$5.95

Personal Computing on the

a friendly computer guide

" commodore

COMPUTER

Published by

COMMODORE INTERNATIONAL, LTD.
Computer Systems Division

950 Rittenhouse Road

Norristown, PA 19403

U.S.A.

Copyright © 1981 Commodore International and Avalanche Productions. All rights re-
served. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise without the prior written permission of Commodore International.

- T N N N A T N S O N N T W W N W W
i

%0066.6.6

0000000000 000000000COCOFOCOPD

" PERSONAL
COMPUTING
ON THE

VICZ0

A friendly computer guid"ei

- COMMODORE INTERNATIONAL
AVALANCHE, INC.
I : _ =3

PREFACE

You are about to meet a friendly computer! Friendly in price,
friendly in size, friendly to use and learn on and experience.
Most important — you don’t have to be a computer
programmer, or even a typist, to use it!

If you're a first time computerist, this manual will provide an
excellent introduction to computing. Unlike most instruction
manuals, you don’t have to read through this whole book to get
to the “good stuff.” After reading Chapter 1 (GETTING
STARTED), you can go directly to a chapter that interests you
and start reading. If you're interested in animation turn to
Chapter 4. If you like music, try Chapter 5.

The first page of each chapter has a sample program to start
you off. Just type the program exactly as shown (“Try Typing
This Program”) and see what happens. The rest of the chapter
explains what you did, and shows you how to do more. Chapter
7 summarizes some important programming concepts, and
explains the techniques used in the sample programs.

If you're an experienced programmer, you can use the VIC like
any microcomputer. Familiarity with Commodore computers
will help, since the BASIC and graphics are nearly identical to
those used in the PET/CBM. Advanced reference material and
programming information are included in the Appendix. For
more sophisticated programming, see the VIC PROGRAMMERS
REFERENCE GUIDE, available from your Commodore dealer.

If you're a noncomputerist and have no interest in
programming, per se, you should check out the VIC's growing
library of plug-in cartridges and program tapes. VIC cartridges
plug directly into the back of the console and work
automatically. Programs are also provided on cassette tapes for
use with the Commodore Cassette Tape Recorder.

Cartridges and tapes include exciting “arcade-type” games
such as “VIC INVADERS” as well as educational programs to
help you develop special skills, and home utility programs to
help you solve problems and perform calculations.

Peripherals and accessories for the VIC include the VIC tape
cassette recorder, single disk drive, telephone modem and
printer, to name a few. (See Appendix A)

Computers are becoming an increasingly important part of our
everyday lives — in our homes, at school and in business.
Those who become familiar with computers now will have an
important advantage in the coming months and years. The VIC
not only introduces you to the world of computing, but also
gives you the features and flexibility you need to expand that
world.

Enjoy your new world!

—_— —_— —_— o~ _— —_— _— _— o~ S~ A~ o~ —_— —_— — _— —_— —_— — -~ _— —- S P . g —

—

Pl o e =0 = ="

TABLE OF CONTENTS

CHAPTER TITLE PAGE
PREFACE it s v o e s R s it s i s Il
UNPACKING AND CONNECTING THE VIC20........... Vv

One GETTINGTO KNOWYOURVIC.......ooeeeeeciceenne 1
o Getling Starteduiiniiiiisnsismmssaisin 3

¢ Your First Computer Program.......ccccoocovneniiiis 7

Two USING THE SCREEN AND KEYBOARD 11
¢ Your First Graphic Character.......cccoeiiiiiines 14

¢ A Tour of the VIC20 Keyboard......cccovvveeeeeicccniis 17

* Printing on the SCreen........ccceiiimennccciiicinannes 21

e The VIC20 Calculator....ccccceeciiemiiimeiceeiecinneeee 24

o Introduction to Colorcoveeecreericiecineeciee e 25

Three COLORAND GRAPHICS..........cocooniiirimneececceinee 27
® Programming in Color......ooerimniiniiiiiis 30

o The VIC Color Keys.....ciiiiininmrrinneceeecceiisnaeee 32

¢ Changing Screen and Border Colors...........cceucee 34

e Screen & Border Color Combinations 37

* Coloring the SCreeN.......coveeeeeeieiisnsnecesensscsnsnes 37

o Screen LoCationsccoccviiiinnrrrieeecsneeecnins e 39

LR E 16 (] 111 2] (o] fc P OO 40

» Combining Sound and ColOT.....ccconreerenencricacnes 45

e Keyboard GraphicCs.......ccccveemmniiciininnrnnicnieciinnns 47

e Graphics in Headlines and Titles.......cccococeennn 48

Four ANIMATION ...t cccirre e s e e 51
o FIYing Birds . :.ccvsiiiinminismiessssas oo 53
® Bouncing Ball ... 57
e Controlling the CUISOr.........ccciiaminersessesseesseens 60

¢ Animating with POKEs and PEEKScc....... 61

1]

Five SOUNDANDMUSICcooovoeeieeeeeeeeeeeeeeeee e 67
® MaKing MUSICc.coueuiiiiieieiecceeceeee e 69

* The FourVoices of VIG...awsassinswaamsu 71

* The White Noise Generator..........ccoueevvevvecuiennenn 74

® Using the VIC as a Piano........c.ceuevvensiuicassennasnanens 76

8 Playing SONQS:.caimimmiimmmnnniininiins 78

* A Few Words About POKEcc.cceeveiiieiceeaannen 80

Six CONVERSING WITHYOURVIC.......ccoovveeeeeeen. 81
e What's Your Name?cccoceeivevcniieeeee e, 83

* Introducing Variables.........ccceevvviiereenreeeeenne. 86

® ChOOSE 8 NOLE........cccivuniiieninesiesiessismensrneranessennns 88

®* The GET Statementccvccveeeeeeeeerveeeer e 89

Seven INTRODUCTION TO PROGRAMMING............co......... 93
* Your First BASIC Commandsccccocevvvevennnnn. 95

* Random NUMDErsccccuveeeeeeeceeee st 103

TITLE PAGE

APPENDIX s s e s irsies 105
A VIC System ACCESSOrIES.....coveireeeieeeeceesresreereseesnans 106

B. Working With Tape Cassettesccc.cocuveeeueee... 109

C. VIC BASIC Vocabularyc..ceeevevceeeveeeerereeernennnns 113
D. BASIC Command Abbreviationsccceceevveuennne. 133

E. Screen and Border Color Combinations................. 134

F. MUSICAI NOES ..o 135

G. Sample Sound Effacts........cicwsnmasasio 136
H. ScreanDisplay Godes .. umnnrsamsmim: 139

I SereenMemory Mapi. e nanssnsa i 143

J. Ascii and Character($) Codes.........ccovvvvrmrereeenennen. 145

K. Deriving Mathematical Functionscoocovveune.... 148

L. Pinouts for Input/Output Devices.............cc............ 150

M. VIC ProgramsSto TIY weceeceeeeeeeeeeeeeeeeeeceee e, 153

N. Error MeSSages ...c.ccoovvveeeieieieccieecveecieer e 160

e T

UNPACKING AND CONNECTING

THE VIC 20

Welcome to computing! The following step—by—step instructions show you how
to unpack the VIC, connect it to your television set and make sure it's working

properly.

Let’s begin by taking a quick

look at the VIC 20:

KEYBOARD

(used to type

information POWER LIGHT
and instructions (glows when your
into the computer) VIC is turnad on)

\ POWER CORD
W SOCKET
J (Attach power
supply here)

i

GAME PORT ON/OFF
(for joystick SWITCH
and other

game control

devices)

:‘ ST T T
! B S

EXPANSION __—=— f

PORT

(VIC Program

cartridges

plugin here) 5 pjN SERIAL CASSETTE
VIDEO PORT PORT
PORT (For special (Tape
(For accessories cassette
connection like printer, goes here)
to TV set disk drive, etc.)
or monitor)

Vv

USER PORT
(For special
accessories)

=
| |

Ll

o &

8.

Check the contents of your VIC container. You should find the

following items;
— VIC 20 Personal Computer

— Power Supply (large box with 2 cords coming out of it)
— RF Modulator (small metal box) and short cable*

— Video Cable

You will need 2 electrical outlets (sockets) — one for the VIC and

one for your television set.

Position the VIC and Television set so you can use the keyboard
comfortably while viewing the television screen...ideally, a tabletop

or desk.

Find the ON/OFF switch on
the right hand side of the VIC.
Make sure it's in the “OFF"
position.

There are two cords coming
out of the power supply box.
Plug the power supply cord
into an electrical outlet and
plug the other cord into the
power cord socket on the side
of the VIC. NOTE: The power
supply remains “on" while
plugged in so you should
unplug it when not in use.

-~ : \
_—/

ON/OFF SWITCH j

POWER
CORD
. SOCKET

POWER
SUPPLY Z"

REAR VIEW OF THE VIC

Connect the video cable to

the back of the VIC and to the
RF Modulator box, as shown.
Make sure to connect it to the
video port and not to the 6-pin
serial port, which is next to it.

Connect the RF Modulator to
your television set. For this
you'll need a screwdriver. The
short TV connector cord runs
from the RF Modulator box to
the 2 VHF Antenna leads on
the back of your television.
Simply connect the two wires
to the VHF leads and tighten
the screws firmly. *

Turn on the TV set.

RF MODULATOR

VIDEO
CABLE
CONNECT
WIRE LEADS REAR VIEW OF
TO ANTENNA Ty SET
LEADS ON I——
YOURTV S—
i S ® VHF

RF MODULATOR

Note: Some VICs are provided with a "switchbox” which attaches between the RF modulator and TV set.
The switchbox contains a switch with settings for “computer” and “TV" and should be set to “computer”
when using the VIC.

Vi

—

~

—

Fall e "

TROUBLESHOOTING CHART

SYMPTOM

CAUSE

REMEDY

T T N T T e o o o a a a _ _ N _ N _ U N _ U

NO PICTURE
(POWER LIGHT OFF)

VIC not “on”

Make sure power switch
is in “on" position

VIC not plugged in

Check power socket
next to power switch

Power supply not
plugged in

Check connection with
wall outlet

Bad fuse in VIC

Take VIC to your
Authorized Commodore
Service Center for

replacement of fuse*

NO PICTURE

(POWER LIGHT ON) (Try turning VIC off for a few seconds, then back on)

TV on wrong channel

Check Channel 3 & 4 for
picture

Incorrect hookup

VIC hooks up to “VHF"
terminals on TV

Modulator not plugged
in

Check connection at
5-pin Video Port

Modulator on wrong
channel

Flip switch on Modulator

Video cable not
connected

Check connection on
modulator

PICTURE WITHOUT
COLOR (TRY TV &
MODULATOR ON
CHANNEL 3 & 4)

Poorly tuned TV

Retune TV

PICTURE WITH
POOR COLOR

Bad color adjustment on
TV (see “picture without
color”)

Adjust color/hue/
brightness controls on
TV

PICTURE WITH
EXCESS
BACKGROUND NOISE

TV volume up too high
(see “picture without
color”)

Adjust volume of TV

PICTURE OK,
BUT NO SOUND

TV volume too low

Adjust volume of TV

*The VIC uses a 3 amp SLO-BLO fuse.

Vil

.

10.

11.

12.

Turn on the VIC (the red
power light on the top of the
computer should come on). If
the power light does not,
consult the accompanying
troubleshooting chart.

There is a switch on the RF
Modulator for selecting either
Channel 3 or 4. Choose the
channel with the weaker
reception in your area, and set
both the TV and the
Modulator to that channel.
The fine tuning on your
television may need some
adjustment.

Here is what you should see —_———— e
on the screen — sometimes it
takes a second or two to = BYTES FREE
activate. If you don’t get the s s

following display on your
screen, turn the computer off,
wait a few seconds and turn it
on again.

Adjusting the color and
tint/hue depends on the color
controls provided on your
television set — naturally,
sets with better controls yield
better color. Some sets show
some colors better than
others.

If you have trouble with any of
these steps, consult the
accompanying
troubleshooting chart.

NOW...you are ready to start using the VIC.

NOTE: You can use a monitor instead of a television set — in which case you

can go directly from the VIC to the monitor cable, without the RF
Modulator.

IF ALL ELSE FAILS...CALL THE TOLL-FREE
COMMODORE TECHNICAL HOTLINE...

1-800-523-5622

Vil

!oooooooocooooooooooooooo#ooooooodz

Getting to
Know Your
VIC

® Getting Started

® Your First
Computer Program

Try typing this program:

Type this program exactly as shown and see
what happens!

This line tells
the VIC to print
what’s between the
quotation marks.

RETURN

1 PRINT “VIC20"
This line tells the VIC
to go back to Line 1

2 GOTO 1
and print it again.

[B] N RO Typing the word RUN
makes the program

.’ﬁ

Y- - W

T T a T a a a a _ _ _ U _ _ _ _ ,

—~— -

P =T

GETTING STARTED—
EXPERIMENT A LITTLE

You made it! Your VIC is aglow with color and ready for you
to tell it what to do. The dark blue, blinking rectangle, called
the cursor, is a signal from the VIC that it is waiting for you.

**** CBM BASIC V2 ****
3583 BYTES FREE

READY.

The VIC is
saying it’s
ready.

VIC TIP:

If you type a character on the screen that you don’t want, press the

INST PP
DEL

This key will erase the character immediately to the left of the blink-
ing cursor.

Use this key as often as you like to delete unwanted characters.

Now, on with the tour! Begin by pressing the following keys:

[P] [RI[T](N] (7]

See how the cursor moves over one position every time you
press a key? The cursor tells you where the next character is
going to appear on the screen. OK, now find the SHIFT key, it

looks like this:
SHIFT

There are two of them, both the same.
3

Hold the m key down, and while it is being held,
press:

You can release the

SHIFT

key after you press the ﬂ key.
The screen should look like this:

*** CBM BASIC V2 ****
3583 BYTES FREE
READY.

g M1s
PRINT ‘,!_ you typed this

Pressing the ﬂ key while holding down the m

key caused the quotation mark to appear on the screen.”
Let’s continue. Now press the following keys:

Rl [A] [[N] [B] [O] Wi

Finally, hold down the [il key, and press the ﬂ
key once again. The screen

now shows:

**** CBM BASIC V2 ***
3583 BYTES FREE

READY.
PRINT “RAINBOW"

Everything you typed
is on this line.

*Note: if the number 2 appeared on the screen instead of the
” sign, you didn’t hold down the shift key. Hit the
once to erase the 2 and try again. DEL

4

Look for this key: m
Press the m key and look at the screen.

**** CBM BASIC V2 ****

3583 BYTES FREE
READY. ' B You typed

PRINT “RAINBOW?”’ he cursor was here
when you pressed
RAINBOW W\ﬁey.

The VIC typed these.

READY.

Pressing the key told the VIC you were finished

typing. The VIC then looked at what you typed, recognized
that it was being asked to do something (actually, you told it
to print something). The VIC then PRINTed everything between
the two quotation marks (RAINBOW).

When the VIC finished PRINTing the word RAINBOW, it let
you know by displaying the READY message and blinking the
cursor.

It's your turn. Go ahead and enter some other PRINT

messages for your VIC to display. Try these or make up your
own:

FREONDHNR & DN

[Pl RILJN] [T] (H] [E] [E [[O] [7]

Remember, hold
the SHIFT down

to get this :
character.

and
13(B again

PIRIMN TE K A T H M)

5

Experiment by using characters other than letters between the
quote marks: The VIC won’t mind. Note: If you misspell the
word PRINT, the VIC will let you know by displaying this
message on the screen:

Don't worry. There is absolutely no way you can hurt your VIC
by typing at the keyboard (unless, of course, you're an
elephant), but, if you make a mistake, the VIC will help you out
by calling attention to the error. These error messages and
what they mean are listed in AppendixN. At this point, don't
worry about the “SYNTAX ERROR” message. Just keep
experimenting.

In no time your screen gets cluttered with all the stuff you've
been typing. The VIC has a handy way to CLeaR up this clut-
ter. To tell the VIC to “clear” the screen, do the following:

Hold down the SHIFT key and press

the % key.

IMPORTANT

The screen clears instantly; everything you and the VIC have
typed disappears. You are left with a clean white display area
and a blue cursor blinking away in the upper left hand corner.

Remember how you told the VIC to do this feat. Clearing up
the screen is one of the more frequent commands you'll be
using as you get to know your VIC.

el el e - o o ol e oo o o N Y N "

—_

YOUR FIRST
COMPUTER “PROGRAM”

If your VIC performed well in displaying your messages, no
matter how bizarre they might have been, then your computer
is probably ready to do just about anything. Let's begin by
“entering” your first computer program.

STEP 1:

STEP 2:

STEP 3:

STEP 4:

The VIC

blink,

The VIC

Do not type out-the letters of this word
—press the space bar (long key on the bottom of the VIC
keyboard).

When you finish, the screen looks like this:

typed this.

blink, blink...

is waiting.

Clear the screen by holding
down the m key and

then pressing the % key.

Type: [N] [E] and press the m key.

Type: [1] [0] @@m[ﬂ@
MIE 210 6] il \

and press

RETURN

Type: (0]
S0 0o R

Use the

key for these.

NEW You typed
this and
READY. then

pressed

10%PRINT* VIC20";

20 GOTO 10

RLv2

N

VIC TIP: EDITING MISTAKES IN A PROGRAM

If you make a mistake on a line, you have these editing options:

1. You can retype a line anytime and the VIC will automatically
substitute the new line for the old one. For example, if your pro-
gram looks like this:

10 PRINN ““VIC20"
20 GOTO 10

You can skip down by hitting LA a few times and type:

10 PRINT *“VIC20" m

Now, the new line has replaced the old line and the program will

“run". To make sure, type m[ﬂ . Replacing lines in a pro-

gram is also a quick and easy way to experiment.

2. You can erase an unwanted line by typing the number of that line

and hitting . The entire line will be erased from
memory.

3. You can edit a line by using the cursor keys to move to the
character(s) in the line of a program you want to change, typing in

a program over them and hittingm . Note that quota-

tion marks sometimes confuse the VIC—if you get unwanted
characters after quote marks, go back to the beginning of the line
and type it over.

4. The INST key (get it by typing E) lets you

insert characters by opening up spaces in a word or line you've
already typed.

5. The DELETE key (just type E) erases characters imme-
diately to the left of the cursor.

If everything looks all right to you, type the following word,

RO N here

The screen should fill with VIC20. At times, it looks like small
animated letters traveling up the screen.

and press

.

P N N T - T N =

—~ =

-

= A A R A e AR, R S R R . . . e e e e e e e

VIC20VIC20VIC20VIC20VIC20VI(
IC20VIC20VIC20VIC20VIC20VIC20
_220VIG20VIC20VIC20VIC20VIC20V
20VIC20VIC20VIC20VIC20VIC20V
JVIC20VIC20VIC20VIC20VIC20VI
1C20VIC20VIC20VIC20VIC20VIC20!

