S00A8-BITCI Receiver bit count in.

S0QA9-RINONE Receiver flag Start bit check.

SOOAA-RIDATA Receiver byte buffer/assembly location.

SOOAB-RIPRTY Receiver parity bit storage.

S00B4-BITTS Transmitter bit count out.

SOOB5—NXTBIT Transmitter next bit to be sent

S00B6- RODATA Transmitter byte buffer/disassembly location.

All the above zero page locations are used locally and are only

given as a guide to understand the associated routines These

cannot be used directly by the BASIC or KERNAL level

programmer to do RS-232 type things. The system RS-232

routines must be used.

NONZERO-PAGE MEMORY LOCATIONS

AND USAGE FOR RS-232 SYSTEM INTER

FACE

General RS-232 storage:

S0293-M51CTR Pseudo 6551 control register (see Figure 4-1).

S0294-M51CDR Pseudo 6551 command register (see Figure

4-2).

S0295-M51AJB Two bytes following the control and command

registers in the file name field. (For future use.)

S0297-RSSTAT The RS-232 status register (see Figure 4-3). I

S0298-BITNUM The number of bits to be sentreceived.

$0299-BAUDOF Two bytes that are equal to the time of one bit

cell. (Based on system clock baud rate.)

S029B-RIDBE The byte index to the end of the receiver FIFO

buffer.

S029C-RIDBS The byte index to the start of the receiver FIFO

buffer.

S029D-RODBS The byte index to the start of the transmitter

FIFO buffer.

S029E-RODBE The byte index to the end of the transmitter FIFO r

buffer.

i
260

I

I

I

I

I

!

I

I

APPENDIX A

ABBREVIATIONS FOR BASIC KEYWORDS

As a time saver when typing in programs and commands, VIC BASIC

allows the user to abbreviate most keywords. The abbreviation for the word

PRINT is a question mark. The abbreviations for the other words are made

by typing the first one or two letters of the keyword, followed by the

SHIFTed next letter of the word. If the abbreviations are used in a program

line, the keyword will LIST in the longer form. Note that some of the

keywords when abbreviated include the first parenthesis, and others do

not.

Command

ABS

AND

ASC

Abbreviation

CLOSE

CLR

CUD

GONT

DATS

DEF

DIM

END

EXP

FOR

FRE F

GET G

GO5U9 GO

GOTO

Looks like

this on screen

I

—

Command

Looks like

I his on scretn

263

Command

EAVE

SGN

■-- N

SPC(

SQR

STEP

5TCP

Lucks, like

thLS or screen

K

D

■

B

II

a

looks like

this on screen

svs

TAB

THEN

USfl

VAL

V&fllFV

WAIT

I

A W | ■■•■

COLOR CODE TABLE

Following are the various colors the VIC can display . . . note

that colors 8-15 can only be used as a SCREEN COLOR or an

AUXILIARY COLOR (see pg. 93 for explanation oi auxiliary

colors used in MULTICOLOR MODE). As an example, these

color numbers are used to POKE a color into "color mem

ory1 when coloring characters POKEd to the screen. If you

POKE 7680, 81 this places a "ball" on the screen but it will be

"invisible ' until you add the color by typing POKE 38400, 0

(BLACK). Try POKE3S400.2 for REDT etc. (Numbers 8-15 can

not be used as character colors)

BLACK

WHITE

RED

CYAN

PURPLE

GREEN

BLUE

YELLOW

ORANGE

LT. ORANGE

PINK

LT. CYAN

LT. PURPLE

LT. GREEN

LT. BLUE

LT. YELLOW

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

I

264

APPENDIX B

SCREEN & BORDER COLOR

COMBINATIONS

You can change the screen and border colors of the VIC anytime, in or

out of a program, by typing

POKE 36879. X

where X is one of the numbers shown in the chart below. POKE 36879h 27

returns the screen to the normal cotor combination, which is a CYAN

border and white screen.

Try typing POKE 36879,8. Then type CTRL £:■'• ^ and you have

white letters on a totally black screen! Try some other combinations. This

POKE command is a quick and easy way to change screen colors in a

program.

SCREEN

BLACK

WHITE

RED

CYAN

PURPLE

GREEN

BLUE

YELLOW

ORANGE

LT. ORANGE

PINK

LT. CYAN

LT. PURPLE

LT. GREEN

LT. BLUE

LT. YELLOW

BLK

a

24

40

56

72

es

104

120

136

152

168

134

200

216

232

240

WHT

9

25

41

57

73

80

105

121

137

153

169

165

201

217

233

249

BORDER

RED

10

26

42

58

74

90

1OE

122

T3B

154

■70

1&6

202

218

234

250

CYAN

11

27

43

59

75

91

107

123

139

155

-.71

187

2G3

219

235

251

PUR

12

23

44

60

76

92

105

124

140

156

172

18B

204

220

236

252

J3

29

45

61

77

93

103

125

141

157

173

189

205

221

237

253

BLU

14

30

46

62

70

94

110

126

142

153

174

190

206

222

238

254

YEL

15

31

47

63

79

95

111

127

143

159

175

191

207

223

239

255

265

APPENDIX C

TABLE OF MUSICAL NOTES

I
APPHOX APPROX.

SPEAKER COMVANDS

POKE 36878. X

POKE 36B75. X

POKE 36876. X

POKE 36877. X

WHERE X CAN BE:

OIO 15

i2a :t> 255

123 !O 255

128 ID 255

FUNCTION'

sets volume

plays tone

plavs tone

plavs "noise"

OTE

C

c#

D

D#

E

F

F#

G

G#

A

A#

B

C

c#

D

D#

E

F

F#

VALUE

135

143

147

151

159

163

167

175

179

183

187

191

195

199

301

203

207

209

212

NOTE

G

C#

A

A#

B

e

c#

D

D#

E

F

F#

G

Gff

A

A#

B

C

O

VALUE

215

217

219

221

223

22E

227

E28

229

231

232

233

235

236

237 '
238

239

240

241

I

I

I

266

APPENDIX D

SCREEN DISPLAY CODES

The following chart lists all of the characters built-in to the VIC 20

character sets. It shows which numbers should be POKEd into screen

memory (locations 7680 to 8185) to get a desired character. Also, it shows

what character corresponds to a number PEEKed from the screen.

The two character sets are available, but only one set at a time. This

means that you cannot have characters from one set on the screen at the

same time you have characters from the other set displayed. The sets are

switched by holding down the SHIFT and COMMODORE keys

simultaneously. This actuaily changes the 2 bit in memory location 36869,

which means that the statement POKE 36869, 240 will set the character

set to upper case, and POKE 36869, 242 switches to lower case.

If you want to do some serious animation, you will find that it is easier to

control objects on the screen by POKEing them into screen memory (and

erasing them by POKEing a 32, which is the code for a blank space, into the
same memory location), than by PRINTing to the screen by using cursor

control characters.

Any number shown on the chart may also be displayed in REVERSE.

Reverse characters are not shown, but the reverse of any character may

be obtained by adding 128 to the numbers shown.

NOTE: SEE SCREEN MEMORY MAP APPENDIX E

If you want to display a heart at screen location 7800, find the number of

the characteryou want to display there (in this case a heart) in this chart. . .

the number for the heart is 83 ... then type in a POKE statement with the

number of the screen location (7800] and the number of the symbol (83)

like this:

POKE 7800,83

A white heart should appear in the middle area of the screen. Note that it

will be invisible if the screen is white. Try changing the position by chang

ing the larger number, or type in different symbols using the numbers from

the chart.

If you want to change the COLOR of the symbol being displayed, consult

the Color Codes Memory Map in Appendix E which lists the COLOR

NUMBERS for EACH MEMORY LOCATION. In other words, to get a

different colored symbol at a particular location, this requires another

POKE command.

267

For example, to get a red heart, type the following:

POKE 38520, 2

In screen pokes

this color is

one less than

the numbers on the

keyboard color keys

This changes the color of the symbol at location 7800 to red. If you had a

different symbol there, that symbol would now be red. You can display any

character in any of the available colors by combining these two charts.

These POKE commands can be added in your programs and are very

effective especially in animation—and also provide a means to PEEK at

certain locations if you are doing sophisticated programming such as

bouncing a ball, which requires this information.

SCREEN CODES

SET 1

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

Q

SET 2

a

b

c

d

e

f

g

h

i

i

k

I

m

n

0

P

q

POKE

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

SET 1

R

S

T

U

V

w

X

Y

z

[

£

]

T

#-

SPACE

!