C20VIC20VIC20VIC20VIG20VIC20V
“20VIC20VIC20VIC20VIC20VIC20V
0VIC20VIC20VIC20VIC20VIC20VI
11C20VIC20VIC20VIC20VIC20VIC20\
IG20VIC20VIC20VIC20VIC20VIC20\
IG20VIC20VIC20VIC20VIC20VIC20)

Want to slow down the program? Press the key on the left
side of the keyboard marked: m

If you hold down the m key, the program slows down.

Amazing! Your VIC is full of wonderful features. Here, with
just a single key, you are telling the VIC to reduce how fast it
is displaying stuff on the screen.

Yes, but how do you STOP the program? Good question. Look
around the keyboard until you find this key: %

Press the % key.- The program should stop, and the
message:

BREAK IN 10
READY

should appear on the screen. (Don’t worry, you didn’t break
the VIC—"break” means “stop” in VIC language). Also, the
cursor should reappear. Did you notice that it was gone while
it was printing?

Now, let's take a look at your program and see if it's still

there. Try typing this:
wos o R

Your program (lines 10 and 20) will be displayed on the screen.
Now type RUN and the program will “run’ again.

9

You have just been introduced to several aspects of the VIC
that you will use in many of the later chapters. You have:

* PRINTed messages on the screen.

e CLeaRed the screen (SHIFT CLR keys).

* Written your first program (VIC20) and created a moving
display.

* Slowed down (ConTRoLed) the program (the CTRL key).

* STOPed the program with the STOP key (RUN/STOP key).

e LISTed the program.

* Learned some easy ways to edit what you type.

As you explore the chapters of this guide, you will find many
uses for what you have seen here. Don’t worry if you have
unanswered questions at this point. Just go ahead and experi-
ment and most of your questions will be answered as you go
along.

This guide is designed so that you can go directly to any
chapter that looks interesting to you. You do not have to read
each chapter in order to get to know your VIC. Just be sure to
start from the beginning of each chapter. You will find that our
gradual introduction to each topic makes it easier for you to
learn how to create adventures of your own. Enjoy!

10

P = - 0 B =

—

11

Using the
Screen and
Keyboard

® Your First Graphic
Character

® A Tourof the
VIC 20 Keyboard

® Printing on the
Screen

® The VIC 20
Calculator

® Introduction to Color

Try typing this program:

Type this program exactly as shown and see
what happens!

20 FOR T =1 TO 300: NEXT

30 PRINT *“your name”
40 FOR T =1 TO 300: NEXT
50 GOTO 10

Type: [R] [N] and hit

To stop the program, press the % key.

12

o~

e T

—

il el o o

USING THE SCREEN AND
KEYBOARD

This chapter assumes that you've read and understood Chapter
1: Getting to Know Your VIC. If you have not, go back and read
at least the last two sections which show you how to use the
keyboard to control what the VIC prints on the screen.

To start, poise yourself before the VIC keyboard and type as
follows, including the program line numbers and punctuation
marks:

Hold down the (LI key and press the % key.

and press the m key.

PRONDEEECD O K
it this means
and press m hit the long
space bar
2] O[T 0 [{]

When you type RUN, the screen should fill with the word:

HELLO

The words appear to be moving up and sideways! Press the
CTRL key to slow things a bit. The VIC is PRINTing the
message several times near the bottom of the screen. When
the screen fills, the contents of the screen are moved up to
make room for more PRINTing. So, the upward movement is
really happening. The “barber pole effect” is an “illusion”
caused by the number of characters the VIC is putting in each
line.

To stop this program, press this key: gl!lﬂ’:’

13

Now, it's your turn. Type these two lines:

TSR ON DE R B DO ofvour Nave)T

and press _
000 e (D

Wow! Now that you're a TV star, what does your name do on
the screen? The “illusion” of movement depends on the
number of characters in the message.

Put your
name here.

The semicolon
means print

everything next
to each other.

Again, when you want to stop the action, press the % key.

YOUR FIRST
GRAPHIC CHARACTER

SHIFT
Clear the screen (hold down and %). Now

type m AND . You should get a blue heart on the

screen. Try it again. You have just typed your first graphic
character.

Try typing other graphics. Now hold down the E key and
type some graphics — this is the left side graphics set. Left
side graphics are very good for designing business forms,

charts and graphs. Typing the and E keys at

the same time lets you use upper and lower case letters. See
Chapter 3 for an explanation.

SIZE OF THE SCREEN

How big is the screen on the VIC? Let’s find out. Do this: Clear
the screen and type the following:

@) and ress IEEINS

PENEEEREE
To type a blue heart, hold down m and press

e n N " ©
14

The screen will fill with blue hearts! Count the number of
hearts being printed across the screen. There are 22 of them in
each row. The VIC has 22 PRINT positions across the screen.
The positions across the screen are sometimes called columns.
The VIC has 22 columns.

A a4 dddd 4 dddddddddddd dd

How many positions are there down the screen? Press the

key to slow down the PRINTing. Holding the key

causes the last four rows to “flash”. The VIC has 23 rows
down the screen.

COLUMN
0123 45678 91011121314151617 181920 21
;
2
3
4
5
6
7
R s
9
0 10
W
12
13
14
15
16
17 H
;A screen locations
19
20
21
22

The VIC has 506 places on the screen for characters, letters,
symbols, and so forth. You might say that the VIC can juggle
506 characters at the same time. Amazing!

VIC TIP

If the VIC has 22 columns across the screen, then any message whose
length is an even divisor of 22 (messages 2 characters, 11 and 22
characters in length) causes the VIC to PRINT in nice neat columns.
Messages of other lengths spill over to the next line. Test this assump-
tion for yourself.

Stop the VIC’s PRINTing of the neat columns of hearts by

RUN
pressing the key. Then enter these two lines into the VIC.

i~ press
O RDE o0 er: T a

You can change the way information is printed on the screen
by putting spaces between the quotation marks. Another way is
to use periods (or dots) instead of spaces. Try typing your name
and 3 periods in the program at the beginning of this chapter.

16

prs

A TOUR OF THE
ViC20 KEYBOARD

o e e o L =
o LR L pe =
P e T O]
Py e e P P =
o s e e R

4

You have now used the keyboard to create and PRINT
messages, put graphics characters on the screen, control the

flow of what the VIC is doing (Mand %), and

possibly edit what you have typed ()

Time now for an extended tour of the keyboard and what it can
do for you. Consult the diagram above for the powerful and
versatile set of VIC20 keys.

This is a “reset” key. RESTORE
If you type the RUN/STOP key and the key

together, you completely reset the computer as if you just
turned it on...with the benefit that any programs you had in the
memory are retained and can be listed or run from the start.

17

Here is how
you can use
these keys:

SHIFT keys — The VIC keyboard is just like a
SHIFT typewriter and has two shift keys and a
SHIFT LOCK key. The SHIFT key is used with

other keys to type graphics characters and perform operations
like clearing the screen.

CLR CLR-HOME key — Press this key and the
HOME cursor moves to the top left-hand corner of
the screen (the “home" position). If you hold
down the SHIFT key and press this key, the cursor still moves
to the home position, but you also clear the screen.

] [CRSRkeys — With the VIC, you can easily
= 1 move the cursor up, down and sideways. The

CRSR keys have a repeat feature that keeps
the cursor moving until you release the key. Each key has a set
of arrows that tell you the directions the key controls—up and
down or sideways. To move the cursor down or to the right, you
simply press the appropriate key. To move up or to the left, you
must hold down the SHIFT key while pressing the appropriate

CRSR key. It is significant to keep in mind that you can move the

cursor over the tops of characters on the screen without affect-
ing those characters.

RETURN key — You press RETURN at the
RETURN end of each line of instruction. Pressing this
key tells the VIC to enter the line, or to
execute the instruction(s). Sometimes it helps to think of
RETURN as an ENTER key because this key actually enters the

information or instruction into the computer.

CTRL key — This key is used with the
COLOR keys to select the colors that you
create on the VIC screen. The key also
provides you with the ability to define your own controf
commands that can be incorporated into any applications you
might develop for the VIC. Some plug-in cartridges will make
use of the Control key to perform special functions. The CTRL
key works like the SHIFT key. You must hold it down while
pressing the color key.

18

AMERER RS

COLOR keys — You can change the colors of the characters
displayed by simultaneously pressing the CTRL key and one of
the 8 color/number keys on the top row of the keyboard. A
shorthand notation for each color is shown on the face of the
keys. The colors are black, white, red, cyan (light blue), purple,
green, blue, and yellow. With these keys, you can set or change
the color of letters, numbers and graphics displayed inside or
outside a computer program. Once you ‘‘set” a color, everything
you type will be in that color until you change colors again.

B’”’ RVS ON and RVS OFF keys — You can
[BYE\

m reverse the images that the VIC puts on the
screen by typing CTRL and RVS ON. Every-

thing you type will then be reversed...for example, you can

make the VIC display white characters on a blue background

(the opposite of what it normally prints) by pressing CTRL and

RVS ON. To get back to normal type CTRL and RVS OFF. Try it!

RUN-STOP key — Press this key to tell the

VIC to stop what it is doing and return control

back to you. When the VIC is running a
program, you can stop the program with this key. Holding down
the SHIFT and pressing this key, tells the VIC to begin loading
information into memory from the optional tape cassette unit.

INST INST-DEL key — You can insert and delete
DEL characters from the line you are typing by
pressing this key. When you press the key by

itself (delete), the character that was immediately to the left of
the cursor disappears. If you're in the middle of a line, the
character to the left is deleted and the characters to the right
automatically move in to close up the space. Holding down
SHIFT and pressing this key, opens up a space in the line so
you can insert a new character. This is very powerful for editing
and correcting mistakes!

GRAPHICS & THE COMMODORE KEY —
m When you turn on the VIC, you're

automatically in “graphics™ mode which
means you can type UPPER CASE letters and the more than 60
graphics you see on the keys. There are two graphics on each
key. To get the graphic on the right side, simply hold down the
SHIFT key and type the key with the graphic you want. To get
the graphics on the left side, hold down the “COMMODORE"
key (the little fiag). In this way you can type UPPER CASE
letters and the full graphics set at the same time! You can
create pictures, charts, and designs by placing characters side
by side or on top of each other (like building blocks).

19

Sesusanagannsac 2
T =
@%@m@@@ﬁm B

UPPER/LOWER CASE and GRAPHICS keys — If you press the
SHIFT and COMMODORE keys at the same time, you put the
VIC into a text mode. You can then use the VIC like an ordinary
typewriter, with full upper and lower case letters, plus all the
graphics on the /eft side of the keys. The left side graphics are
ideal for creating charts, graphs, and business forms. To get
back into “Upper Case/Full Graphics" mode, press the SHIFT
and COMMODORE keys together.

LV, PROGRAMMABLE FUNCTION KEYS — The
M' four tan keys on the right side of the console
m' are not defined when you turn on the VIC.

R They can be assigned tasks or functions from
within the applications that you create. By
- 6 using these keys with and without SHIFT, you
get a total of eight assignable function keys.

Function keys will be mostly used with plug-
in cartridges containing special programs,
but computer programmers can assign these
keys as well

SPECIAL KEYS — The VIC keyboard also contains special
symbols not found on many typewriters, or even most
computers. Examples are the English “pound” sign(£), pi
(7), back arrow (<—), up arrow (4), greater/lesser than
(> <), and brackets ([])

This concludes your tour of the VIC keyboard. Using only
words, it's difficult to convey just how flexible and powerful the
VIC keyboard is. The best way to discover everything the VIC
can do is to begin your own “touring”. Experiment with the
keyboard. Try out the various upper/lower case features
mentioned above. See what you can create with the rich VIC
graphics set. The keyboard is your direct link to the VIC.
Knowing the Keyboard will help you know your VIC 20.

20

- o~ p—

—

AF-F\H\AF\-\HAF\AAAAAMF\AAF\AAAHHF\F‘.AA

Clear the screen and enter the following lines:

The screen shows:

PRINT “A”, “B" ~———————

and the VIC
displays

Now, enter this line and press m » PRINT “A”; “B”

The screen now shows:

NEW

READY

PRINT “A”, “B”
A B
READY.

21

When the comma was used in the first PRINT statement, the
VIC placed the letters on the screen, but separated them by
several spaces. When the semicolon was used, the VIC
displayed the two letters close together.

In the first case, the letters are exactly 11 spaces apart. That
fact gives a clue to what's happening. The VIC divides the
screen area into two equal parts.

When-the VIC is PRINTing two messages or numbers separated
by a comma, it puts the first item on the left side of the screen
and the second on the right

The first item is longer than 11 characters.

If the first item is less than (or equal to) 11 characters, the VIC
PRINTs it and then moves to the center of the screen to display
the second item. If the first item is longer than 11 characters,
the second item appears on the next line. Clear the screen, and
try this example:

PRINT “ABCDEFGHIJKL", “X”

The screen will show:

Look f eon
PRINT “ABCDEFGHIJKL”, “X’" <! tr?;f’ ne‘i{ Eﬁle

I
ABCDEFGHIJKL is goes on

the first line

The first part of the message is 12 characters long, so the “X”
ends up on the next line. Repeat this example with a semicolon
(;) between the two items.

22

_—

Pl e e e o o e B B o B o o e B o o oo o 0 o o o o o o oo o aaaa aa

PRINT “ABCDEFGHIJKL"; “X"

Does your screen show this result?

PRINT “ABDEFGHIJKL”; “X” e
ABCDEFGHIJKLX

the same line

READY.

Get the idea? The VIC acts like a typewriter with an automatic
tab set near the screen’s center. When it sees the comma, it
either “tabs” to the center of the screen or the beginning of the
next line, whichever is next available.

Clear the screen and type the following line into the VIC:

PRINT 1, 2

o
Aha! With numbers you can The screen shows:

leave off quotation marks.

PRINT 1, 2

Do you see the space in front of the first number? When the
VIC displays numbers, it leaves a space at the beginning for the
sign of the number. If the number is positive, you see a blank
space. If the number is negative, a minus sign (-) would appear
on the screen.

23

Try it and see. Enter this line into the VIC:
PRINT -1, -2
Look at the screen and see what is displayed.

PRINT -1, -2

numbers in the
same place

The numbers appear in the same places as in the previous
example; they are preceded by the minus signs (-).

These few examples give you some idea of how the VIC can
help you get your messages and information on the screen. The
VIC has many other ways to assist you with this task, and you
will learn what they are as you continue to use your new
computer.

The VIC Calculator

The VIC can also be used as a 9 digit calculator. The + and
— sign are used just like in mathematics. The VIC multiplica-
tion sign is the asterisk (*) and the division sign is the slash
(/). Type these calculations and check the results. See Appen-
dices C and K for more information.

PRINT 1 +1 RETURN PRINT 2*(4/2) m
The

mathematical PRINT 3-2 RETURN PRINT 5000/5

slash is the m

one on the PRINT 5*2
The 4 sign

is used for
exponents.
This means
3% or 3x3x3

PRINT 2/3
PRINT 6/3 RETURN PRINT 343

VIC automatically
performs the

calculation outside
the quotes and
prints the result

If you PRINT a calculation you
should put it outside the quota-
tion marks. Try these examples:

VIC prints

1 PHINT“2'(4!2)” RETURN ‘(_

. everything
1 PRINT“THE ANSWER 1S”72*(4/2) m inside the quotes

24

A A A e e e L A e e A A e e A e B A AR e e A e e e e e e e e

INTRODUCTION
TO COLOR

The VIC can print letters, numbers and graphic symbols in 8
different colors. It can also print characters in reverse.

With the screen clear, hold down the CTRL key and press this
key:g'

Now let go of the CTRL key and put your finger on the SPACE
bar at the bottom on the keyboard. Hold the SPACE bar down.
What happens? Is there a blue line being drawn across the
screen?

-

Hold the SPACE bar down as long as you want. As the cursor
disappears off the right edge of the screen, it reappears on the
left and the blue line starts forming a larger blue color bar.

Release the SPACE bar and do this: the key with

3 on top

Hold down the CTRL key and press the RED key.
The cursor should now be red. Press and hold the SPACE bar

once again. Does a new red color bar start to form? Yes! Well,
keep painting!

25

I

Change to other colors as you feel like it. Make the color bars
as thick or thin as you like. Enjoy this newly discovered ability
of the VIC that puts a little color into your life.

Now, type m @ and hit the space bar.

Nothing happens except blank spaces. Type mw

and the color bar reappears. Try typing some letters

in “reverse”. Reverse letters make excellent headlines and are
often used to highlight special words and numbers. You can
also use reverse characters inside a program. For example, try
this:
NEW

o prnT - (5 WB' vicao

20GOTO10 — X

hold this while
typing this

don't forget to

after each line!

RUN

To get ready for the next chapter, type

@ m and type the word NEW and

From now on, use
this method to

erase unwanted
programs and
start “NEW"”

26

y

.

|

1l

900000000000 0000000CO0OOOS

27

Color and
Graphics

® Programming in
Color

® The VIC Color Keys

® Changing Screen
and Border Colors

® Screen and Border
Color Combinations

® Coloring the Screen
® Screen Locations
® Random Colors

® Combining Sound
and Color

® Keyboard Graphics

® Graphics in
Headlines and Titles

Try typing this program:

Type this program exactly as shown and see
what happens!

This means

print 505
1FOR H = 1 TO 505 hearts on

2PRINT “ @ '’; the screen.
3NEXT

4FORC = 8 TO 255 STEP 17 This changes
5POKE 36879, C the value of
6FORT = 1 TO 500: NEXT C (color) 17
INEXT ‘\ steps at a time.

g%%TO - This is a time

delay loop that
tells VIC to
count to 500
before changing
colors again.

28

AN e e e e e e e e . e e e e A e e e e e e e e e e e e e e e e e e

COLOR & GRAPHICS

The VIC and your color TV set give you the ability to put
colors everywhere on the screen. When you first turn on the
VIC, the border, the cursor, and any characters on the
screen are already in color. But that’s only the beginning.
The VIC can display 8 cursor colors, 8 border colors and 16
screen colors!

Let’s start by using the keys on the VIC’s keyboard to make
colors on the screen. Type any letter. The letter should
appear in dark blue on a white screen. Now look at the top

row of keys (the numbered keys from 1 to 8). Do you see
the color names written on the front of each key? Now find

the key marked [4; on the left side of the keyboard.
Hold down the B key and hit the key marked At .

Release the m andm keys and type any letter
on the keyboard. This letter should appear in yellow. Now
hold down the w key and hit another color, then type

some letters. See how easy it is to change letter colors on
the screen?