■■

#

SET 2

r

s

t

U

V

w

X

y

z

1

POKE

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

SET 1

S

%

&

•

(

)

+

-

/

0

1

2

3

4

5

SET 2 POKE

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

I

I

268

O o a I
D i
n

E
D

1E
D

o 3
7
s

(
-

—
I

O
m

o
c
j

a
i
>

e
n

u a < a 3

~
i

ii

I
D
a

o
o

o
o

C
O

t
O

-
•
O

n O n
.

t
o

APPENDIX E

I
SCREEN MEMORY MAPS ,

Use this appendix to find the memory location of any position on the

screen. Just find the position in the grid and add the numbers on the row

and column together. For example, if you want to poke the graphic "ball"

character onto the center of the screen, add the numbers at the edge of row

11 and column 11 (7900+10) foratotalof 7910. If you poke the code for a

ball (81, see Appendix D) into location 7910 by typing POKE 791O\81, a

white ball appears an the screen. To change the color of the ball (or other

character), find the corresponding position on the color codes memory

map, add the row and column numbers together {38620 - 10, or 38630) for

the color code and type a second poke statement. For example, if you poke

a color code into this location, POKE 36630.3 the ball will change color to

cyan. Note that when POKEing, the character color numbers are one less

than the numbers on the color keys—as shown below.

Abbreviated List of Color Codes:

Code

0

1

2

3

4

5

6

7

Color

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

270

i

I

i

I

I

I

7680

7702

7724

7746

7768

7790

7812

7834

7856

7878

7900

7922

7944

7966

7988

8010

8032

8054

8076

8098

8120

8142

8164

38400

38422

38444

38466

38488

38510

38532

38554

38576

38598

38620

38642

38664

38686

38708

38730

38752

38774

38796

38818

38840

38862

38884

0 1 a 3 4 b a i a 9 10 11 12 13 14 15 16 17 ia 19 2C 21

Screen Character Codes

3 ' 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 18 19 20 21

Color Codes Memory Map

271

APPENDIX F

ASCII AND CHR$ CODES

I

This appendix shows you what characters will appear it you PRINT

CHRS (X), for all possible values o(X. It will also show the values obtained

by typing PRINT ASC ("x") where x is any character you can type. This is

useful in evaluating the character received in a GET statement, converting

upper/lower case, and printing character-based commands (like switch to

upper/iower case] that could not be enclosed in quotes.

PRINTS CHRS PRINTS CHRS

0

1

2

3

4

5

6

7

8

g

10

n

12

13

14

15

16

17

18

19

20

21

#

$

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

PRINTS CHRS

0

1

2

3

4

5

6

7

8

9

44

45

46

47

48

49

50

51

52

53

54

55

56

57

5B

59

60

61

62

63

64

65

PRINTS CHRS

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

O

R

S

T

U

V

w

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

I

I

272

CODES

CODES

CODE

192-223

224-254

255

SAME AS

SAME AS

SAME AS

96-127

160-190

126

273

ASCII Character Codes (decimal)*

ASCII

Code

000

001

002

0O3

CKW

005

ooe

007

ooe

009

oio

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

Q2S

029

030

031

032

033

034

035

036

037

03&

039

040

041

012

Character

NULL

SOH

STX

ETX

EOT

£NQ

ACK

BEL

BS

HT

LF

VT

FF

Cfl

SO

5

DLE

OC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESCAPE

FS

GS

HS

US

SPACE

I

"

#

s

%

&

•

(
J

■

ASCII

Code

043

044

045

046

047

043

049

05D

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

o&e

069

070

071

072

073

074

075

076

077

078

079

060

0G1

062

OB3

084

OB5

Character

■

t

0

1

2

3

5

e

7

e

9

i

<

>

?

61

A

B

C

D

E

F

G

H

1

J

K

L

■■"

N

0

P

Q

R

S

T

LJ

ASCII

Code

086

037

oea

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

1Q4

105

106

107

106

109

110

111

112

113

114

115

11d

117

118

119

120

121

122

123

124

125

126

127

Cta racier

V

W

X

Y

Z

1
bkslash

1
up arrow

back arr

space

a

b

c

d

a

f

g

h

1

1
k

1

n

n

0

P

q

r

s

I

u

V

w

(

y

z

I

■

>

DEL

I

I

i

I

I

"VIC character codes differ from ASCII codes. This table is provided as a reference for

ASCH'VIC conversions.

274

APPENDIX G

DERIVING MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to VIC BASIC may be calculated as

follows:

FUNCTION

SECANT

COSECANT

COTANGENT

INVERSE SINE

INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT

HYPERBOLIC SINE

HYPERBOLIC COSINE

HYPERBOLIC TANGENT

HYPERBOLIC SECANT

HYPERBOLIC COSECANT

HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE

INVERSE HYPERBOLIC COSINE

INVERSE HYPERBOLIC TANGENT

INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTAN

GENT

VIC BASIC EQUIVALENT

SEC(X) = 1/COS{X)

CSC(X) = 1/SIN(X)

COT(X) = 1/TAN(X]

AHCSIN(X] = ATNfX SQR(- X'X +1))

ARCCOS(X)- -ATNfXSQR

(- X'X +1}) j- tt/2

ARCSEC(X) = ATN(XSQR(X-X - 1])

ARCCSC(X) = ATN(XSQR|X*X -1))

+ (SGN(X)-Tit/2

ARCOT(X) = ATN(X) + ti/2

SINH(X) = (EXP(X) - EXP(- X))/2

COSH(X) = (EXP(X)- EXP(- X))/2

TANH(X] = EXP(-X)'(EXPfx)- EXP

\ "f 1 *■ '

SECH(X) = 2/(EXP(X) - EXP(- X))

CSCH(X) = 2/(EXP(X) - EXP(- X))

COTH(X) = EXP(- X). (EXP(X)

-EXP(-X))*2+1

ARCSINH(X] = LOG(X-SQR(X'X^1))

ARCCOSH(X)=LOG(X-SQR(X-X-1))

ARCTANH(X) = LOG((1 - X)'(1 - X))/2

ARCSECH(X| = LOG((SQR

ARCCSCH(X) = LOGf(SGN(X)-SQR

fX'X-1/x)

ARCCOTHfX) = LOG((X -1)/(X -1))/2

275

APPENDIX H

ERROR MESSAGES

This appendix contains a complete list of the error messages generated

by the VIC, with a description of the causes.

BAD DATA String data was received from an open tile, but the program

was expecting numeric data.

BAD SUBSCRIPT The program was trying to reference an element of an

arraywhose number is outside of the range specified inthe DIM statement.

CAN'T CONTINUE The CQNT command will not work, either because

the program was never RUN, there has been an error, or a line has been

edited.

DEVICE NOT PRESENT The required I/O device was not available for

an OPEN, CLOSE, CMD, PRINT#. INPUT#, or GET#.

DIVISION BY ZERO Division by zero is a mathematical oddity and not

allowed.

EXTRA IGNORED Too many items of data were typed in response to an

INPUT statement. Only the first few items were accepted.

FILE NOT FOUND If you were looking for a file on tapeT and

END-OF-TAPE marker was found. If you were looking on disk, no file with

that name exists,

FILE NOT OPEN The file specified in a CLOSE, CMD, PRINT#,

INPUT*, or GET#. must first be OPENed.

FILE OPEN An attempt was made to open a file using the number of an

already open file.

FORMULA TOO COMPLEX The string expression being evaluated

should be split into at least two parts for the system to work with.

ILLEGAL DIRECT The INPUT statement can only be used within a

program, and not in direct mode.

ILLEGAL QUANTITY A number used as the argument of a function or

statement is out of the allowable range.

LOAD There is a problem with the program on tape.

NEXT WITHOUT FOR This is caused by either incorrectly nesting loops

or having a variable name in a NEXT statement that doesn't correspond

with one in a FOR statement.

NOT INPUT FILE An attempt was made to INPUTor GET data from a file

which was specified to be for output only.

NOT OUTPUT FILE An attempt was made to PRINT data to a file which

was specified as input only.

OUT OF DATA A READ statement was executed but there is no data left

unREAD in a DATA statement.

276

I

I

I

I

OUT OF MEMORY There is no more RAM available for program or

variables. This may also occur when too many FOR loops have been

nested, or when there are too many GOSUBs in effBct.

OVERFLOW The result of a computation is larger than the largest

number allowed, which is 1.70141884E + 38.

REDIM'D ARRAY An array may only be DIMensioned once. If an array

variable is used before that array is DIM'd, an automatic DIM operation is

performed on that array setting the number of elements to ten, and any

subsequent DIMs will cause this error.

REDO FROM START Character data was typed in during an INPUT

statement when numeric data was expected. Just re-type the entry so that

it is correct, and the program will continue by itself.

RETURN WITHOUT GOSUB A RETURN statement was encountered,

and no GOSUB command has been issued.

STRING TOO LONG A string can contain up to 255 characters.

SYNTAX A statement is unrecognizable by the VIC. A missing or extra

parenthesis, misspelled keywords, etc.

TYPE MISMATCH This error occurs when a number is used in place of a
string, or vice-versa.

UNDEF'D FUNCTION A user defined function was referenced, but it has

never been defined using the DEF FN statement.

UNDEF'D STATEMENT An attempt was made to GOTO or GOSUS or

RUN a line number that doesn't exist.

VERIFY The program on tape or disk does not match the program

currently in memory.