Now find the key marked m Hold down the @ key

and hit the m Try typing some letters. All the letters

you type (until you hit the m key) appear in

reverse on the screen, like a photographic negative. If you

hold down @ and hit m the letters you type will be

displayed normally.

29

PROGRAMMING IN COLOR

Now let's combine color control with a simple program
command. Note that when you type and a color key

inside quotation marks, a reverse graphic symbol appears.
This is okay. Do this:

Hold down the key and press the % key.

Type the letters:

@ and press the key.
Then type: PpronED K

Tyee G & [

to make this graphic ball.

BeERERC B

This symbol appears

when you press Press
& - G «m.

and press RETURN

ER oo ES

30

_—

P =

—

Pl e T e e T O N N N Y . . U N O T N

If you have trouble typing this example, flip back to the
section called ‘‘Getting Started’’ in Chapter One. You can’t
hurt the VIC with anything you type, but you can get
confused by certain key combinations. If you accidentally

leave the ¥ key engaged, for example, the resulting

display is difficult to decipher. If you make a mistake, hit

a few times and retype the entire line. The

new line will automatically replace the old one. When you
have the two lines shown above on the screen, type:

As soon as you press that final , you should

see hundreds of red and blue balls float by on your screen.
How? It's easy with the VIC. Look back at the example
above. See the two strange characters in the line that begins

with *“1”’? They were created when you held the [4i§ key

and pressed the m and m keys. The symbols that

appear are VIC's shorthand to tell it to make the first ball red

and the second one blue.

31

Hold down

and press

Nothing to it. When you are tired of red and blue, press
STOP. If you like free form exploring, try retyping line 1.

Throw in some m and color keys along with graphics

characters and letters or numbers. The VIC can handle it all
and will give you an enlightening color display.

THE VIC COLOR KEYS

In the last example, you discovered that you can insert color

controls into a PRINT message by using the m and the
keys whose faces are labeled:

J sux Ywnr Y reo Wevn Y pur Waan W sLul ved

These keys are the number keys 1 through 8. When you
press these keys in the middle of a PRINT statement, a set
of ‘“strange’’ characters appear. To see what these

characters look like, press B (if the program is still

running), clear the screen, and enter:

PRINT

Don’t forget to put in the quotation marks or to use the

w key with the color keys. Your screen should show:

R R T T T - T T . T O Y O N T = T T T T T T o o

PRINT

~H[REAHNNEE O EMW]

Last
quotation mark
is on this line.

You
typed

Where is
the “A’"?

R INBOWS &

READY.

L

/I\

Where is the letter **A"’? Oh! The second color key is m

and the background is . . . you guessed it. .. white.
PRINTing a white letter “*A’" on a white background gives
you a space in your RAINBOWS.

The other seven letters in the word RAINBOWS are each a
different color. The last letter, S, is yellow. Note that the
READY message is also in yellow, along with the cursor.
When color controls are put in PRINT messages, the VIC
remembers the last color used and stays in that color.

To change the cursor back to the regular blue color, hold
down and press I . If you wish, try PRINTing

some color messages on your own. You will get a chance to
see more uses for the color control keys in just a bit. Right
now, there is an important announcement. . .

EXTRA!! EXTRA!

The VIC Color Show is on The Way!!

33

CHANGING SCREEN & BORDER COLORS

Now that you know how to change the colors of letters and
graphics, we're going to show you how to change the screen
and border colors. You can display 255 different screen and
border color combinations. To make sure the VIC is ready for

what comes next, press % and then - % to

erase the screen. Next, type these lines into the VIC:

cICIT ... J
(Press m at the end of each of the

following lines.)

The left-most
character on
each line

Poke what?!

1TFOR X = 1 TO 255

For this one, hold

down and
press % ;

3PRINT ** [®] POKE 36879, X

2POKE 36879, X

4FOR T = 1 TO 1000: NEXT T

SNEXT X

This is a *“‘time delay’'.
VIC counts from 1 to 1000
(whew!) between changes.

Add one to
“X" — in other words —

change ‘X" to the next
number and do it
over again.

e el el e ol

£ M £

Al el el al ol el al el ol el ool o o o o e Y Y Y Y Y N N N LY

When you have typed these lines, look them over and see if
they match what is shown on this page. If there are some that
don’t match, retype those lines from the beginning. Use

the @ to move back to any lines you want to retype.

Once you are satisfied that the lines are all right, get a piece
of paper and a pen or pencil and place it nearby. Then type:

IE @ and press .

Your screen should begin to blush and flash. The border
changes colors. The background changes colors. Even the
small message at the top of the screen is changing colors.
The VIC is displaying 255 different color combinations.
(Syntax error in one of the lines? Retype that line and
then type:

[R] and again.)

While the VIC is running, if you notice a particular set of
colors that look interesting; write down the number of that
combination. Only the number at the end of the printed
message is changing. The ““POKE 36879, stays the same.
(Occasionally, you will not be able to read the message
because it is the same color as the background. C’'est la vie.
The letters and numbers will reappear after a few additional
flashes.) The VIC has eight border colors, sixteen
background colors, and eight character colors. You can put
characters in all eight colors over any background. That
gives you a lot of combinations to explore.

If you want to restore the screen to its original colors, simply

hold down the % key and hit :

Line two in the example above is responsible for making the
VIC change colors. The line contains a POKE command.
Every POKE command has two numeric values that the

VIC uses:

POKE 36879, X
What

to poke

35

The first number (in this case, 36879) is the location in
memory (think of it as a little box labeled 36879) into which

you are going to POKE (ie. place) the second number, X. The

memory location 36879 happens to be where the VIC stores
its information on what the screen’s border and background
colors should be. Each value of “‘X'’ corresponds to a
different color combination the VIC can display. For this
example, ““X'’ starts with the value 1, then changes to 2, 3,
and so forth, up to a final value of 255.

Z2

[

Memory Memory Memory Memory
Location # Location # Location # Location #
36877 36878 36879 36880

AN EXAMPLE OF POKE 36879, 8

To assist you in your quest for the perfect color
combinations, here is a table of POKE values (**X'' values)
and the background and border colors they produce. The
table gives you the POKE values to produce all combinations
of these colors. The POKE values are in sequence with skips
of eight (8) numbers. The missing numbers are the POKE
values that cause the reversal of displayed characters.

36

~ ~ o~ o~ o~ ~ — ~_ o~ A ~

T

—

o o~ o~ o~ _—~ 7~

-~ — N e

-~

SCREEN & BORDER COLOR COMBINATIONS

Border

BLK WHT RED CYAN PUR GRN BLU YEL
Screen
BLACK 8 9 10 11 12 13 14 15
WHITE 24 25 26 27 28 29 30 31
RED 40 41 42 43 44 45 46 47
CYAN 56 57 58 59 60 61 62 63
PURPLE 72 73 74 75 76 77 78 79
GREEN 88 89 a0 91 92 93 94 95
BLUE 104 105 106 107 108 109 110 111
YELLOW 120 121 122 123 124 125 126 127
ORANGE 136 137 138 139 140 141 142 143
LT. ORANGE | 152 153 154 155 156 157 158 159
PINK 168 169 170 171 172 173 174 175
LT. CYAN 184 185 186 187 188 189 190 191
LT. PURPLE | 200 201 202 203 204 205 206 207
LT. GREEN 216 217 218 219 220 221 222 223
LT. BLUE 232 233 234 235 236 237 238 239
LT. YELLOW | 248 249 250 251 252 253 254 255

COLORING THE SCREEN

Time to combine the VIC's color and graphics features in a
delightful color display. Again, you only have to enter a few
lines into the VIC, and spectacular events begin to happen.
If any examples are still flapping or bouncing across the
screen, [Y them. Clear the screen. Then, type these

mysterious lines:

[N] [E] W] (not too mysterious, yet)

37

1 L = INT(RND(1)*500) + 1

Generates a
random number from 1
through 500.

2 C = INT(RND(1)*8) + 1

Read about
these in
Chapter 7.

Random number
from 1 through 8

3 POKE 7680+L, 160

Where is
this location?

4 POKE 38400+L, C

And this
one?

5 GOTO 1

Check the example to see if all the lines were typed as
shown. If they are all right, clear the screen and type

[R] . Your screen should explode in tiny bursts
of color.

The VIC has done it again! With only a few keystrokes, it is
now dabbling color everywhere. How is this being done?

In simple terms, lines 1 and 2 are randomly selecting where
on the screen the color will go (L for Location maybe) and
what color (C for, of course, Color). Line 1 generates a
number from 1 through 500. Line 2 generates a number from
1 through 8.

38

—

F Y P

P N . . S N T e N e - e

s alks am

o . W oo P

e P

o~ e e . e e o e o e e o em e e m em am m em em m em em em m em em em em em e

Line 3 POKEs a character onto the screen.
’ The value 7608 represents the home position
= oy on the screen; the top lefthand corner.

The POKE value 160 is a solid block

(essentially a reversed space).
Line 4 POKEs the color onto the character. The value 38400

represents the location in memory of the color component of
the character in the home position.

SCREEN LOCATIONS

VIC TIP:
To POKE characters on the screen, you must POKE the screen
location and the color at that location for each character. The screen
locations start at 7680. The color locations begin at 38400. See
Appendix for the screen memory map.

You should try POKEing other values onto the screen.
Change the 160 in line 3 to any number from 0 to 255.

EXPERIMENT — and enjoy your VIC's colorful personality.

There are 506 possible screen locations (chart). You can
place any word, letter, sentence, graphic, or whatever —
whenever you want on the screen. Just imagine the screen
consists of 506 boxes like this — each box has a number.

Enough POKEing around! Time to get back to the color
control keys.

39

VIC TIP:

To restore your VIC to its normal border and background colors,
type this POKE statement:

POKE 36879, 27
or hold down the RUN/STOP key and hit EII3(1:3

RANDOM COLORS

You are now going to find out how you can let the VIC
choose colors to put on the screen. First clear the screen,

and type these lines (press after each line):

PRINT [‘o’ BB ro~"

To get ‘“‘birds’':
= e Hold: Press:
RUN [Q]

[l [a] (1]

Your screen should fill with red and blue birds. Wonder
where they are flying to? They are really moving.

r o~ 070

40

o - = - - .

P e e

~ o~ — _~ A~ e — o~ _— _— — —_— _— —_— —_— _— —_— _— — _— —_— _— _— _— —_— — —_— —_— —_— —_— —_— — -~

Let the birds fly for a while. When you want to stop their
flight, press % ;

Now that you know how to create birds, clear the screen and

type these lines: (Remember the)

NEW
- BEENIBE@E-

To type this
line, hold down and

press each of the color keys

Y o Yo ¥ seo Y orn Veun Yo Vool v B

2 N = INT(RND(1)*8) + 1

This line gives random whole
numbers from one through eight.

3 B$ = MID$(AS,N,1)
Picks one color
control out of AS.
Random

Color
value

controls

4 PRINTBS “ ‘e’ r®~N ",

5 GOTO 2

Look the lines over once they are entered. Check to see if
they match what is shown above. When you are ready, clear

41

the screen and type [R] [N] . If you have any errors,

retype this problem line and [R] [N] it again, Sam

(excuse us, VIC!!). Birds! Birds! Everywhere!! In every color
of the rainbow! Your screen should be humming (oops!) with
flocks of ‘“‘rainbow’’ birds. Notice that there are gaps in your
flock. Actually, the VIC is PRINTing white birds in those
places. If you want these “‘invisible'’ birds to appear, you
must change the background color. (Remember how? You
POKE a number into location 36879.)

Of course, if you change the background to another color,
say blue, then all the blue birds will disappear. Try it and see

for yourself. Press % when you want to keep the birds
from flying.

The last example used some interesting VIC features to get
the birds on the screen and change their colors. Let’s look
at the example line-by-line. The first line is:

rtas=-HEEMNIDNEE"

The color controls form a long string of characters and

are put into the VIC's memory in a place called A$
(pronounced “‘A string’’ or **A dollar sign'’). You can think of
AS$ as being like a box where strings of characters can be

stored. The first position in the box A$ contains them
control character. The last position contains :hem
control character.

characters

@
&
—Suppen

A%

42

P . N Y Y N ol

o~ e e e e e e e, am e e . e e e e,

The next line is:

2 N = INT(RND(1)*8) + 1

This line generates a random positive whole number from
one through eight and puts the number into ““N"". *N’" is the
place in the VIC's memory that can be used to store
numbers. The VIC knows that “‘N"’ is a place to store
numbers since there is no dollar sign ($) at the end of

the name.

In line one, the location used to store the color controls was
called A$, and it has a dollar sign on the end. The VIC knows
that locations whose names end with a dollar sign are to be
used to store messages or strings of characters.

For more information on how [] @ and [E IE @ work

together to generate random numbers, look at Chapter
Seven in this book. For now, just be aware that this line is
producing numbers from one through eight. See the number
eight on the right side of the equal sign? That number
controls how many random numbers are being generated. If
you were to change the eight to a six, then any number from
one through six would be produced.

Hmmm . . . moving right along now:

3 B$ = MID$(A$,N,1)

This line creates a new box called B$, and puts one color
control character into it. A$ contains all eight color control
characters. ‘N’ is a random number from one through

eight. What does MID$ do? It picks out one color control
character from A$ at the ‘‘N’’th position in the string. This
character is put into B$. Yes, ‘‘Virginia'’, now we have three
little boxes inside the VIC, one called A$, one called ''N"
and one called B$. Each time the VIC gets to line two, it is
given a new value for “‘N’". This determines which color MID$
picks and puts into B$.

as-HBEENIDREE"

43

The fourth line is:

4 PRINT BS ““ \@” @~ ";

This line tells the VIC to use the color it finds in the B$ box
and to draw the birdlike creatures with it. The command,
PRINT BS, creates the same effect as typing a specific color
control character. By using B$, however, we can have the
VIC change the color character automatically. As “N"’' (line 2)
changes, B$ changes (line 3), and the birds change color.

The VIC’s ability to generate random numbers can be
combined with its color, sound, and graphics features in
many interesting ways. For example, let’s revisit the VIC
Color Show, but randomly, and make some noise while we
are at it.

~ _—~ —_— —~— o~ — o~ o~

—_— — —

S A em, e, em e e e e e

N = T

TN e e e

-~

o e o o el o o N N L . . N N Y Y N U U Lo o o a0 o

In this last example, the VIC’s color and sound are
both randomly produced. Enter the following lines into
the computer:

NEW

1POKE 36878, 3

2C = INT(RND(1)*255) + 1
Random number 1 through 255
3S = INT(RND(1)*50) + 175

Random number 175 through 224

4POKE 36879, C

5POKE 36875, S Play note.
6FOR T = 1 TO 100: NEXT T
7GOTO 2

The bubble captions tell most of the story on this example.
Chapter Five tells you more about music. If you are ready to

run the example, clear the screen and type [R] [U] [N] , then

45

\ S

/
5
\

2

My, my!! What a wild bunch of sound and color
combinations. Oh, well! You get what you play. You can’t
expect random music to be to everyone’s taste.

When you want to halt this color and sound machine, press

gT”&"P . Then you need to type these two lines to shut off the

note that is still playing and restore the VIC screen to its
normal colors:

Stop
POKE 36875, 0 note.

Restore

POKE 36879, 27 colors.

Time for you to explore on your own. Experiment with the
VIC’s colors. Enjoy your colorful, musical VIC computer.

46

— e e e

—

el T T a Y Y Y N Y L L Y Y Y Y. Y. Y o a a

KEYBOARD GRAPHICS

One of the special features of your VIC 20 is the graphics
keyset. Most of the keys have two graphic characters printed
on the front. You can display these graphics on the screen,
or, if you have a Commodore dot matrix printer, print them
on paper along with all the other keyboard symbols.

To display the graphic on the left side of the key, hold down
the Commodore key while pressing the graphic key, to

display the right side graphic, hold down the m key and
type the graphic you want.

VIC TIP:

Caution...if you push both the SHIFT and Commodore keys at the
same time, you will switch to upper/lower case mode. In upper/lower
case, only the left side graphics are available. To get back to upper

case/graphics mode, push m and [e] together.

The easiest way to use VIC graphics is to type the
COMMODORE [§ or key, and the graphic symbol

you want to display from the keyboard. For example, type
the following:

You should see a blue heart printed on your screen. Try
typing some other graphic keys. Here are some other keys
you might want to try:

47

Left Side Graphics Right Side Graphics

Note: Lines m @
and bars come
in different sizes
& increments E
SO you can
make exactly n m
the graphics @
you want.

B3 ©

Notice that the left side graphics are good for creating
charts, graphs and business forms. Right side graphics
are good for drawing illustrations, animations . . . even
playing cards!

GRAPHICS IN HEADLINES & TITLES

Graphics aren’t limited to cartoons and games. You can use
a variety of special effects to enhance titles in charts and
graphs, or highlight special words in programs that use a lot
of text. The easiest way to highlight a word or phrase is to

type it in REVERSE. Simply type , m , and the
word you want.

Your screen will

show@.
prronEC EEE R O

Hold down
while typing.

For example:

REEOINDE G
B AErRUDNED

Type a
headline using
the keyboard.

[R] (U] V]

48

— — P -~ P

— i~

-

P P = T o~ el e - o L N N N N Y Y _— - P N Y T T e T e T

Now try some spaces to create a title bar . . .

mrprornDC B £ EES

Can be
any color.

ElfmrgfoUlNE

Don’t
forget to

at the end
of each
line, like
this.

£3 - EXR

[B] [u] [N]

Another way to highlight a word is to draw a graphic box
around it. The technique is like drawing. Be sure to type
exactly as shown. Let’s do it step by step.

ERDNDER-D R E R E @

Type the same
combination five
times.

(B] [U] V]

The screen will show a straight line. The next line includes
your headline and a vertical line at each end to complete the
sides of your ‘‘box"".

Rdl [F] [R] (1] (N] (7] []

This can be a
longer title, but then
you need to make
the box longer
by adding
more to

lines 10 & 30.

(G (6 [al(ellc] (@ M []

[R] (U] [N]

49

See how we are building the headline box? Now to finish . . .

kd [p] (Rl [M (1 [(@ @@ Q[T
CGlClEm

(R] (U] (V]

VIC TIP:

To edit your program, type LIST and press RETURN. Now you can
go back and change a line that isn’t exactly right, by using the CRSR
and INST/DEL keys to move the error and retype it. After you make
a correction or change, press RETURN to enter the change for that
line ...or...youcan also retype any line any time and press
RETURN to change it.

Here's another way to highlight a word or headline, by
animating it so it appears to blink several times when it
comes on the television screen . . .

(N] [E] (W]

FORH = 1 to 250

Type this to erase the
old program from the
VIC's memory.