277

APPENDIX I

I
CONVERTING PROGRAMS TO VIC 20

BASIC

If you have programs written in a BASIC other than VIC 20 BASIC, some

minor adjustments may be necessary before running them with VIC 20

BASIC. The following paragraphs specify things to look for when

converting BASIC programs.

String Dimensions

Delete all statements that are used to declare the length of strings. A

statement such as DIM A$ (I,J), wtilch dimensions a string array for J

elements of length I, should be convened to the VIC 20 BASIC statement

DIM AS (J).

Some BASICS use a comma or ampersand for string concatenation.

Each of these must be changed to a plus sign, which is the operatorfor VIC

20 BASIC string concatenation. i

In VIC 20 BAS!CT the MID$, RIGHTS, and LEFTS functions are used to

take substrings of strings. Forms such as AS(I) to access the Ith character

in AS, orA$(I,J) to take a substring of AS from position I to position J, must

be changed as follows;

Other BASIC VIC 20 BASIC

AS(t) - XS AS- LEFTS (AS,1-1) -■ X$ + MID$ (AS.I + 1)

A$(U) = XS AS = LEFTS (ASJ-1)-X$-MIDS (ASJ-I)

Multiple Assignments

To set B and C equal to zero, some BASICs aElow statements of the form;

10 LET B = C = 0

VtC 20 BASIC would interpret the second equal sign as a logical

operator and set B equal to -1 if C equaled 0. Instead, convert this

statement to two assignment statements:

10 C = 0:B = 0

Multiple Statements

Some BASICS use abackslash [\] to separate multiple statements ona

line. With V'C-20 BASIC, be sure all statements on a line are separated by

a colon (:).

Mai Functions

Programs using the MAT functions available in some BASICs must be

rewritten using FOR . . . NEXT loops to execute properly.

Character Tokens t

To conserve user space, BASIC keywords are translated to 1-character

tokens. The token values are shown in the following table.

278 I

I

Token

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

15S

159

160

161

162

163

164

165

166

TOKENS

BASIC

keyword

END

FOR

NEXT

DATA

INPUT*

INPUT

DIM

READ

LET

GOTO

RUN

IF

RESTORE

GOSUB

RETURN

REM

STOP

ON

WAIT

LOAD

SAVE

VERIFY

DEF

POKE

PRINT#

PRINT

CONT

LIST

CLR

CMD

SYS

OPEN

CLOSE

GET

NEW

TAB{

TO

FN

SPC(

FOR VIC 20 BASIC

Token

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

(1)

BASIC

keyword

THEN

NOT

STEP

_

_

■

/

AND

OR

>

-

<

SGN

INT

ABS

USR

FRE

POS

SOR

RND

LOG

EXP

COS

SIN

TAN

ATN

PEEK

LEN

STRS

VAL

ASC

CHRS

LEFTS

RIGHTS

MiDS

GO

?SYNTAX ERROR

Note: (1) The token after used token produces this error when listed.

279

APPENDIX J

PINOUTS FOR INPUT/OUTPUT DEVICES

Here is a picture of the I/O ports on Ihe VIC:

1) Game I/O

2) Memory Expansion

3) Audio and Video

4) Serial I/O (disk)

5) Cassette

6) User Port (modem)

Game I/O

\ \

PIN #

1

2

3

4

5

6

7

8

9

TYPE

JOY0

JOY1

JOY2

JOY3

POT Y

LIGHT PEN

+ 5V

GND

POTX

NOTE

MAX.IOOmA

!