2oerinT - (R HEEDDDNE"

25FOR T = 1 TO 50: NEXT

[H] (€] (a] (0] [JJ (1] (N] [E]”

35FOR T = 1 TO 50: NEXT

40NEXT H

[R] [u] (N]

If the headline doesn’t overlap evenly, try adjusting the
spacing inside the quote marks. To speed up or slow down
the blinking change the number in lines 25 and 35.

50

N N OO M ™ M O

— o~

N el - - T T T

—

S N N AN SN S S

_®

V000000000000 0000oovsssvosocscoeedh

Animation

® Flying Birds
® Bouncing Ball

® Controlling the
Cursor

51

Try typing this program:

Type this program exactly as shown and see
what happens!

10 PRINT “ TR ;
20 PRINT“] 5] [

30 PRINT*[| EH []~
PRINT“ [[N »

FOR T=1 TO 300: NEXT

PRINT “ 1

PRINT “ [] |:] "
PRINT “ [/] B35 [\
ernT [

100 FOR T=1TO 300: NEXT
110 GOTO 10

To stop the program,
press the % key.

52

o ol ol ol ol ol ol ol ol o o o o o o . . N B B N B . Lo .o

FLYING BIRDS

This chapter shows you how to use the VIC's graphic abilities
to create illusions of characters moving about the screen.

The illusion of movement you can

create with the VIC is often

referred to as animation. Animation can make any program —
from games to business programs — fun and exciting.

Let's begin by entering the following lines:

Hold down the m key and press the % key.
N] [E] W] and press the m key.

[1] m [Pl [R] [L)IN] [T [*] @ @2 ~

and press

To get birds

HOLD PRESS
a
Vd Y suii @ II]

For more on “BIRDS” see
Chapter 3, “Graphics”

and press [ERELLL ;

2 B Por Bl Os

[@] (8]]I [E] X] T]{T]

TURN
and press

DmPR | NT“ErO'\ B
and press (A -

2 Bl ror B 0

(1] [T]{o] [5] [o]: JInI [E] X]][] again

and press m :

5] = € @[o

53

Wait

- I

WHAT YOU HAVE JUST TYPED
SHOULD LOOK LIKE THIS:

1 PRINT * (@] \eu
2 FORT=1TO 150: NEXT T
3 PRINT “ [@] <@~

4 FORT=1TO 150: NEXTT
5 GOTO 1

Look over what you have typed. Does it match what is shown?
If it does not, re-enter the lines that are different. When
everything matches, type:

[E’ and press .

HINT: You can re-enter or change any line by typing it over. The
second typing will automatically erase and replace the
first. You can erase a line by typing the line no. only

followed by

Behold your first VIC illusion or animation. The *“bird” creature
is huffing and puffing up in the top left-hand corner of the
screen. It seems to be using a lot of wing power, but there must
be a strong headwind. The bird is getting nowhere.

You, however, are getting places. Can you see how the bird
appears to be actually moving its wings? Study the example for
a moment. The secret to almost all animation on the VIC is
given in this one example. How you can create this illusion of
movement is easily described in a few simple steps. Here is a
brief summary of how to make just about any character wink,
blink, wave, nod, seem to move, and so forth.

54

o~ ~ -~ o~ — P

'l el ol ol alal ol ool o o o o L . Y N L Y N U o0 o o a0 e N

First, display the character or combination of characters in one

position on the screen.
\eo/
First
display

Second, wait for a short period of time. A FOR-NEXT “time
delay loop' makes this happen. Examples of “time delay”
instructions are shown in lines 2 and 4 of the flying bird
program. These lines tell the VIC to count from 7 to 150. The
VIC can count to 150 quickly. Try changing 150 to 500 (or some
other number) and see what happens.

Third, display the character again but with some part of it
altered. Because of the previous delay, your eye is fooled and

you think you have seen
“movement”. o\
2nd
display

Fourth, wait again. Based on what effect you are trying to
achieve, this wait may be longer or shorter than the first delay
loop. In the example, the delays between PRINTings were the
same.

Fifth (the easy part), repeat the first four steps just mentioned.
This is accomplished by the GOTO command which tells the
VIC to go back to the first line and start over again. Thus, the
program prints the bird with his wings “up”, counts to 150, then
prints the bird with his wings “down” and goes back to the
beginning again.

In the first and third steps, where the character is being
displayed, it is often necessary to make sure that no old
character parts are left on the screen. In our bird example, this
problem is taken care of by putting the screen clear character

(m and @ in each message. That character

clears the screen and homes the cursor so each version of the
bird (wings up, wings down) appears in the upper left-hand
corner.

55

You may want to experiment with this example some.
Press % to stop the wing flappings and change the upper

counting limit (150) in lines 2 and 4. Try changing just one
value, leaving the other at 150. Does your bird begin to soar?
Try a value like 50 in both places. Does your bird fly faster?
What about an upper limit of 500? 10007

Hmmm...the bird gets rather s-l-o-w.

ClLeaR Out for HOME
You already know that you can clear the screen by holding

down and pressing the 5l key. From within

a program, you can tell the VIC to clear the screen. You do so
by typing:

PRINT “ Li] %

This character appears

when you hold m
and press %

When you are entering a PRINT message, if you press the two

keys (and %) that you use to clear the

screen, the reverse heart image appears on in the message
field. That symbol is a signal to the VIC that when the message
is PRINTed, the screen is to be cleared at that place in the
message, and the cursor sent home. Home is the upper left-
hand corner of the screen.

It's
nice to
be...

56

— — —

—

Try the PRINT statement directly. Type it into the VIC. Does the
screen clear?

Type: PRINT * o] ";

Yes!
Works in the
immediate mode

Now, mess up the screen. Put some birds, characters, numbers,
and graphics symbols all over the place. When your screen is
sufficiently full, type this line:

PRINT “ " Do not hold Press only @

Did you notice a difference from before with the other PRINT
statement? Yes, this time the cursor went home but the screen

did not clear. If you don't press the SHIFT key while typing
E into the message field, the reverse S image appears

instead of the heart. The reverse S tells the VIC to home the
cursor, but do not erase the screen.

W

Cursor
moves
here

BOUNCING BALL

Clear the screen and enter the following into the VIC:

(Press after typing each line.)

NEW
1 PRINT *

Screen
stays
cluttered

2 GOTO 1
RUN

When RUN is typed, the screen should fill with columns of blue
balls. Let the balls flow by for awhile and then press %

Pressing i} causes the BREAK and READY messages

to appear. Now, type;

1 PRINT “ Rle
o0\ -

The two reverse image characters are the symbols the VIC puts
in a message field when you hold down and press

the ﬂ and ”’ keys.

After you have typed the new line, tell the VIC to RUN this
example:

Type: RUN

What happened to the balls? Press the m key to slow

down the PRINTing. There are now columns of blue rectangles
with white holes in them. Can you guess why?

58

£ P o~ —

—

e e T el e el e T L L N N N o N N o N o N N N N S Y N N o N N N N o o L

Blue bars
with white
holes

Putting the RVS ON control character in front of the ball

symbol, causes the VIC to reverse the colors being used to
display each ball. The ball is normally blue and is surrounded
by white background. The reversal made the background blue
and the ball white.

Ball with

Ball with RVS OFF

RVS ON
(normal)

Placing the RVS OFF control character after the ball, tells

the VIC to reset the reversing of background and character
colors. That is like reversing the reverse, and you end up back
where you started. If the RVS OFF is not used, an
interesting effect is produced.

the reverse balls if need be, and enter this line:

G

When RVS OFF is not used, all the spaces on the screen

are reversed and become solid blocks. What an interesting
pattern maker the VIC can become. How about designing your
own textiles, or wallpaper, or floor tiles with the VIC? What can
you think to do with the VIC?

59

1 PRINT *

Type: RUN

THE CURSOR KEYS

The four cursor control keys let you move the cursor anywhere
on the screen. You can put the cursor controls in PRINT
statement message fields to help you position the characters
and messages you are printing. Here is the bird example from
the beginning of the chapter with the addition of a few cursor
controls.

Clear the screen, and enter this new bird display:

NEW ~\ TogetCRSRIeft
1 PRINT @ |I|\..J [D[D[D . hold e
CRSR and ess
DOWN CRSR
This line uses several cursor controls (DOWN , RIGHT ,

LEFT) to animate and move the bird image. You will see the
movements when you RUN the entire example.

2FORT=1TO 150: NEXT T

3PRINT“ o~ [[]TIT ™

HEY

This line contains three LEFT cursor control characters.

4FORT=1TO 150: NEXTT m
5 PRINT) m[]][]] ”;

6 FORT=1TO 150: NEXT T Wait again
7 GOTO 1

I~~~ — -~ _— _—

P T

N N T e el oo el T O N U U _ U O O P

o~ -~

Type and check the example against the printed text. When you
are ready, type RUN and watch the birdie.

Bird
flys
toward
center

The cursor control characters in this example moves the bird
down and across the screen. Easy as bluebird pie!

Your turn again; why don’t you invent another creature and
m-o-v-g it across the screen.

ANIMATING WITH
POKES AND PEEKS

So far you have learned to use the PRINT statement with the
cursor controls and the color controls to move objects around
the screen. This is probably the fastest way to move objects
using BASIC, but it is not the smartest. Most arcade-style
games require that the object moving around the screen reacts
to other objects on the screen. The only practical way to
program this is using the PEEK and POKE statements.

In order to use this technique, you must first understand the
concept of memory-mapped video. Each position on the screen
corresponds to a location inside the VIC’s memory (RAM).
Since there are 506 possible positions on the screen for
characters, there are 506 locations in memory to hold the
characters. And, since each location in memory can contain a
number from 0 to 255, there are 256 possible values for each
memory location. These are the 256 different characters that
the VIC can make (see Appendix H). A number in a position in
screen memory is a code for the character in that position.

Screen memory in the VIC normally begins at location 7680,
and ends at location 8185. Location 7680 is the location of the
upper left corner of the screen. Location 7681 is the position of
the next character to the right of that one, and so on down the
row. The next location following the last character of d row is
the first character of the next row down.

61

Now let’s say that we are controlling a ball bouncing on the
screen. The ball is in the middle of the screen, column ten and
row ten. (The upper left corner is column zero, row zero.) The
formula for calculating the memory location on the screen is:

P=7680+X+22"Y

where X is the row and Y is the column. Therefore, the memory
position of the ball is 7680 + 10 + 220, or 7910. Clear the screen
and type:

POKE 36879,8
This changes the color of the screen to all black. Now type:
POKE 7910,81

A ball appears in the middle of the screen! You have placed the
character directly into screen memory without using the PRINT
statement.

The ball that appeared was white. However, there is a way to
change the color of an object at any location on the screen,
also using POKEs. Type:

POKE 38630,3

The ball’s color changes to cyan. For every spot on the VIC's
screen there are two memory locations, one for the character
code and the other for the color code. The color memory map
begins at location 38400 (top left-hand corner), and continues
on for 506 locations. The color codes from 0 to 7 will give you
the 8 colors numbered 1 to 8 on the keyboard. (Other numbers
will give strange-looking results. See the VIC Programmer’s
Reference Guide for a complete explanation.)

62

e N . N N S N

— —

— _—

P

e - . "

P - R

SCREEN MEMORY MAPS

This is

location ‘_;?is spot
7681 CHARACTER CODES <
This is ' I ' I :
memory : ’ f
location
7680
This one s
is number i
| [I——>a '
| L™ ' |
Location { 177 |
7910 | f
(abal)§ T |
|
: Location
! number
g1u6r2ber ; 8185
COLOR CODES
This is ; Location
memory 35421
location |
38400 i
38630 ' :
(cyan) | 3[3
I l
Location ! SE | Location
38884 I | | | |
i S '. 38905
63

Here is a short program to bounce a ball around the screen,
followed by a detailed explanation.

o o (B

20 POKE 36879,9
30 POKE 36878,15
40 X=1
50 Y=1
60 DX=1
70 DY =1
80 POKE 7680 + X +22*Y, 81
90 FORT=1TO 10: NEXT
100 POKE 7680 + X +22*Y, 32
110 X=X+ DX
120 IF X=0 OR X=21 THEN DX =-DX: POKE 36876, 220
130 Y=Y + DY
140 IF Y=0O0R Y =22 THEN DY =-DY: POKE 36786, 230
150 POKE 36876, 0
160 GOTO 80

Line 10 clears the screen, and line 20 sets the color of the
screen to black with a white border. Line 30 sets the loudness
of the sound generators to the loudest level.

The X and Y variables used in lines 40 and 50 keep track of the
current column and row position of the ball. The DX and DY
used in lines 60 and 70 are the horizontal and vertical direction
of the ball's movement. When a + 1 is added to the X value, the
column is moved 1 to the right. When -1 is added to X, the
column of the ball is moved 1 to the left. +1 added to Y moves
the ball down a row, and -1 added to Y moves the ball up a row.

Line 80 puts the ball character on the screen at its current

position. Line 90 is a delay loop, leaving the ball on the screen
just long enough for your eye to see it. Line100now erases the
ball by putting a space (code of 32) where it was on the screen.

Line 110 adds the direction factor to X. Line 120 tests to see if
the ball has reached one of the side walls, reversing the
direction and beeping if there is a bounce. Lines 130 and 140 do
the same for the top and bottom walls.

Line 150 turns off the sound, if any, to complete the bounce

sound effect. Line 160 sends the program back to display and
move the ball again.

64

p—

P e T = B o - T T - Y S Y

— o~ oy

~—

S S e

i A el al ol a ol al ol ol o ol el L L N Y N N N N N N L N o N o o L T T

Play with this program a little. By changing the number in line
80 from an 81 to another character code, you can change the
ball to any other character. If you change either DX or DY to 0,
the ball will bounce straight instead of diagonally.

Now we can add a little more intelligence to this program. So
far the only thing we check for is the X and Y values getting out
of bounds for the screen. Add the following lines to the
program shown above. (Just type these lines and they’ll be
added automatically)

32 FORL=1TO 10
35 POKE 7680 + INT (RND (1) *506), 102
37 NEXT
155 IF PEEK (7680 + X + 22" Y) =102 THEN DX =-DX: DY =-DY:
POKE 36876, 180: GOTO 110

Lines 32 to 37 put 10 gray characters on the screen in random
positions. Line 155 checks (“PEEKs") to see if the ball is about

to bounce into a grey block, and reverses the ball’'s direction if
so.

See Appendices H and | for more information on animation.

65

"
ULV VVVVVVLVLVVLDVVCVVVYVYVYVLVDVDYVUUUU LU

0000000 RPOIOGIOGIOGIOGOOIOORDOIOCOOIOOEOPOD

67

Sound and
Music

® Making Notes

® The Four Voices
of VIC

® The “White Noise”
Generator

® Playing Songs

® Using the VIC
as a Piano

® A Few Words
about POKE

Try typing this program:

Type this program exactly as shown and see
what happens!

— oY

NEW

PRINT * %

FORI=1TO5

POKE 36873+1,0

NEXT I

PRINT “WHICH VOICE (1-4)?”
PRINT “IF DONE, ENTER 0"
INPUT N

IF N=0THEN END

PRINT “WHICH PITCH (128 254)'?”
INPUT P

POKE 36878, 4

POKE 36873 +N, P

FOR J =1 TO 2000: NEXT J
GOTO 10

68

e B o O o O e B e

_—

MAKING MUSIC

You may not realize it, but you and your VIC can make music
and sound effects! This chapter introduces you to the music
and sounds that the VIC can make. It will teach you how to
control these sounds and play any kind of music from Bach —
to Rock. So put your candelabra on your TV set, and get ready
for a concert!

First, let's find out how to play a note:

Hold down the key and press the @ key.
(N] [E] and press the m key.

PoKE [EXf EEEDELE

rorE I (66062 EE

and press (RN

At this point, you should hear a tone coming from your TV
speaker. If you don'’t, try adjusting the volume control on the TV
in the normal way. Set it so that the tone is comfortably
loud...like music on a TV show.

You've just played middle C, one of 128 notes in VIC’s
repertoire! To turn off the tone, type this:

7] [0] [K] [E] (3 el B @B

Next, let's find out how many notes the VIC can sing:

TypeNEW and press

This tells VIC you're
ready to write a new
program. It automatically
erases the old one.

Now, type this program:

1 POKE 36878, 15
2 FOR1=128TO 255
3 POKE 36875, |

« For =170 100 [N

7 POKE 36875, 0

Take a little time to look at the VIC’s screen, and see if all ot
the lines on it look just like these. If any line looks wrong, just
type it over again. Make sure you include the line number. VIC
will automatically substitute the new line for your previous
version. To get a listing of the lines in your program, type:

LIST and press

If all the lines are OK, type:

RUN and press m

and you will hear all 128 notes that the VIC can sing with this
voice. (If you don't, recheck the lines as you typed them.) If you
want to hear the notes again, type:

RUN again, and press m .

Now that you have heard the notes that your VIC can make, we
want to explain a little bit about how it does all that.

Inside the VIC, the Video Interface Chip (which gives the VIC its
name) handles both sound and picture. It lets your VIC send
sounds to the speaker of your TV set. The volume of sound can
be adjusted by the volume control on the TV or from the VIC's
keyboard.

70

P e o Y o

o~ P . _— -~ F O — ~ o~ o~ _— — o~ ~—

—

e

el e T a . B . N B U U o oo aa

THE FOUR VOICES OF VIC

Your VIC has four voices...that is, it can “sing” four different
notes to you at the same time! You might think of them as
soprano, alto, tenor, and noise. Each of the voices has a
particular “speaker control number”. By using this number, we
can turn the speaker “on” and use it to create a musical note
or sound effect. We use the word POKE to do this.

The VIC's four speaker numbers are:

36874 (speaker 1 - music)
36875 (speaker 2 - music)
36876 (speaker 3 - music), and
36877 (speaker 4 - noise).

The volume control number is 36878.

36874 . . . (alto) 36875 . . . (tenor) 36876 . . . (soprano)

~

36877 . .. (noise) 36878. .. (volume)
speaker 1

To play a note, type POKE and the speaker number, a comma,
and a number representing the note you want to play.

For example, type:

POKE 36874, 128 and press

7

You've just sounded note #128 using speaker #36874, the first
(lowest) voice. From now on, let’s call this speaker S1 (short for
speaker 1); the second, S2; the third, S3: and the fourth, S4. S2
sings higher notes than S1 does, and S3 sings higher than S2.
S4 sings with a buzz in its voice...this “voice” creates “white
noise” used for sound effects.

By the way, to turn off a voice, POKE 0 into it, like this:

POKE 36874, 0 and press m

This might seem a little complicated if you're not a “‘computer
musician” yet, so we've made it easier for you. You can save a
lot of typing if you use the following short program to translate
the speaker numbers into shorter numbers.