I
280

Memory Expansion

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ABCDEFHJ K LMNPRSTUVWXYZ

PIN#

1

2

3

4

5

6

7

8

9

10

11

TYPE

GND

CDO

CD1

CD2

CD3

CD4

CD5

CD6

CD7

BLK1

BLK2

PIN#

12

13

14

15

16

17

18

19

20

21

22

TYPE

BLK3

BLK5

RAM1

RAM2

RAM3

VR/W

CR/W

IRQ

NC

+5V

GND

PIN#

A

B

C

D

E

F

H

J

K
L

M

TYPE

GND

CAO

CA1

CA2

CA3

CA4

CA5

CA6

CA7

CA8

CAS

PIN#

N

P

R

S

T

U

V

w

X

Y

z

TYPE

CA10

CA11

CA12

CA13

I/02

I/03

S02

NMI

RESET

NC

GND

281

Audio Video

PIN #

1

2

3

4

5

TYPE

-5V REG

GND

AUDIO

VIDEO LOW

VIDEO HIGH

NOTE

10mA MAX

I

I

Serial I/O

PIN#

1

2

3

4

5

6

TYPE

SERIAL SRQ IN

GND

SERIAL ATN IN/OUT

SERIAL CLK IN/OUT

SERIAL DATA IN/OUT

RESET

Cassette

12 3 4 5 6

A B C D E F

PIN #

A-1

B-2

C-3

D-4

E-5

F-6

TYPE

GND

i-5V

CASSETTE MOTOR

CASSETTE READ

CASSETTE WRITE

CASSETTE SWITCH

282

User 10

12 3 4 5 6 9 10 11 12

ABCDEFHJKLMN

PIN #

1

2

3

4

5

6

8

9

10

11

12

TYPE

GND

+5V

RESET

JOY0

J0Y1

JOY2

LIGHT PEN

CASSETTE SWITCH

SERIAL ATN IN

+ 9V

+ 9V

GND

NOTE

100mA MAX.

100mA MAX.

PIN #

A

B

C

D

E

F

H

J

K

L

M

N

TYPE

GND

CB1

PBO

PB1

PB2

PB3

PB4

PB5

PB6

PB7

CB2

GND

NOTE

283

APPENDIX K

I

VIC PERIPHERALS & ACCESSORIES

Here is a list including just a few of the growing number of

peripherals, accessories and programming tools which are

available from Commodore for your VIC 20:

COMMODORE DATASSETTE ... lor loading your own

programs and replaying inexpensive pre-recorded tape programs.

VIC 1540 SINGLE DISK DRIVE ... stores up to 170K of data on

a floppy diskette, for fast, high-capacity data storage and

retrieval.

VIC GRAPHIC PRINTER ... 80 column dot matrix printer for

making paper printouts; prints VIC graphics, Eetters, numbers and

programmable characters.

VICMODEM ... Commodore's exclusive "affordable" modem

on cartridge turns Ihe VfC into a telecommunications terminal.

Originate/answer direct connect. 300 baud. VICTERM I tape

included.

VIC 3K MEMORY EXPANDER ... 3K memory expansion on i

cartridge,

VIC 8K MEMORY EXPANDER .,, 8K RAM memory expansion
cartridge.

VIC 16K MEMORY EXPANDER ... 16K RAM memory expansion .

cartridge,

RS232 TERMINAL INTERFACE ... adapter cartridge for RS232

applications (connects to user port).

IEEE-488 INTERFACE CARTRIDGE ... for IEEE applications &

PET/CBM accessories.

GAME JOYSTICK ... for playing Commodore games on

cartridge or tape,

TWO PLAYER PADDLES ... for games and other programs.

LIGHTPEN ... for screen-touch programs such as

computerized drawing.

PROGRAMMING AfDS

PROGRAMMER'S AID CARTRIDGE .., more than 20 BASIC

program editing commands.

VIC SUPEREXPANDER CARTRIDGE ... graphics plotting,

music. 3K expansion all on one cartridge.

VICMON ,.. Machine Language Monitor for writing/editing

machine code programs.

PROGRAMMABLE CHARACTER/GAMEGRAPHICS EDITOR . ..

tape program lets you create your own VIC characters, symbols,

alphabets.

TEACH YOURSELF PROGRAMMING SERIES ... self-teaching

books and tapes for VIC owners who want to learn more about

programming. Begins with INTRODUCTION TO PROGRAMMING,

Part I.

284

i

I

INDEX

Abbreviating sound commands, 96

Abbreviations, BASIC commands,

79, 263

ABS function, 41

ASC function, 41

Accumulator, 126. 140

Addition, 62

Addressing, VIC, 113

Adventure games, ix

AND operator. 65. 66

Applications, ix

Arithmetic formulas, 62, 275

Arithmetic operators, 62

Arrays, 60, 81

ASC function, 41

ASCII & CHRS Cades. 272

Asterisk (multiplication), 64

ATN function, 42

Auxiliary color, 93, 217

B

BASIC, 1

abbreviations. 79, 263

commands, 5

keyword codes, 121

locations, 116-12OH 118-119

operators, 62. 63

statements, 14

variables, 53, 80

Beginning machine code, 132, 168

Bit mapping, 68

Bit patterns, 93

Boolean operators, 62

Boolean truth iable; 66

Border color. 93

Buffer, 77

Bus

address, 109

control, 111

data, 111

eh 131

Calculator mode, 75

Character generator ROW, 82

Character memory, 82

Character size, 215

Chess (Sargon IS), x

CHRS function, 40, 42

CHRS codes. 272

Chips

65Q2chip, 113

VIC chip, 113

CLR statement, 14

CLR/HOME key, 73

Clock, 179, 134-5,204

CLOSE statement, 35

CMD statement. 35

Color

auxiliary, 217

border, 217

keys, 29

memory map,

register, 93

screen and border,

Columns, video, 214

Commands. BASIC, 5

Commodore key, 73

Communication, x

Concatenation, 58, 62, 69

Connecting the VIC (see owners

guide)