Type this on your VIC exactly as shown:

NEW
S1 = 36874
v <o

This allows us to refer to the speaker numbers by the
abbreviations S1, S2, S3, S4, and V (volume). Before proceeding,
check to make sure that each line has been entered correctly.
Now you are ready to make sounds the easy way!

POKE \{110 m \ This sets the volume

\\ “y—)
N e
—————

72

P Y T

o

This POKEs 10 into the location that controls volume. The
volume control can store any value between 0 and 15. The
higher the number, the louder the volume.

POKE S1, 195
POKE 82, 215
POKE S3, 231

Experiment a bit with this method of producing sounds. It's
much easier, isn’t it? When you want to stop the sound (to let
your poor ears rest), POKE 0 into the speakers you want to turn
off, like this:

POKE §1,0
POKE S2, 0
POKE 83,0

Here is a chart of the values which can be POKEd into the
speakers to get various notes: (Note: numbers below 128 produce
“silence"):

TABLE OF MUSICAL NOTES

NOTE VALUE NOTE VALUE
C 1356 G 215
C# 143 G# 217
D 147 A 219
D# 1561 A# 221
E 159 B 223
F 163 C 225
F# 167 C# 227
G 175 D 228
G# 179 D# 229
A 183 E 231
A# 187 F 232
B 191 F# 233
C 195 G 235
C# 199 G# 236
D 201 A 237
D# 203 A# 238
E 207 B 239
F 209 C 240
F# 212 C# 241

By POKEing values into the first three voices (S1-S3), you can
even play tunes. (“White noise” isn't really appropriate to this

73

kind of thing...unless you dream of playing first-chair computer
with Pink Floyd!) Unfortunately, this POKE process is very slow
and tedious for a human...but it's child play for your VIC. So
let'’s put the POKEs in a program and let the computer do the
work! Anyone for “Flight of the Bumble Bee? How about the
“Maple Leaf Rag”?

THE “WHITE NOISE” GENERATOR

The fourth voice, S4, is numbered 36877. We've called it “noise”
because it's actually a “white noise” generator, used primarily
for special effects. Try making the buzz of an airplane:

POKE V, 6
POKE S84, 130 a very low tone

It's a four-engine prop job, right? Now, how about the wind
whipping by the wings of a sailplane?

POKE S4, 240
Don't forget to turn on the volume with:
POKE V,4

or whatever volume setting you like best. Now let’s turn off the
sound:

POKE S4, 0

£ ™ M M, o~

o~

el el el e e el el o el el e el el el e o N Y Y W N .ol al o a e al el el

PLAYING SONGS

Using the VIC speakers and table of musical note values, you
can make up your own songs, or transcribe tunes from a
songbook. The following songwriting program shows you how
to do it:

Type: REM means this line

NEW is not an instruction,
10 S2=36875 but a REMark or
20 V =36878 comment to yourself

or others

100 REM READ AND PLAY LOOP
110 POKE V,15

20 READ P
130 IF P=-1 THEN 200
140 READ D

end of melody
marker

VIC will look for
information

plays pitch P for
duration D
AN
silence is golden

150 POKE S2,P
160 FOR N=1TO D: NEXTN
170 POKE s2,0

180 FOR N=1TO 20: NEXT N
190 GOTO 120 ¢—

Ve
200 REM IF NOTE -1 THEN STOP another REMark
210 POKE Vv, 0

220 END

back for more

< < re
300 DATA 225, 1000, 228, 1000, 231, 1000

310 DATA 232, 1002, 235, 1020, 237, 1OQO

320 DATA 239, 1000, 240, 1000

In the first group of instructions then, we’ve set up the POKE
locations for the speaker(s) we're using, in this case speaker
2 and volume, and entered our abbreviations. The next group
of instructions begins at line 100.

75

pitch
values

duration
values

Line 100 contains a REMark which explains what this section
is supposed to do. It's called a “loop” because the section
will read and play one note, then “‘loop' back to the

beginning and do it again for another note. Line 110 turns up
the volume.

Now we’'ll tell the VIC to find out what note to play:

VICTIP:

Programs don’t have to start with line #1, or be
numbered by 1. Most programs start at 10 and goupin
increments of 10. This way you can go back and add
extra lines in between if you want. For example, you
could add a line 11, 12, etc. between lines 10 and 20.

Line 120 tells the VIC to look through the program and READ
information — call it P — about what note to play. This
information is contained in a “mystery statement” that we
haven’t written yet. Similarly, line 140 tells the VIC to READ
information — call it D — about the duration of the note.

Notice especially line 130. The function of this line is to stop
the program when the last note has been read. Without some
kind of “end of melody” marker, the program would try to read
notes that haven’t been written, and make an error. Line 130
says that when the VIC reads this marker, a value of -1, it
should not try to play this note, but go to an ending module at
line 200. We must remember to place -1 at the end of our
“mystery statement.”

Now we'll have the VIC actually play the note, cut it off, and go
back for another:

76

-~

P e Y e

el T e T e B e T O O R T =T

—

e - e Y T =

Line 150 simply POKEs the note we READ in line 120 into voice
1, while line 160 creates a delay for the duration we READ in
line 130. Similarly, lines 170 and 180 turns off voice 1 for a short
period. Line 190 sends the VIC back to line 120 to READ the
next note.

Now we have to write our ending section. Remember that our
“‘end of melody’’ marker, -1, sends the program to line 200.

Line 210 turns the voice off, and line 220 tells the VIC to stop
performing the instructions in this program.

Even though we've written the ending section, we're not quite
done. We still have to write our ‘““mystery statements’’ to tell
the program what notes to READ. These mystery statements
are called DATA statements because they contain information,
or data. DATA statements can be located anywhere in a
program. Whenever the VIC encounters a READ instruction, it
looks around for a DATA statement to READ.

This module contains the DATA for a C major scale. Line 300
contains the first three notes. The first number is the POKE
value for the first note, 225 — low C. The second number sets
its duration, 1000 — about 1 second. Line 310 contains the next
three notes, and line 320 the last two. The values themselves
are taken from the table of musical notes above.

If the lines look correct, you're ready to RUN. You should hear a
fairly accurate C major scale! If you have a “clinker” or two, try
adjusting the values in your DATA statements, starting at line

Once again: You can put DATA statements anywhere in your
program. They will be READ one by one, starting with the
lowest line number, and working through each DATA statement
from the beginning to the end.

77

Try substituting DATA statements to play other selections. For
example, here's an old family favorite: ﬁ‘

300 DATA 225, 360, 225, 360, 225, 240
310 DATA 228, 120, 231, 360, 231, 240
320 DATA 228, 120, 231, 240, 232, 120
330 DATA 235, 720, 240, 360, 235, 360

340 DATA 231, 360, 225, 360, 235, 240

350 DATA 232, 120, 231, 240, 228, 120 k—-w
360 DATA 225, 480 Lo 32
370 DATA -1 -

use as many
lines as you
like to play
longer selections
but for the
purpose of this
program, stick
to 3 notes
per line.

Or if you prefer classics:

300 DATA 217, 400, 213, 400, 223, 400
310 DATA 227, 200, 234, 200, 230, 400
320 DATA 227, 200, 234, 200, 230, 400
330 DATA 223, 400, 227, 400, 217, 400
340 DATA 213, 600, -1

THE VIC AS PIANO

Finally, here's a program that lets you play the VIC’s keyboard
like a piano:

NEW

Abbreviates
the voice
registers we'll
need and turns
them off

10 REM STORE SOUND REGISTERS
20 S2=36875
30 V =36878
40 POKE S2,0

100 REM STORE B MAJOR SCALE
110 FORN=1TO 8
120 READ A (N)
130 NEXT N

Reads B major
scale from lines

Contains POKE
values for B
major scale

140 DATA 223, 227, 230
150 DATA 231, 234, 236
160 DATA 238, 239

Turps on the volume
200 REM PLAY KEYBOARD
210 POKE WV, 3

Finds out what key
is being pressed

220 GET A$: IF A$S=""THEN 220
230 N=VAL (A$)

Ends the program
if you've pressed
“0" or |‘g‘i

240 IF N=00OR N =9 THEN 300
78

—
: el el el al ol oo a -

—~ p— —

—

P = T e T e -

—

P T o - . o e ala el

250 POKE S2, 0

260 FORT=1TO 25: NEXTT Brief silent interval

between notes...Shhhhh

270 POKE S2, A (N)

280 GOTO 220 Plays the tone

and returns to

300 REM ENDING MODULE look for another

310 POKE 82,0 Turn off the sound

before you go

Now, when you type RUN (and press RETURN), you can

play tunes on your VIC. The keys in the top row with numbers
on them control the various notes:

SRR R s e s s R R R R R R R R R RS S R R R R R R R R B

1 2 3 4 5 6 7 8
DO RE MI FA SOL LA Tl DO

S e e s e R R R R R R R R R R R R R R R R R R A

The VIC will keep playing the note you hit last until you hit
another note. When you’re done, press either 0 or 9, and it will
turn off. To start the VIC piano again, just reRUN the program.

Try the following (sing along if you wish):

11 5 5 6 6 5
4 4 3 3 2 2 1
5 5 4 4 3 3 2
5 5 4 4 3 3 2
115 5 6 6 5
4 4 3 3 2 2 1 8
9

OR

3 3 45 5 4 3 2
112 33 2 2
3 3 45 5 4 3 2
11 2 3 2 1 1
0

Take it away, Ludwig!

79

A FEW WORDS
ABOUT POKE

The command POKE lets you deal with your VIC on a
completely new level. POKE allows you to find a particular
memory location and change what is stored there. Since this
command operates directly on the VIC's memory, it is possible
to make mistakes by POKEing values into the wrong locations,
or wrong values into the right locations! We want to repeat
what we told you way back in Chapter One: There is no way
you can hurt the computer by typing on the keyboard...not even
with POKE. But you can cause the VIC to just go away
someplace and sulk, cutting you off from any contact. For
example, if you're ready to end this session anyway, try typing:

POKE 788, 0

You may find that the only way you can regain communication
with a computer that has been “insulted” in this way is to type
RUN/STOP and RESTORE. If the “crash” is serious, you may
have to turn it off and turn it on again. This doesn’t harm the
computer, but it does mean that whatever program you were
working on will be lost. Even if this should happen to you, a
little typing time is normally the extent of the loss. But it does
suggest that you should be careful of what you POKE. It also
underlines the value of accessories like disk drives and data
cassettes, which can store programs, as well as printers, which
can at least give you a program listing that would help you
reconstruct a lost program.

We recommend that you make a brief study of POKE in
Appendix C before you begin to POKE around indiscriminately
in your VIC. At least try the examples we give you in this book.
Be careful typing those long numbers, and double check your
work before you run your programs. A computer that has been
POKEd in the wrong place may well reason that turnabout is
fair play, and simply “turn you off."”

In this chapter, you've learned how to make Bach and
Beethoven sit up and take notice. You know how to drive your
friends crazy and make them long for the good old days when
your VIC was a quiet, mild-mannered little creature that kept
pretty much to itself. So what if the VIC isn’t quite as talented
as Beverly Sills or a Steinway concert grand? You and VIC can
still make beautiful music together! Maestro, please...

80

e = =

™ -

00000000000 c0c0ecsvccrgrrcvrnnad

Conversing
With Your VIC

® What’s Your
Name?

® Introducing
Variables

® Choose a Note

® The GET
Statement

81

Try typing this program:

Type this program exactly as shown and see
what happens!

— £ P N F o W —

10 INPUT“DEGREES FAHRENHEIT"”;F
20 PRINT F“DEGREES F.” (

30 PRINT“IS"(F-32)*5/9”"DEGREES C.”
Typing the
40PRINT ——m™ X878 word PRINT)
by itself 4
- 50 GOTO 10 on a line)

adds a blank (
line when ()

the program
is run. Try (J

it with and
without this

To stop the program, press the % key.Y line

and hit

3 (
RESTORE ¢

82

- S P

-~

Good morning VIC. Your mission (and we know you are going
to accept it) is to perform miracles whenever we touch just a
few keys!

Yes, your VIC is ready, able and willing to respond to your

touch like no other computer ever made. So let's buckle down
to some non-stop fun!

Hold down the m key and press the .ﬁ}ﬂ; key.

Type the following keys:

(E] and press the

TEEE

This is the
number one,
not “L”

Press the space
bar, not the

] N [P U letters

(] W]

] [0 [B] m Don't forget

N [a] M E TG the : semicolon!

2 FRONDO
CjnEl - [EISE

and the RETURN key.

(3] @@’ﬂ@@andthemkey.

Now press [R] [U] [N] and m
I
)

83

And the VIC responds:

1 INPUT “WHAT’S YOUR NAME”;A$
2 PRINT “ HI, ” A$

3 GOTO 2

Notice that
the computer
automatically
adds the queslion()
mark (?) to show ™,
you that it's)_[

waiting for
an input._}j

At which point you type in the customary response or if your
name happens to be VIC you can type:

VDG e

And whoopee! Your name splashed all over the screen! To
slow down the show just press the key. When you

RUN

WHAT’'S YOUR NAME?

—

are ready to leave stardom behind, press the key.

To enter another name just type RUN and you will see the
same prompt again. The prompt in this case is:
WHAT'S YOUR NAME?

P T . e A e

Prompts are questions directed to you in an effort to get in-
formation into the VIC. The VIC has a limited number of ways

to get information from the human world. Perhaps the most (
useful method for the computer to collect information from

our keyboard is the INPUT statement. Let’s go through the {
steps of our program. Here's what we told VIC to do: (
First, display the message “WHAT'S YOUR NAME" on the (
screen and then wait for you to put in (or INPUT) characters

from the keyboard. Take the response and name it “A$". In (
our example “VIC” becomes A3. This is a kind of shorthand (

for the computer.

Second, print the word “HI"” followed by whatever was typed
at the keyboard. In our example we print HI VIC. (

84 (

Tl o a T a a L _ _ _ N _ .

T = . .

T

Third, go back to line number 2.

The second and third steps combine to make the VIC con-
tinuously print the message “HI" all over the screen. If we
changed line 3 to read:

3 GOTO 1

then the message HI VIC would print on the screen only once
and the message prompt “WHAT'S YOUR NAME" would ap-
pear again. This alteration makes the VIC appear to have
amnesia!

Whenever we use the INPUT statement, our program holds
everything while awaiting a response from you. It is important

to note that VIC will wait forever or until the RETURN key
is pressed, whichever comes first.

In our program we created a friendly prompt. Unless we tell
the VIC what we want our input message to say, we will just
get a simple “?"" which does not tell us much. So we will try to
build prompts which suggest what type of input is

required.

Press and m at the same time.

1INPUT AS$ READY
When we type RUN the

VIC screen looks like: 1 INPUT A$
The question mark alone RUN

raises more questions than it

answers! So let’s try this: ?

1 PRINT “MAY | HAVE YOUR NAME":INPUT A$

2 PRINT “WHAT IS YOUR FAVORITE FOOD:INPUT B$

3 PRINT

4 PRINT “THANK YOU,”A$"“ FOR YOUR POLITE ANSWER"

5 PRINT “WE WILL GIVE YOU SOME "B$"
AS A GESTURE OF OUR APPRECIATION”

After typing RUN and m you will see that treating

messages with respect can result in a treat for your efforts!
85

INTRODUCING VARIABLES

Many of the programs used in this book use variables to
simplify or strengthen the program.

Variables are very useful because they can be used to repre-
sent numbers, formulas, graphic symbols, words, phrases—
even whole sentences. Examples of variable names are: X, AB,
S2, X$, ABS$, S2%. The easiest way to explain the power of
variables is to tell you that these simple variables can each be
used to represent up to 255 characters!

There are two kinds of variables: numeric variables and string
variables. Numeric variables are used to store numbers (ag¢-
tually, numeric values). String variables can be used to store
all types of characters (numbers, letters, graphics, cursor con-
trols, color controls, etc.).

Variables are like storage cabinets inside the computer. To tell
the VIC that cabinet is for numbers or values, we must use a
special name. Numeric variable names may be one or two
characters long and may be one letter, two letters, or a letter
and a number. Here are some examples of numeric variable
names:

X AB 82 c2 AA ZX

String variable names may be one, two or three characters
long (including the $ sign), must always begin with a letter
from A to Z and have a dollar ($) sign at the end. Here are
some string variable examples:

X3 ABS S2% C2% AAS ZX$

86

e o o o o o o B o a N a a ao a alao a a a a a o

_—~

e T aa T a a a aa a a a _ _L _ _ _ N N _ N _ UL o T aa aa aa a

Here’s a short program that shows one way to use variables:
10 A$ =“VIC 20"

20 PRINT“HELLO,"”A$

RUN

The VIC will display HELLO, VIC 20. Why? Because in Line 10
we told the VIC that the variable A$ is the same as “VIC 20"
Now try this:

10A=2

20B=3

30C=4

40PRINT A*B*C

In this example, A*B*C is the same as 2*3*4 because we
“stored” the numbers 2, 3, and 4 in the variables A, B, and C.

Here’s a final example that uses two kinds of variables with
INPUT statements. The INPUT statement allows the person
running the program to define what the variable will stand for
like this:

10PRINT*WHAT WORD DO YOU WANT X$ TO STAND FOR™:
INPUT X$

20PRINT*WHAT NUMBER DO YOU WANT X TO STAND FOR™:
INPUT X

30PRINT"NOW X$ STANDS FOR" X3
40PRINT“AND X STANDS FOR" X
RUN

87

CHOOSE A NOTE

For this INPUT example we will tinker a little with VIC sound.
Type:

NEW

This letter is a
number variable and is
used to define or input
a number

10 INPUT“HOW HIGH A NOTE";
20 IF H=0 THEN 90

30 INPUT*HOW LONG A NOTE";L

If a note keeps playing,

40 POKE 36878,15 -

50 POKE 36875,H

60 FOR T=1TO L:NEXT
70 POKE 36878,0

80 GOTO 10

90 END

After you press the screen should look like this:

HOW HIGH A NOTE? 225 -—— Type a number
from 128 to 254

HOW LONG A NOTE? 1000

RUN

Press the key and listen to the pitch and dura-

tion of the note. After each note you can create another and
gain an appreciation for how these “mysterious” POKES
translate into sound.

88

Pl - - o o B e O e Y e O

p—

B o el el el el el el o ol a0 o o o B . N . oo el al el

The first two lines of “make a note’ (10 and 20) give us the
flexibility necessary to vary the pitch in line 50 and 60 respec-
tively. Line 30 is our “door” out when we are finished ex-
perimenting (just type 0 (zero) in response to HOW HIGH A
NOTE?). Line 70 turns off the voice which was activated
earlier in line 40.

If you want all the noteworthy details on making music with
your VIG, turn to chapter five.