CONT command, 5

Control bus, in

Converting PET to VIC, 278

COSine function, 43

CRSR keys, 28. 73, 74

Crunching BASIC programs, 79

CTRL key, 29

D

DATA statement 15,31,86

DELete key, 73

Deriving math functions, 275

Device addressing, 38

Device number addressing, 38

DIMension statement, 37, 61

Direct mode, 75

Disk, 8

E

Editing programs, 74

Eliminating spaces, 81

END statement, 18

Error messages, 276

Expansion port, 241, 244

Expansion RAM/ROM, 118

EXPonent (unction. 43

Exponentiation, 63

F

Fetch cycle, 109

Filenames, 70

Floating point variables, 54h 59

FOR statement, 19

FOR . .. NEXT loop, 19

FRE function, 43, B5

Frequency modulation, 101

Functional block diagram, 110

Functions, BASIC, 40

Function keys. 78

G

Game controls. 246

Game port, 246

GET statement. 20. 77

GET# statement, 36

GOSUB statement, 20, 81, 133

I

I

I

I

I

I

I
286

GOTO statement, 22

Graphics, 82

character memory, 82

programmable characters, B2

high resolution, 87

Greater than symbol, 64

H

Hexadecimal notation, 128, 131,

170, 178

High resolution, 37

Home position, 73

Horizontal screen origin. 213

I

IEEE-488 Interface, 244

IF.. .THEN statement, 22

Immediate mode, 75

indexed indirect addressing, 135

Indexing, 34

Indirect indexed addressing, 134

Input buffer, 77

INPUT statement, 24

INPUT* statement, 36

INSert key, 30,73

Instruction set [6502), 140

INTeger function, 44

Integer variables, 54, 57

Interface mode, 213

Interpreter, BASIC, 119, 125

I/O guide, 227

3/0 ports, addressing, 113, 184

I/O registers, 218

I/O statements, 35

I/O status, 49

IRQ, 243

Joystick, 246

Jump table, 138

K
Keyboard buffer, 77, 180

Keywords, 120-121

KERNAL, 114, 116, 125. 138, 1B2,

251, 259

power-up activities, 211

user callable routines, 184

LDA (load accumulator), 130

LEFTS function. 44

LENgth function, 45

LET statement, 25

Light pen, xH, 215, 250

Line numbers, 79, 120

LIST command, 6

LOAD command, 7

Loan/Mortgage Calculation, xii

LOGarithm function, 45

Logical operators, 68

M

Machine language programming,

107, 123

Machine code

Memory expansion, 124, 244

Memory map, 124, 170

Microprocessor (6502), 109

MIDS function 45

Mfnus sign, 63

Mixing sound & graphics, 105

Multicolor mode, 92

Multiple speakers, 100

Multiple statements on a line, 75,

80

Music, 95,96,232

Musical note table, 266

Music, frequency modulation, 101

Music programming techniques, 98

N

NEW command, 9

NEXT statement, 26

NOT operator, 63

Number bases, 128

Numbers, 54

Octave comparison chart, 99

Octaves, 95

ON statement, 26

Operators, 62

OR operator, 68

Paddies, 216,246

Parantheses [in formulas), &4

PEEK function, 46

Piano program, 103

Pin configuration, 213. 241

Pinouts for I/O devices, 280

POKE statement, 27

POS function, 46

PRINT statement, 28

PRINTS 39

Printer, 236

Program counter, 126

Programmable characters, 82, 237

Programming music. 98

Programming tips, 71

Program mode. 75

Programs, 76

editing. 73

line numbering: 78

Quote mode, 29

RAM memory, 85. 109, 111,115

RAM starting locations, 85, 118

Raster value, 215

267

READ statement 31. 81

Register, 126

Relational operators, 62r 6<l

REMark statement. 31. 80

Reserved WOfds. 60. 120

Reset, 243, 4

RESTORE siatement, 32

Relurn keyr 73

RETURN statement. 32

Reversed characters. 29. 85. 217, 239

RIGHTS function. 47

RND function. 47

ROM. 109. 114. 115

Rounding numbers, 54

Rows, video. 215

RS-232 interface. 251

RUM command. TO

RUN/STOP RESTORE, 4, 25

S

SAVE command, 10

Schematic [inside back cover)