THE GET STATEMENT

Now that you have mastered the INPUT statement, we will
move on to a fancier way of getting information from the
keyboard.

The GET statement is used to get characters from the
keyboard one character at a time. In fact, the person RUNning
the program need not even hit the RETURN key! Here’s how
the statement looks!

10 GET A%
How do we make a program stop and wait for something to be

typed? We put the program in a loop with an IF...THEN state-
ment checking for an answer.

No space
between
the quotes

10 GET A$
20 IF A$=""THEN 10

What is the use of this? For a very simple application, the lit-
tle 2 line program above will allow your program to pause until
the operator hits a key on the keyboard. This is helpful in
freezing a display on the screen until the person has read it
and wants to go on.

Here is an expanded application for the GET statement:

10 GET A$

20 IF A$=""THEN 10

30 IF A$=“A" THEN PRINT “CHICKEN SOUP”

40 IF A$=“B"” THEN PRINT “SPAGHETTI"”
89

50 IF A$ ="C" THEN PRINT “STEAK AND EGGS”
60 GOTO 10
RUN

When this program has been typed in and RUN, it will wait for
the operator to hit any key. If the key was the letter A, the
words, CHICKEN SOUP appear on the screen. The letter B
makes the word SPAGHETTI appear, and the word C makes
the words STEAK AND EGGS show up. You now have the VIC
typing whole words with only 1 keystroke!

Now you will get the longest program so far, a practical exam-

ple of the GET and PRINT statements used to give you a com-
puterized recipe file. Don't be alarmed by the size of this pro-

gram. It uses mostly simple PRINT statements but the lesson
here is how the A$ variable is used to stand for several whole
phrases, and how the GET command

CLR
10 PRINT * PLEASE PICK A CHOICE"

20 PRINT “FROM THE MENU:"

Try typing
your own
recipes! All you
have to do is change
the titles and recipe
information...

30 PRINT

40 PRINT “A...CHICKEN SOUP"

50 PRINT “B...SPAGHETTI"

60 PRINT “C...STEAK & EGGS”

This means
if you hit

anything else,
nothing happens
and the program
keeps waiting for
you to type
A, BorC.

200 GET A$:IFA$ =""THEN 200

210 IF A$="A" THEN 500
220 IF A$="B"” THEN 700
230 IF A$="C"” THEN 900
490 GOTO 200

500 PRINT * m % MIKE'S CHICKEN SOUP”
510 PRINT

520 PRINT “TAKE 1 CHICKEN. KILL"

90

—_— ~ o~ _— ~— _— £~ £~ o~ ~ P -

—

530 PRINT “AND PLUCK. REMOVE"
540 PRINT “GIBLETS. BOIL 4 QTS”

Notice that parts
of sentences are
printed on separate
lines to make them
easier to read.

550 PRINT “WATER IN A LARGE POT.”

560 PRINT “ADD CHICKEN. BOIL”
570 PRINT “2 HOURS, OR UNTIL"

580 PRINT “HOUSE SMELLS GOOD.”
Typing PRINT on a
line by itself
puts a one-line
“SPACE" on the
screen.

590 PRINT <

600 PRINT “HIT ANY KEY TO GO ON"
610 GET A$:IF A$=""" THEN 610

620 GOTO 10
700 PRINT * % MA’S SPAGHETT!”
710 PRINT

720 PRINT “BROWN 1 LB. GROUND"
730 PRINT “BEEF, WITH 1 ONION™
740 PRINT “AND 1 GREEN PEPPER."”
750 PRINT “ADD 1 LG. CAN TOMATO”
760 PRINT “PUREE, 6 OZ. CAN TOM.”
770 PRINT “PASTE, 6 OZ. WATER,"”
780 PRINT “3 CLOVES GARLIC, SALT”
790 PRINT “& PEPPER, RED PEPPER,”
800 PRINT “OREGANO. SIMMER 1 HR"
810 PRINT “& SERVE WITH COOKED"
820 PRINT “NOODLES.”

830 GOTO 590

91

900 PRINT * % STEAK AND EGGS”

910 PRINT

920 PRINT “TAKE 1 COOKED STEAK™
930 PRINT “AND COOKED EGGS."
940 PRINT “SERVE TOGETHER WITH"
950 PRINT “BEVERAGE.”

960 GOTO 590

If you typed the program

correctly and typed RUN, PLEASE PICK A CHOICE

the screen should come up FROM THE MENU:
with the following display: =

A...CHICKEN SOUP
B...SPAGHETTI
C...STEAK & EGGS

Now the VIC is waiting for you to hit a key. If you type
anything other than A, B, or C, nothing happens at all (Line
200 does this). If you hit the A, you get the recipe for Mike's
Chicken Soup. Pretty terrible, huh? You can tell Mike is a
bachelor.

This can be lengthened and modified very easily for your own
use. To add items to the menu, just add a PRINT statement
after line 60, add a new IF statement after line 230, and add
the recipe wherever there is room at the end. The last line of
your recipe should be the line GOTO 590, which tells the per-
son RUNning the program to hit a key to continue. This will
keep the recipe on the screen until they are through with it.

You can use the program we just described for more than
recipes, of course. How about a name and address file? In-
stead of a “menu” use last names with initials. Instead of
recipes, use the person’s name, address and phone number.
Can you think of other uses for GET and INPUT based pro-
grams? This is the true power of computing—being able to
tailor what the computer does to your own needs.

92

$000000000000000000CCCCOCTOOIOICOIOINED

Introduction
to
Programming

- @ Your First
BASIC Commands

® Random Numbers

93

Try typing this program:

Type this program exactly as shown and see
what happens!

10 PRINT “ w B

20 PRINT CHR$(205.5 + RND(1));

30 GOTO 20

94

/"'\f-\ﬂ—_ﬂﬁﬁ\f\._»"\a—\ﬂf—\f\f—\-—\f\ﬁ-\p\r\f\;—\ﬁ.l.ﬂ-_ﬁ‘_ﬁ_ﬁ_.-\,-.f-_/-../-__;—\f-._...../-_

i~

el ol ol o a0 o0 o 0 0 o0 o o a0 o . N N N _ N N o a0

YOUR FIRST BASIC
PROGRAMS AND HOW
THEY WORK

Until now, you've been patient and typed in several programs
without understanding how they work. This chapter will explain
what those tricky little programs were all about, and get you
further along the road to programming your VIC.

PROGRAM 1: Your Name In Lights
(Chapter 2)

10 PRINT * % ¥

20 FOR T=1TO 300: NEXT
30 PRINT “your name”

40 FOR T=1TO 300: NEXT
50 GOTO 10

This program and
the ones to come
are taken from

the “sample programs”
beginning each chapter.

There doesn't seem to be much to this little program, but once
you understand what's going on here, you have the key to doing
animation. Line 10 is the PRINT command, with the character
meaning ‘““clear the screen” inside the quote marks. If you tried
to type this without the quotes, your program line disappeared
from the screen before you could finish typing it. The VIC only
recognizes a new line when you hit the RETURN key with the
cursor on that line.

» N
UDD
O ™™

95

VIC TIP: QUOTES

Let's talk a little more about what happens when you hit the quote key.
The first time you hit the quote, something funny happens. If you hit
HOME, CLR, cursor up, down, left, or right, you get a reversed graphic
character. This also happens on the VIC when any of the color control
keys are pressed. You see, quotation marks are used in computer
programs and the VIC recognizes quote marks as a Programming
Command. Therefore, when you hit a color or cursor control key after a
quote mark, the VIC displays a special code to designate that

operation. For example when you type * and m

"
% you get a reverse heart on the screen. If you see

this in a program you know it means clear screen. Other symbols
stand for other operations. Once you have hit the quote key for the
second time, any cursor controls and color keys will work normally.

The INSERT key causes a similar effect. When this key is hit, every
space created on the line will act as if it was in quote mode. All cursor
control characters will appear as if they were inside quote marks. In
addition, the DELETE key will produce a special reversed graphic
character in these spaces, which will have the effect of deleting
characters when the program is listed, and printing DELETEs on the
screen when PRINTed.

Line 20 of the program is called a time delay loop. This is
actually two BASIC statements on one line, separated from
each other by the colon (;). All that happens here is that the VIC
will count from 1 to 300, without doing anything else. This
serves to slow down the program a little. (Try deleting the lines
20 and 40 and RUNning the program. It blinks too fast!)

In line 30, you typed your name inside the quotes (At least we
hope you did.) This caused your name to be printed on the
screen. There was nothing else on the screen because line 10
already cleared it off.

Line 40 is another delay, to give your name time to be on the
screen long enough to see.

Line 50 causes the program “go to” line 10 as the next line to
be executed and briefly clears the screen.

After your name is displayed on the TV screen, there is a delay
of a second, after which the screen is erased. After another
second, the name is displayed again in the same position.
Again, it is erased, and so on. Because the letters appear in the
same position on the screen, your eye believes that they are
blinking on and off.

96

. e e e e e

— e

o~ e e e

M A O

P N - T - T . . T T . . . T . O T

- —_—

-~

Experiment with this program. You can make the delays
between displaying and erasing your name longer or shorter by
changing the number 300 in lines 20 and 40.

PROGRAM 2: A Lot of Heart
(Chapter 3)

10 FORH=1TO 505

20 PRINT “ @ 7,

30 NEXT

40 FOR C=8TO 255 STEP 17
50 POKE 36879, C

60 FOR T=1 TO 500: NEXT
70 NEXT

80 GOTO 40

This program provides you with a colorful display of hearts. It
introduces the use of punctuation marks in PRINT statements
and the use of POKE to change the screen and border colors.

Line 10 sets up a loop that counts from 1 to 505. We want 505
hearts to appear on the screen, because there are 506 spaces
on the screen. If we PRINTed the 506th character, the screen
would be forced to roll up one line (scrolling), and there would
be /ess hearts on the screen than before.

Line 20 PRINTs the heart character on the screen. The semi-
colon () after the last quote has an important effect. You see,
after a normal PRINT statement, the VIC will automatically
perform 2 operations — move the cursor back to the beginning
of the line (called a carriage return), and move the cursor down
to the next line (called a linefeed). The punctuation mark at the
end of the line will cancel the return and linefeed, so that the
next thing PRINTed will appear immediately to the right of the
last thing PRINTed.

Line 30 just completes the delay loop. As long as the value of H
is 505 or less, the program will print hearts on the screen. When
the 505th is printed, the program continues with the line after
this one (line 40).

97

Line 40 establishes a new loop and sets up line 50, which
changes the screen and border colors. C is defined as a series
of numbers from 8 to 255, which increase in increments of 17.
Every time line 70 (NEXT) is hit, 17 is added to the previous
value of C and the sum is used for the new value. This causes a
cycle of colors to be selected including black border with black
screen, white border with white screen, etc., for all 8 border
colors. Then the numbers in C go beyond the values for those
colors and pick 7 different colors for the screen. (See Appendix
| for a list of color numbers)

Line 50 is the statement that actually changes the color: The
value contained in variable C is stored in memory location
36879. This is actually a location on the VIC chip itself, not in
your normal area of memory.

Line 60 is a delay loop. If this line is removed, the colors will
change fast enough to give you a headache.

Line 70 completes the loop started in line 40. Notice that the
line could have read 70 NEXT C, but doesn’t have to be that
way.

Line 80 sends the program back to cycle through the colors
again. It will run forever, unless you press the STOP key, or turn
off the VIC. Typing POKE 36879, 27 after you hit STOP will
restore the normal colors of the screen.

98

P Y - T — o~ P U e e e Y e O

— —

~ o~

~

A S

P R Y T T T L L N N N N N _ U o L L L L o T T a a a a a

PROGRAM 3: Exercising VIC Person
(Chapter 4)

10 PRINT* TR ™
20 PRNT* K] [0 [

0 pRINT* [] B[]~
0 PRNT [/ [\

50 FOR T=1TO 300: NEXT
60 PRINT * [t ”;

70 PRNT [][O [] ~
80 PRINT* [2 [\

o PRNT* [|11

100 FOR T=1TO 300: NEXT
110 GOTO 10

This program is similar to the first program we did, called Your
Name In Lights. However, instead of drawing an image and
then blanking it out, like the first program did, this one draws a
complete picture, pauses, and replaces the image with another
complete picture. The head and body of the VIC person stays in
the same position while the arms and legs change places. This
gives the illusion of movement from one position to the next.

Lines 10 and 60 bring the cursor to the upper-left corner of the
screen, which is known as the home position. This forces the
image of the VIC person to be displayed in the same screen
position each time.

Lines 20, 30, and 40 will “draw" each line of the VIC person’s
first image.

Lines 50 and 100 are delay loops, just to give the picture
enough time on the screen.

Lines 70, 80, and 90 draw the second image on the screen. This
takes place so fast that you can’t see the transition — your eye
sees the change from one to the other as instantaneous.

99

PROGRAM 4: Choose A Note
(Chapter 5)

NEW

20 FORI=1TO5
30 POKE 36873+1,0
40 NEXT I
50 PRINT “WHICH VOICE (1-4)?"
60 PRINT “IF DONE, ENTER 0"
70 INPUT N
80 IFN=0THEN END &—
90 PRINT “WHICH PITCH (128-254)?"
100 INPUT P «
110 POKE 36878, 4

120 POKE 36873 +N, P
130 FOR J=1TO 2000: NEXT N
140 GOTO 10

all voices

This
means
the VIC
wants you
to input a
number

a pitch

Now we go
back to the
beginning

a 2-second delay

When you've checked that all the lines are correct, try running
this program (type RUN and press RETURN). It will let you
select a voice and a pitch, and play the tone you've chosen for
about two seconds. The sound shuts off, and the program asks
you for another voice and pitch. This program is a musical
experimenter’s delight, so be sure to give it a try. When you
wish to stop the program, enter 0 as a voice selection. You may
suspect there's a problem when you select pitch 254 in voice 3
and hear nothing. Actually, it's not an error — this note is just
too high for human ears. (you might test it out on your dog
though!)

100

These lines clear the
screen and turn off

These lines allow
you to select a

this line ends
the program

These lines
allow you
to select

These lines poke the note
and volume, and provide

PROGRAM 5: Temperature Conversion
(Chapter 6)

10 INPUT “DEGREES FAHRENHEIT”; F
20 PRINT F “DEGREES F.”

30 PRINT “IS” (F-32)*5/9 “DEGREES C.”
40 PRINT

50 GOTO 10

This introduces you to the INPUT statement, which allows your
program to stop what it is doing and request necessary
information from the operator (the person who is RUNning the
program).

Line 10 causes the message DEGREES FAHRENHEIT? to
appear on the screen. The words inside the quotes of an INPUT
statement work just like the PRINT statement. However, the
last word will always be followed by the question mark
character, and the program will wait at this point for more
information.

Line 20 prints the value of F, which is what was just typed in
(inputted). Line 30 prints the result of the conversion
calculation. In line 40, the word PRINT alone on a line causes a
blank line to appear on the screen.

Finally, line 50 makes the program go back to the beginning
and request more information to start again. The original
qguestion will be asked again, and you can have more
temperatures converted. If you are finished, hold down the
STOP key and hit the RESTORE key. There is no other way to
tell this program you are through.

101

PROGRAM 6: Random Maze
(Chapter 7)

20 PRINT CHR$(205.5 + RND(1));
30 GOTO 20

This is a neat little program that prints pseudo-mazes all over
the screen. As you may expect, line 20 is the key here.

The CHR$ function will give you a character based on a code
number from 0 to 255. Every character that the VIC can put on
the screen is encoded this way (see AppendixH). To find out
the code for any character, just type PRINT ASC{“X”) where X is

include quotes

the character you're checking. Then type PRINT CHR$(X) where
X is the number the VIC gave you. See how it works?

Now try typing PRINT CHR$(205); CHR$(206). This should print
the two right side graphic characters on the M and N keys.
These are the two characters that the program is using for the
“mazes”.

By adding the formula 205.5 + RND(1), the VIC will pick a
random number between 205.5 and 206.5. There is a fifty-fifty
chance of the number being above or below 206. When the
CHRS$ function works, it will ignore any fractional values.
Therefore, half the time the character with code 205 is
PRINTed, and the other half character code 206 PRINTSs.

If you'd like to experiment with this program, try changing the

205.5 by adding or subtracting a couple of tenths from it. This
would give either character a greater chance of being PRINTed.

102

-~ o~ —

P e = Y o~ e e

o o o o o o o o o o o B T a T a o o a a a

MORE ABOUT RANDOM
NUMBERS

The random number function is one of the most useful and
enjoyable aspects of BASIC, allowing you to program all sorts
of games of chance.

The line X =RND(1) will cause the VIC to select a random
number between 0 and 1, not inclusive, to be placed into X. This
results in a range of possible values for X:

0<X<1

When you work with random numbers, it is best to keep in mind
that you will generate a range of numbers, to see how
calculations effect the whole range. For example, if you wanted
to get a set of possible values between 0 and 3, you could just
multiply X by three. The new range is:

0<X<3

If you needed to pick a number from 10 to 20, how would you
perform a calculation to change the range? First, you would
add 10 to the number picked, to change the range to

10<X <11

By multiplying the random number by 10 before adding 10, the
range becomes:

10<X<20
So the formula for a random number between 10 and 20 is:

X =RND(1)*10+ 10

So far, we have learned how to change the range of possible
results for the random number. However, the result of the
function will contain messy decimal places, which are not
desirable for things like rolling dice or picking a number from 1
to 10. The function used to clean this up is the INT function.
This will chop off all decimal places from the number. The
formula for a random number from 10 to 20, with the INT
function added, becomes: X =INT(RND(1)*10 + 10)

103

The range of possible results is now:
1M0V<=X<=19

But wait! The upper limit of the range has dropped from 20 to
19 in this case. Why? Because before the range was always
less-than 20. The INT function will strip off any decimal places
from a number greater than 19 and less than 20 to result in a
19. On the other end of the range, any results between 10 and
eleven are truncated down to an even 10. If we still needed to
get a range of numbers from 10 to 20, the formula should
become:

X = INT(RND(1)* 11 + 10)

The random number is multiplied to expand the range, and
added to move the range.

The general formula for a set of random numbers in a certain
range is:

X =INT(RND(1)*a) + b

Where a represents the number of possible results and b is the
lowest number in the range.

104

—_— e T = = = - =

P = o - o o o o

— — — p—

o~ -

P e T = T =

105

APPENDICES

L N N N N NN NN NN XN NENNE X NENENNERNXNENNENNHNENNHNHNH

APPENDIX A: VIC ACCESSORIES —
A QUICK INTRODUCTION*

This is a beginner’s user manual, so we are not going to spend a lot
of time and space telling you about the various peripherals that plug
into the slots on the back of your VIC.

Each of the VIC peripherals will have its own instruction manual,
which will tell you how to connect it to the VIC and how to use it to do
interesting things.

O 66 60 606 6 6

Commodore has designed the VIC to grow with your needs and has C
an overall plan of how the various peripherals will fit together in and -
on the VIC. Here is the map of that plan: C
C
THE COMMODORE VIC 20 ¢
PERSONAL COMPUTER SYSTEM* (
il
b, PLUGHN wrzeeace |
o PROGRAMS CARTRIDGE
PRINTER Cq (
l.—
=1 [R5 | e || SEESE | | S0 | | MeE
CABLE
=] [] ‘ 1 '
USER PCAT CASSETTE SERIAL VIDEO EXPANSION POWER
POAT BUS ouTPUT PORT PACK
VIC 20 COMPUTER T
GAME PORT }— :5_=GO:T-'-‘E\|
oR
2 PADOLES

SPECIAL PLUG-IN PROGRAMS

Super Expander Cartridge — 3K Added Memory (converts VIC to 8K)
High Resolution Graphics & Plotting
Commands
Pre-assigned Function Keys

Programming Aid Cartridge — Programmer’s “tool kit"
Machine Language Monitor
Pre-assigned function keys
(prog commands)
User-assignable function keys

*Note: Peripherals described in this section scheduled for sale during
late 1981.

106

—

o~ ~— o~ _— — — — — _— ~~ -~ —_— —_—~ — — —_— —_— — _— _— _— — _— L) —_— — —

TAPE CASSETTE RECORDER

The first peripheral you will probably get will be the Commodore tape
recorder. The tape recorder can store several thousand characters
(letters and numbers) on an ordinary cassette tape. You can store
quite a few long programs on tape and load them back fairly quickly,
without having to type them in every time. (See Appendix B - Working
With Tape Cassettes)

The VIC Tape Cassette plugs into the Cassette Interface slot on the
back of the VIC with its own special plug — it does not need any
special interface. Commodore provides a variety of computer
programs on tape for use with the cassette recorder.

MASTER CONTROL PANEL

You can plug a Master Control Panel in to the Expansion Port on the
back of the VIC. This controller lets you use more than one cartridge
at one time. It has six slots and accepts program cartridges, memory
expanders and includes an IEEE-488 interface which lets you use
Commeodore PET/CBM peripherals and other IEEE devices.

VIC SINGLE FLOPPY DISK DRIVE

The VIC Single Floppy Disk Drive can store up to 170,000 characters
(letters and numbers) and move a very long program in or out of the
VIC's memory in a fraction of a second. No long waiting for a tape
drive to find, read and load a program. This device connects to the
VIC's serial port.

IEEE-488 INTERFACE CARTRIDGE

IEEE-488 is a universal scientific standard that lets you use
Commodore PET/CBM peripherals such as disk drives and printers,
as well as scientific instruments and tools.

SERIAL PRINTER

The VIC has a Serial Interface for peripherals which use serial
connections to communicate with the computer. With Commodore’s
special dot matrix printer that uses this serial connection you can
print your program listings and results on paper.

107

GAME PORT

The VIC Game Port allows you to hook up joysticks, light pens, and
paddles, so that you can easily play exciting arcade type games
without having to use the keyboard.

TELECOMMUNICATIONS

You may have heard about programs that let your personal computer
talk to other computers and get information about the Stock Market,
Business, News and other things — the VIC has this ability already
built in.

The VIC's User Port includes an RS232 interface which lets you obtain
or exchange information over the telephone using an inexpensive
telecommunications modem.

SOFTWARE

In addition to all of this hardware, the VIC has a lot of interesting
software.

Some software programs are stored in hardware cartridges which
plug in to the back of the VIC and are ready to run as soon as the
power is turned on. Some are on tape, some are on disk, and many
are included in the VIC Learning Series Book and cartridge sets which
let you teach yourself computing and other subjects at home.

This has been just a short overview of accessories available to you.

KEEP IN TOUCH WITH YOUR
COMMODORE DEALER TO FIND OUT
ABOUT THE NEWEST DEVELOPMENTS!

108

—~ S A S e ™ —_

-~

A A e e e e e e e R em . R AR L L e e L e e e e e e e e e e e S

“APPENDIX B”
USING THE CASSETTE RECORDER

The cassette recorder acts as the VIC's “memory”. Without this
device, the VIC will forget any program you typed in as soon as the
power goes off (or someone uses the NEW command). You can also
use the recorder for programs you purchase. Commands used with
programs on tape are SAVE, LOAD, and VERIFY.

The VIC can also “remember’ the values of variables and other
items of data, collected in a group called a file. The amount of data
stored in a file can be very large compared to the amount of RAM in
the VIC, because the VIC can operate on a small piece of the file at
a time. Statements used with data files are OPEN, CLOSE, PRINT#,
INPUT#, and GET#. The system variable ST (status), is used to
check for tape markers.

PROGRAM STORAGE

Let's say you have just finished creating a new program on the VIC.
You will want to use the program again at some other time, so now
you must store it on the tape. Type the word SAVE. If you want the
program to have a name, type a quote mark (") and the program
name. The name can contain graphics and cursor controls, and can
be up to sixteen characters long. Then just hit the RETURN key,
whether you gave it a name or not.

If your recorder is plugged into the back of the VIC, and none of its
buttons are pressed down, the following message will appear on the
screen:

PRESS PLAY AND RECORD ON TAPE

All you have to do now is put a blank cassette tape (any decent
audio tape will do) in the recorder. Hold down the RECORD key and
hit PLAY on the recorder. The tape should start moving, and the
following message will appear on the screen:

OK

SAVING name

What the VIC is doing now is recording, with a very fast series of
high and low sounds, your program in RAM onto the tape. The
program is not being disturbed at all, it is just being copied. The
VIC actually records the program twice, just in case your blank tape
isn't perfect. When the program is all on the tape, the VIC stops the
recorder (all by itself!) and gives the READY message.

Now you may wish to check the tape to make sure that the SAVEd
program is correct. After all, you are risking much of your valuable
time to an uncertain piece of thin magnetic tape. It is better to be
safe and check the program.

109

The command to check the tape is called VERIFY. First, rewind the
tape back to the beginning. Now type the word VERIFY. If your
program had a name, you may type a quote mark and the name. If
you want to VERIFY the first program on the tape, you can just
leave off the program name. Next just hit the RETURN key.

Now, if none of the keys on the recorder are pressed, the VIC will
tell you this:

PRESS PLAY ON TAPE

Be very sure that the RECORD button is NOT down when you do
this. That would result in erasing any program or data that may have
been on the tape.

When you've pressed PL£Y, this message appears:

SEARCHING FOR name

From this point on, the VIC will search for the program you have
specified on the tape. If it finds any programs or data files, it will
report the fact with the message:

FOUND name

If the name of the program matches, or at least matches as many
letters as you gave (which is why giving no name checks the first
program), the next message is:

VERIFYING

When the program is completely read on the tape, the VIC gives you
the verdict. You may see the message:

OK
READY.

This means that the program on the tape was identical with the
program you have in RAM currently.

If the programs did not match, you'll see the message:

?VERIFY ERROR

READY.

One of the extra uses of the VERIFY command is to position the
tape right after the last program, so you can add a new program to
the tape. Just VERIFY using the name of the last program on the

tape. You will end up with a VERIFY ERROR, but the tape will be
right where you want it. Tricky, right?

110

P = = = T =

—

P S e T T

— p—

P S

—

o~ o~ —_ S S

el e el al ol el ol ol ol ol o o o o N N W Y W N L o T e e e e

Now let's say that you've come back to the VIC and you want to use
that program you stored away. The command for this is LOAD. Type
the word LOAD, and you can follow it with a program name
(enclosed in quotes) if you like. The VIC says:

PRESS PLAY ON TAPE

You must press only the PLAY key on the recorder. The VIC will
now say:

SEARCHING FOR name

Just as in VERIFY, the VIC lets you know of any programs or files
encountered until the matching name. Then this message appears:

FOUND name

LOADING

When the program is loaded, the VIC says:
OK

READY.

Now the program is ready to be LISTed, RUN, or any other
operation, just as if you had just typed it all in.

PROGRAM 1: WRITE-TO-TAPE

10 PRINT* m B WRITE-TO-TAPE PROGRAM”
20 OPEN 1,1,1,“DATA FILE"

30 PRINT“NOW TYPE DATA TO BE"

40 PRINT“STORED OR TYPE m ER smor m ﬁ’
50 PRINT

60 INPUT*DATA";AS

70 PRINT#1,A$

80 IFA$ < >"“STOP"THEN50

90 PRINT

100 PRINT*“CLOSING FILE”

110 CLOSE 1

111

PROGRAM 2: READ-TAPE USING INPUT#

10 PRINT* m % READ-TAPE PROGRAM”

20 OPEN 1,1,0,"DATA FILE"
30 PRINT“FILE OPEN"

40 PRINT

50 INPUT#1,A$

60 PRINT A%

70 IF A$="STOP"THEN END

80 GOTO 40

PROGRAM 3: READ-TAPE USING GET#
Lines 10 to 40 same as PROGRAM 2

50 GET#1, A$

60 IF AS=""THEN END

70 PRINT A$,ASC(A$)

80 GOTO 50

112

o~

A~ S

o0 o

T T T Y .
Y A N L N N N N N W L o o e e e aa

— -~

APPENDIX C: VIC BASIC

This manual has given you an introduction to the BASIC language,
just enough for you to get a feel for computer programming and some
of the vocabulary involved. This appendix gives a complete list of the
rules (SYNTAX) of the VIC BASIC language, along with a concise
description of each. You are encouraged to experiment with these
commands, remembering that you can't do any permanent damage to
the VIC by just typing in programs, and that the best way to learn
computing is by doing.

This appendix is divided into sections according to the different types
of operations in BASIC. These include:

1. Variables and Operators: describes the different types of variables,
legal variable names, and arithmetic and logical operators.

2. Commands: describes the commands used to work with programs,
edit, store, and erase them.

3. Statements: describes the BASIC program statements used in
numbered lines of programs.

4. Functions: describes the string, numeric, and print functions.

The commands in each section are listed alphabetically for conve-
nience. A fuller explanation of VIC BASIC commands is provided in
the VIC Programmer’s Reference Guide, available where you bought
your VIC.

1. VARIABLES & OPERATORS
a. VARIABLES

The VIC uses three types of variables in BASIC. These are: normal
numeric, integer numeric, and string (alphanumeric) variables.

Normal numeric variables, also called floating point variables, can
have any value from —10® to + 10%, with up to nine digits of
accuracy. When a number becomes larger than nine digits will show,
as in 10 or 10-'°, the computer will display it in scientific notation
form, with the number normalized to 1 digit and eight decimal places,
followed by the letter E and the power of ten by which the number is
multiplied. For example, the number 12345678901 will be displayed as
1.23456789E + 11.

Integer variables, are used when the number will always be between
+32767 and —32768, and without fractional parts. Integer variables
require less memory space than floating point variables, but the
difference probably would not be substantial unless used in a large
quantity such as an array (see below). An integer variable would be a
number like 5, 10, or =100.

String variables, are those used for character data, which may

contain numbers, letters, and any other character that the VIC can
make. An example of a string variable is *'VIC20."”

113

Variable names may consist of a single letter, a letter followed by a
number, or two letters.

An integer variable is specified by using the percent (%) sign after
the variable name. String variables have the dollar sign ($) after
their names.

EXAMPLES:

Numeric Variable Names: A, A5, BZ
Integer Variable Names: A%, A5%, BZ%
String Variable Names: A$, A58, BZ$

Arrays, are lists of variables with the same name, using an extra
number to specify which is which. They are defined using the DIM
statement, and may contain floating point, integer, or string
variables. The array variable name is followed by a set of
parentheses () enclosing the number of the variable in the list.

EXAMPLES: A(7),BZ%(11),A$(87).

Arrays may have more than one dimension. A two dimensional array
may be viewed as having rows and columns, with the first number
meaning which row and the second number in the parentheses mean-
ing which column.

EXAMPLES: A(7,2),BZ%(2,3,4),2%(3,2)

There are three variable names which are reserved for use by the VIC,
and may not be used for a normal purpose. These are the variables
ST, Tl, and TI$. ST is a status variable which relates to input/output
operations. The value of ST will change if there is a problem loading a
program or data from the tape or disk. A more detailed explanation of
ST is in the VIC BASIC Programmer’s Reference Manual.

Tl and TI$ are variables which relate to the real-time clock built into
the VIC. The variable Tl is updated every 1/60th of a second. It starts
at 0 when the VIC is turned on, and is reset only by changing the
value of TIS.

TI$ is a string which is constantly updated by the system. The first
two characters contains the number of hours, the 3rd and 4th
characters are the number of minutes, and the 5th and 6th characters
are the number of seconds. This variable can be given any value (so
long as all characters are numbers), and will be updated from that
point automatically.

EXAMPLE: TI$ = “101530" sets the clock to 10:15 and 30 seconds (AM)

This clock is erased when the VIC is turned off, and starts at zero
when the VIC is turned back on.

114

— _— ~ -~ — £ ™ P

o~

Pl e e T o

o~ e e,

— - Pl —_— e, e, - —

b. OPERATORS
The arithmetic operators include the following signs:

+ addition

— subtraction

* multiplication

| division

1 raising to power (exponentiation)

On a line containing more than one operator, there is a set order in
which operations always occur. If several operators are used together,
the computer assigns priorities as follows: First, exponentiation.

Next, multiplication and division, and last, addition and subtraction. If
you want these operations to occur in a different order, VIC BASIC
allows you to isolate a calculation by putting

parentheses around it. Operations enclosed in parentheses will take
place before other operations. Be sure that your formulas have the
same number of left parentheses (as right parentheses), or your
program will get a SYNTAX ERROR message when run.

There are also operators for equalities and inequalities:

= is equal to

< is less than

> is greater than

< =o0r=< is less than or equal to
>=0r=> is greater than or equal to
< >or > < is not equal to

Finally, there are three logical operators:

AND
OR
NOT

These are used most often to join multiple formulas in IF...THEN
statements.

EXAMPLE:

IFA=BAND C=D THEN 100 requires both A=B & C=D to be true.

IFA=BORC=DTHEN 100 Allows either A=B or C=D to be true.
2. COMMANDS

CONT (Continue)

This command is used to re-start the execution of a program which
has been stopped by either using the STOP key, a STOP statement, or

an END statement within the program. The program will re-start at the
exact place from which it left off.

115

CONT will not work if you have changed or added lines of the program
(or even just moved the cursor to a program line and hit RETURN
without changing anything), or if the program halted due to an error,
or if you caused an error before trying to re-start the program. The
message in this case is CAN'T CONTINUE ERROR.,

LIST

The LIST command allows you to look at lines of a BASIC program
that have been typed or LOADed into the VIC'S memory. When used
alone without any numbers following it you will see a complete listing
of the program on your screen (which may be slowed down by holding
down the CTRL key or STOPped by hitting the key marked RUN
STOP). If you follow the word LIST with a line number, the VIC will
only show you that line number. If you type LIST with 2 numbers
separated by a dash, the VIC will show all lines between the first and
second line number. If you type LIST followed by a number and just a
dash, it will show all the lines from that number to the end of the pro-
gram. And if you type LIST, a dash, and then a number, you will get all
the lines from the beginning until that line number. Using these varia-
tions, you can examine any portion of a program, or bring lines to the
screen for modification.

EXAMPLES:

LIST Shows entire program.

LIST 10— Shows only from line 10 until the end.

LIST 10 Shows only line 10.

LIST—10 Shows lines from the beginning until line 10.

LIST 10—20 Shows lines from 10 to 20, inclusive.

LOAD abbrev.Lsh O

This is the command to use when you have a program stored on
cassette tape or on disk, and you want to use it. If you type just the
LOAD and hit the RETURN key, the VIC will find the first program on
the cassette tape and bring it into memory, to be RUN, LISTed, or
whatever. You can also type the word LOAD followed by a program
name, which is most often a name in quotes ("*"). The name may be
followed by a comma (outside of any quotes) and a number or
numeric variable, which acts as a device number to determine where
the program is coming from. If there is no number given, the VIC
assumes device #1, which is the cassette tape recorder.

The other device commonly used with the LOAD command is the disk
drive, which is device #8.

116

2 B o o o N Y

—

G AT A e, s, e, P Y . W

P e T

o~ e s e e e e

—

S A . e e e L e e A L e e A e,

EXAMPLES:
LOAD Reads in the next program on tape

LOAD “HELLO" Searches tape for program called HELLO, and
loads if found.

LOAD A$ Looks for a program whose name is in the
variable called AS.

LOAD “HELLO",8 Looks for the program called HELLO on the disk
drive.

LOAD"*" 8 Looks for the first program on the disk.

The LOAD command can be used within a BASIC program to find and
RUN the next program on a tape.

NEW

This command erases the entire program in memory, and also clears
out any variables that may have been used. Unless the program was
previously stored somewhere, it is lost until you type it in again. BE
CAREFUL when you use this command!

The NEW command can also be used as a statement in a BASIC pro-
gram. When the VIC gets to this line, the program is erased and every-

thing stops. It is useful if you want to leave everything neat when the
program is done.

RUN

Once a program has been typed into memory or LOADed, the RUN
command is used to make it start working. If there is no number
following the command RUN, the computer will start with the lowest
numbered program line. If there is a number, that becomes the line
number where the program starts from.

EXAMPLES:

RUN Starts program working from lowest line number.

RUN 100 Starts program at line 100.

RUN X UNDEFINED STATEMENT ERROR (you must always type
RUN by itself or with a line number - not with a letter).

SAVE

This command will store a program currently in memory on a cassette

tape or disk. If you just type the word SAVE and hit return, the
machine will attempt to store the program on the cassette tape. It has

117

no way of checking that there is already a program on that spot, so be
careful with your tapes. If you type the SAVE command followed by a
name in quotes or a string variable name, the VIC will give the pro-
gram that name, so it may be more easily located and retrieved in the
future. The name may be followed by a comma (after the quotes) and
a number or numeric variable. This number tells the VIC which device
on which to store the program. Device number 1 is the tape drive, and
#8 is the disk. After the number there can be a comma and a second
number, which is either 0 or 1. If the second number is 1, the VIC will
put an END-OF-TAPE marker after your program. If you are trying to
LOAD a program and the VIC finds one of these markers, you will get
a FILE NOT FOUND ERROR.

EXAMPLE:

SAVE Stores program to tape without a name.
SAVE “HELLO" Stores on tape with the name HELLO.
SAVE AS Stores on tape with name in variable AS$.

SAVE “HELLO",8 Stores on disk with name HELLO

SAVE “HELLO",1,1 Stores on tape with name HELLO and follows
program with an END-OF-TAPE marker.