Scientific notation. 56

Screen & border colors, 265

Screen display codes, 267

Screen editing. 73

Screen formatting, 201

Screen memory location, 215. 270

Screen RAM. 115

Serial bus. 234

SGN function, 48

Shift register. 221

Shortening programs. 79

SINe function, 48

Sound commands. 96

Sound, programming. 95t 216

Space. 74. 81

SPC function, 48. 81

Speakers. 95

SQR luncfion, 49, 91

ST numeric valueh 50

Stack. 133. 141

Stack painter. 127, 134

Start of text. 119; of memory, 124

Statements. BASIC, 14

Status lunctjon, 49

Status register. 126

STOP command, 33, 4

STRS function. 50

String comparisons, 70

String operations. 57, 70

String variables, 57

Subroutines. 138-9

Subtraction. 62

Super expander. 94

3YS statement, 33

System dock. 204

System overview, 109

T

TAB function, 51.81. 121

Talking VIC. xiv

TAN function. 51

T| vsnab!e, 52

TIS variable. 52. 77, 179

Time, setting VIC cfock, 52

Tjmer, 220

Top of memory, 119

True/fatse lestingH 65h 68

U

Upper/lower case. 115

USR function, 52

User defined function, 52

Useful memory locations, 178

User port. 229

User program, memory location. 119

V

VALue function, 53

Variables. 58. 80

Variables, extended names, 60

VERIFY command, 12

VersatrEe interlace devices, 109.111.

21a

Vertical screen origin, 214

VICMON, 127, 135. 137

VICTIPs. 85, 96, 103. 105

Video interface chip, 116, 212

Volume, 95

W

WAIT statement. 34

Warm starl. 4

White noise generator, 104

Writing machine codeH 133

X Index register, 126

Y index register. 126

Zero page, 133

I

I

288

U THE MICROCOMPUTER

MAGAZINE

commodore
The Commodore Magazine provides a vehicle for sharing the latest product

information on Commodore systems, programming techniques, hardware

interfacing, and applications for the CBM, PET, SuperPET and VIC

systems.

Each issue contains features of interest to anyone that owns, or is thinking

about, purchasing Commodore equipment:

• Application articles examine how users from various backgrounds use

Commodore computers in business, education, and the home.

• Columns by leading experts explain ways to get the mosi out of your

computer in clear, concise language.

• The latest news on user clubs, a question/answer hotline column, and

reviews of the newest books and software round oul the must complete

magazine devoted exclusively to Commodore computers.

Readers are also encouraged to submit articles for publication and share

their experiences using Commodore computers,

Commodore Magazine is published 6 times a year by Commodore Business

Machines. Inc+ The subscription fee is $15,00 for six issues within the

United States and its possessions and S25+O0 for Canada and Mexico.

Commodore Magazine Subscription Form

Name:

Address:

City: State; Zip:_

Renewal Subscription New Subscription

Equipment Use: Personal Education Business

My subscription began with issue number

Enclosed is a check or money order for $.

for issues of Commodore Magazine

Make checks payable to Commodore Business Machines, Inc.

681 Moore Road

King of Prussia, PA 19406

Attn: Editor. Commodore Magazine

289

I

ABOUT THE VIC 20

PROGRAMMERS REFERENCE GUIDE,

This easy-to-use manual gives you a ready source of

information on VIC 20 software and hardware, with

detailed explanations of each topic and "friendly"

tips throughout to help you use your VIC 20 to best

advantage.

The-VIC PROGRAMMERS REFERENCE GUIDE is

actually four guides in one. It includes (1) a BASIC

VOCABULARY GUIDE which explains the complete

VIC BASIC language instruction set along with (2) a i

PROGRAMMING TIPS GUIDE with suggestions on

how to improve your programming, (3) a MACHINE

LANGUAGE PROGRAMMING GUIDE to help you

talk to the VIC in its "own" binary/hexadecimal

language, and (4) a special section on INPUT/ I
OUTPUT OPERATIONS giving you the information

needed to connect your VIC to special peripherals

like RS232 devices, lightpens and others.

This guide was compiled from information provided

by Commodore programming staffs working in more

than half a dozen countries worldwide.

Whether you're a first-time computerist or an expert

programmer, you'll find a wide variety of program

ming aids available through your Commodore dealer.

In addition to books and manuals, Commodore

provides several special programming cartridges and

the TEACH YOURSELF PROGRAMMING (trn)

instruction series.

e commodore

COMPUTER
DISTRIBUTED BV

Houucird ULJ. Sams & Co., Inc.
4300 W 62nd Stieqt. Indianapolis, Indiana 4&268 USA

$16,95/21948 ISBN: 0-672-21948-4