VERIFY

This command causes the VIC to check the program on tape or disk
against the one in memory. This is proof that the program you just
SAVEd is really saved, in case your tape is bad or something isn't
working. This command is also very useful for positioning a tape so
that the VIC will write after the last program on the tape. All you do is
tell the VIC to VERIFY the name of the last program on the tape. It will
do so, and tell you that the programs don't match (which you already
knew). Now the tape is where you want it, and you can store the next
program without any fear of erasing an old one.

VERIFY without anything after the command causes the VIC to check
the next program on tape, regardless of its name, against the program
now in memory. VERIFY followed by a program name (in quotes) or a
string variable will search the tape for that program and then check.
VERIFY followed by a name and a comma and a number will check
the program on the device with that number (1 for tape, 8 for disk).
EXAMPLE:

VERIFY Checks the next program on the tape.

VERIFY “HELLO" Searches for HELLO, checks against memory.

VERIFY “HELLO",8 Searches for HELLO on disk, then checks.

118

- - =

e T

—

o~~~ o~ —~— —_— — —_— — _— — - ~ o~ — S~ A~ _—

-~ -

el oo e

3. STATEMENTS

CLOSE

This command completes and closes any files used by OPEN
statements. The number following the word CLOSE is the file number
to be closed.

EXAMPLE:

CLOSE 2 Only file #2 is closed.

CLR

This command will erase any variables in memory, but leaves the pro-
gram itself intact. This command is automatically executed when a
RUN command is given.

CMD

CMD sends the output which normally would go to the screen (i.e.
PRINT statements, LISTS, but not POKEs into the screen) to another
device instead. This could be a printer, or a data file on tape or disk.
This device or file must be OPENed first. The CMD command must be
followed by a number or numeric variable referring to the file.
EXAMPLE:

OPEN 1,4 OPENS device #4, which is the printer.

CMD 1 All normal output now goes to the printer.

LIST The LISTing goes to the printer, not the screen—even the
word LIST that you typed!

To start sending back to the screen normally, just CLOSE the file.

DATA

This statement is followed by a list of items to be used by READ
statements. The items may be numbers or words, and are separated
by commas. Words need not be inside of quote marks, unless they
contain any of the following characters: SPACE, colon, or comma. If
two commas have nothing between them, the value will be READ as a
zero for a number, or an empty string.

EXAMPLE OF A DATA STATEMENT:

DATA 100,200,FRED,"HELLO, MOM",3.14,abc123

119

Since the program never needs to actually execute a DATA statement
in order to read the information, it is a good idea to put your DATA
statements as close to the last line of the program as possible. This
will help your programs run faster.

DEF FN (Define Function)

This command allows you to define a complex calculation as a func-
tion with a short name. In the case of a long formula that is used
several times during a program, this can save lots of space.

The name you give the function will be the letters FN and any legal
variable name (1 or 2 characters long). First you must define the func-
tion by using the statement DEF followed by the name you have given
the function. Following the name is a set of parentheses () with a
numeric variable (in this case X) enclosed. Then you have an equal
sign, followed by the formula you want to define. You can “call” the
formula, substituting any number for X, using the format shown in line
20 of the example below: Asterlskis used

as multiplication
sign

EXAMPLE:

10 DEF FNA(X) = 12*(34.75-X/.3)

The No. 7 is
inserted where X
is in the formula

20 PRINT FNA(7)

DIM (Dimension an array)

Before you get to use arrays of variables, unless there are 11 or fewer
elements, the program must first execute a DIM statement for that
array. The statement DIM is followed by the name of the array, which
may be any legal variable name. Then, enclosed in parentheses, you
put the number (or numeric variable) of elements in each dimension.
An array with more than one dimension is called a matrix. You may
use any number of dimensions, but keep in mind that the whole list of
variables you are creating takes up lots of room, and it is easy to run
out of memory if you get carried away. To figure the number of
variables created with each DIM, multiply the total number of
elements in each dimension of the array.

EXAMPLE:

10 DIM A$(40),B7(15),CC%(4,4,4)

(& Eaments3 \{ro Bomensh {125 Elemens)

You can dimension more than one array in a DIM statement by
separating the arrays by commas. Be careful not to let the program
execute a DIM statement for any array more than once, or you'll get
an error message. It is a good idea to keep DIMs near the beginning
of the program.

120

-~ o~ F oY 1~ — — P

o~

T T a T a a a a a _ o _ _ _ _ _ _ _ N_ a T o e aa T aaa

END

When the program hits a line with the END statement, the program
stops RUNning as if it ran out of lines. You may use the CONT com-
mand to re-start the program.

FOR...TO...STEP

This statement works with the NEXT statement to set up a section of
the program that repeats for a set number of times. You may just
want the VIC to count up to a large number so the program will pause
for a few seconds, or you may need something counted. These are
among the most commonly used statements in BASIC.

The format of the statement is as follows:

FOR (loop variable name) = (start of count) TO (end of count). The
loop variable is a variable which will be added or subtracted to during
the program. The start of count and end of count are the limits to the
value of the loop variable.

The logic of the FOR statement is as follows. First, the loop variable
is set to the start of count value. The end of count value is saved for
later reference by the VIC. When the program reaches a line with the
command NEXT, it adds one to the value of the loop variable and
checks to see if it is higher than the end of loop value. If it is not
higher, the next line executed is the statement immediately following
the FOR statement. If the loop variable is larger than the end of loop
number, then the next statement executed will be the one following
the NEXT statement.

EXAMPLE:

10FORL=1TO 10

20 PRINT L

30 NEXT L

40 PRINT “I'M DONE! L="L

This program will print the numbers from one to ten on the screen,
followed by the message I'M DONE! L=11. Do you see why it works?
If not, try re-reading the paragraph before the example again, and
tracing through the program one step at a time on paper.

The end of loop value may be followed by the word STEP and another
number or variable. In this case, the value following the STEP is

added each time instead of one. This allows you to count backwards,
by fractions, or any way necessary.

121

You can set up loops inside one another. This is known as nesting
loops. You must be careful to nest loops so that the later loop to start
is the earlier one to end.

EXAMPLE OF NESTED LOOPS:

10 FORL=1TO 100

This for...next
loop is ‘‘nested”’
inside the larger
one.

20 FORA=5TO 11 STEP 2
30 NEXT A

40 NEXT L

Not correct:

10 FORL=1TO 100

20 FORA=5TO 11 STEP 2
30 NEXT L

40 NEXT A

GET

The GET statement is a way to get data from the keyboard one
character at a time. When the GET is executed, the character that was
typed is received. If no character was typed, then a null (empty)
character is received, and the program continues. There is no need to
hit the RETURN key, and in fact the RETURN key can be received with
a GET.

The word GET is followed by a variable name, usually a string
variable. If a numeric were used and any key other than a number was
hit, the program would stop with an error message. The GET state-
ment may also be put into a loop, checking for an empty result, which
will wait for a key to be struck.

This line waits
for a key to be
struck. Typing any
key will continue
the program.

EXAMPLE:

10 GET AS: IF A3 ="" THEN 10

122

—

P N - T T e T

_— e~

_—

Aﬂn—\‘\ﬁAF\AAAAAAAHAAAHAA

~ P T =

GET#

Used with a previously OPENed device or file to input one charcter at
a time.

EXAMPLE:
GET#1,A3

GOsuB

This statement is like the GOTO statement, except that the VIC
remembers where it came from. When a line with a RETURN state-
ment is encountered, the program jumps back to the statement im-
mediately following the GOSUB. This is useful if there is a routine in
your program that occurs several times in different parts of the pro-
gram. Instead of typing the same over and over, you type it once and
GOSUB to it from the different parts of the program. 20 GOSUB 800
means go to the subroutine beginning at line 800 and execute it.

GOTO or GO TO

When a statement with the GOTO command is reached, the next line
to be executed will be the one with the line number following the word
GOTO.

IF...THEN

The IF...THEN statement lets your VIC analyze a situation and take
two possible courses of action depending on the outcome. If the ex-
pression being evaluated is found to be true, the statement following
the word THEN is executed. This may be a line number, which will
cause the VIC to GOTO that line of the program. It may also be any
other BASIC statement or statements. If the expression is false, then
the next line (not the next statement on the same line) is executed
instead.

The expression being evaluated may be a variable or formula, in which
case it is considered true if non-zero, and false if zero. In most cases,
there is an expression |nvol\r|ng the relational operators (=, ,, =, =,
,AND,OR,NOT). If the result is found to be true, it has a value of —1,
and a value of 0 if false. See the section on relational operators for an
explanation of how this works.

123

INPUT

The INPUT statement allows the computer to get data into a variable
from the person running the program. The program will stop, print

a question mark (?) on the screen, and wait for the person to type the
answer and hit the RETURN key.

The work INPUT is followed by a variable name or list of variable
names separated by commas. There may be a message inside of
quotes before the list of variables to be input. If this message (called
a prompt) is present, there must be a semicolon (;) after the last quote
of the prompt. When more than one variable is to be INPUT, they
should be separated by commas when typed in.

EXAMPLE:

10 INPUT“PLEASE TYPE A #";A

20 INPUT"AND YOUR NAME";A$

30 INPUT B$

40 PRINT“BET YOU DIDN'T KNOW WHAT | WANTED!"

INPUT#

This works like INPUT, but takes the data from a previously OPENed
file or device.

LET

The word LET itself is hardly ever used in programs, since it is op-
tional, but the statement is the heart of all BASIC programs. The
variable name which is to get the result of a calculation is on the left
side of the equal sign, and the number or formula is on the right side.
EXAMPLE:

10 LETA=5

20B=6

30C=A"B+3

40 D$ = “HELLO"

124

e o~ P — —

el - . T N _ N . o a o a T a

—

Pl = T T T N _ Y _ N NN

NEXT

The NEXT statement is always used in conjunction with the FOR
statement. When the program gets up to a NEXT statement, it goes
back to the FOR statement and checks the loop. (See FOR statement
for more detail.) If the loop is finished, execution proceeds with the
statement after the NEXT statement. The word NEXT may be followed
by a variable name, or a list of variable names, separated by commas.
If there are no names listed, the last loop started is the one being
completed. If the variables are given, they are completed in order form
left to right.

EXAMPLE:

10 FOR L=1TO 10:NEXT

20 FORL=1TO 10:NEXT L

30 FORL=1TO 10:FOR M =1TO 10:NEXT M,L

ON

This command can make the GOTO and GOSUB commands into
special versions of the IF statement. The word ON is followed by a
formula, which is evaluated into a number. The word GOTO or GOSUB
is followed by a list of line numbers separated by commas. If the
result of the calculation is 1, the first line in the list is executed. If the
result is 2, the second line number is executed, and so on. If the result
is 0, negative, or larger than the list of line numbers, the next line
executed will be the statement following the ON statements.
EXAMPLE:

10 INPUT X

20 ON X GOTO 10,50,50,50

30 PRINT “NOPE!"

40 GOTO 10

50 PRINT“YUP!"

60 ON X GOTO 10,30,30

125

OPEN

The OPEN statement allows the VIC to access devices such as the
cassette recorder and disk for data, a printer, or even the screen of
the VIC. The word OPEN is followed by a number, which is the
number to which all other BASIC statements will refer. This number is
from 1 to 255. There is usually a second number after the first,
separated by a comma. This is the device number, 0 for the VIC
screen, 1 for the cassette recorder, 4 for the printer, 8 for the disk. It is
a good idea to use the same reference number as the device number,
which makes it easy to remember which is which. Following the
second number may be a third number, separated again by a comma,
which is the secondary address. In the case of the cassette, this may
be 0 for read, 1 for write, and 2 for write with end-of-tape marker at the
end. In the case of the disk, the number refers to the buffer, or chan-
nel, number. In the printer, the secondary addresses become different
types of commands. See the VIC Programmers' Reference Manual for
more on these. There may also be a string following the third number,
which would be a command to the disk drive or the name of the file
on tape.

EXAMPLE:
10 OPEN 1,0 OPENSs the SCREEN as a device.

20 OPEN 2,1,0,"D"” OPENSs the cassette for reading, file to be
searched for is named D.

30 OPEN 3,4 To use the printer.

40 OPEN 4,8,15 OPENS the data channel on the disk.

See also: CLOSE, CMD, GET#, INPUT#, and PRINT# statements,
system variable ST, and Appendix B.

POKE

The POKE command is always followed by two numbers, or formulas.

The first number is a location inside the VIC’s memory. There could
be locations numbered from 0 to over 65000. Some of these, like the
ones described in the chapters on sound and colors, can be used
easily in your programs. Some, however, are used by the VIC itself,
to keep track of your programs and so on. Experimenting with the
POKE statement will probably result in some interesting effects. If
something happens and you can't stop it, just turn the VIC off and on
again, or hold down the RUN/STOP key and hit RESTORE.

126

N e e, T T = N e e e e e e

o~ — - = = — —

The second number is a value from 0 to 255, which will be placed in
the memory location, replacing any value that was there previously.

EXAMPLE:
10 POKE 36879,8
20 POKE9*161 3 + 15,27

PRINT

The PRINT statement is the first one most people learn to use, but
there are lots of subtleties to be mastered here as well. The word print
can be followed by any of the following things:

Words inside of quotes
Variable names
Functions

Punctuation marks

The words inside of quotes are often called /iterals because they are
printed literally as they are typed in. Variable names outside of quotes
will have the value they contain printed. Functions will have their
values printed also. Punctuation marks are used to help format the
data neatly on the screen. The comma is used to divide the screen in-
to 2 columns, while the semicolon doesn’t leave any space at all.
Either mark can be used as the last symbol in the statement. This
results in the next thing PRINTed coming out as if it were continuing
the same PRINT statement.

EXAMPLE:

10 PRINT “HELLO"

20 PRINT “HELLO, "A$

30 PRINT A+ B;

50 PRINT J;

60 PRINT A,B,C,D

See also: POS(), SPC(), TAB() functions.

PRINT#

There are a few differences between this statement and the PRINT.
First of all, the word PRINT# is followed by a number, which refers to
the device or data file previously OPENed. The number is followed by
a comma, and a list of things to be PRINTed. The comma and
semicolon have the same effect on adding spaces as they do in the
PRINT, but some devices may not work with TAB and SPC.

127

EXAMPLE:

100 PRINT#1,"HELLO THERE!";A$,B$

READ

This statement is used to get information from DATA statements into
variables, where they may be used. Care must be taken to avoid
reading strings where the READ statement wants a number, which
will give you a TYPE MISMATCH ERROR.

REM (remark)

The REMark is just a note to whoever is reading a LIST of the pro-
gram. It may explain a section of the program, give information about
the author, etc. REM statements in no way effect the operation of the
program, except to add to its length. The word REM may be followed
by any text, although use of graphic characters will give strange
results (see the VIC PROGRAMMER'S REFERENCE GUIDE for

more info.)

RESTORE

When executed in a program, the pointer to which item in a DATA
statement will be read next is reset to the first item in the list. This
gives you the ability to re-READ the information. The word RESTORE
stands by itself on the line.

RETURN

This statement is always used in conjunction with the GOSUB state-
ment. When the program hits a RETURN statement, it will go to the
statement im.mediately following the GOSUB command. If no GOSUB
was previously issued, there is a RETURN WITHOUT GOSUB ERROR.
There is nothing following the word RETURN.

STOP

This statement will halt the program. A message, BREAK ERROR IN
LINE xxxx, where xxxx is the line number containing the STOP. The
program can be re-started by using the CONT command. The STOP
statement is used for debugging a program.

SYS

The word SYS is followed by a decimal number or numeric variable in
the range 0-65535. The program will at this point begin executing the
machine language program starting at that memory location. This is
similar to the USR function, but does not allow parameter passing.

128

—_— — N~ _— _— _— o~

Pl e el e e o oo o o o el

—

el e e T

— -

_— e e

P e T e B e B Y = T - = . O " O

—

B e e —_— a— — —— — o~

WAIT

The WAIT statement is used to halt the program until the contents of
a location in memory changes in a specific way. The word WAIT is
followed by a number, which is the memory address being checked.
Then comes a comma, and another number. There may be another
comma and a third number as well. These last two numbers must be
within the range 0-255.

The contents of the memory location are first exclusive-ORed with the
third number, if present, and then logically ANDed with the second
number. If the result is zero, the program goes back to that memory

location and checks again. When the result is non-zero, the program
continues with the next statement.

4. FUNCTIONS
a. NUMERIC

ABS(X) (absolute value)

The absolute value returns the value of the number, without it's sign
(— or +). The answer is always positive.

ATN(X) (arctangent)

Returns the angle, measured in radians, whose tangent is X.

COS(X) (cosine)

Returns the value of the cosine of X, where X is an angle measured in
radians.

EXP(X)

Returns the value of the mathematical constant e (2.71827183) raised
to the power of X.

FNXX(X)

Returns the value of the user-defined function XX created in a DEF
FNXX statement.

INT(X) (integer)

Returns the truncated value of X, that is, with all decimal places to
the right of the decimal point removed. The result will always be less-
than or equal-to X. Thus, any negative numbers with decimal places
will become the integer less-than their current value.

129

If the INT function is to be used for rounding up or down, the form is
INT(X +.5).

EXAMPLE:

X =INT(X*100 + .5)/100 Rounds to the nearest penny.

LOG(X) (logarithm)

This will return the natural log of X. The natural log is log to the base
e (see EXP(X)). To convert to log base 10, simply divide by LOG(10).

PEEK(X)

This is used for finding out the contents of memory location X, in the
range of 0-65535, giving a result from 0-255. This is often used in con-
junction with the POKE statement.

RND(X) (random number)

This function will return a random (or nearly so) number between 0
and 1. This is useful in games, to simulate dice rolls and other
elements of chance, and is also used in some statistical applications.
The first random number should be generated by the formula RND(-Tl),
to start things off differently every time. After this, the number in X
should be a 1, or any positive number. If X is zero, the result will be
the same random number as the last one. A negative value for X will
re-seed the generator. The use of the same negative number for X will
result in the same sequence of “random’” numbers.

To simulate the rolling of a die, use the formula INT(RND(1)*6 + 1).
First the random number from 0-1 is multiplied by 6, which expands
the range to 0-6 (actually, greater than zero and less then six). Then 1
is added, making the range 1-under 7. The INT function chops off all
the decimal places, leaving the result as a digit from 1 to 6.

To simulate 2 dice, add two of the numbers obtained by the above
formula together.

EXAMPLE:

100 X =INT(RND(1)*6) + INT(RND(1)*6) + 2 Simulate 2 dice.

100 X = INT(RND(1)*1000) + 1 Number from 1-1000.
100 X + INT(RND(1)*150) + 100 Number from 100-249.

SGN(X) (sign)

This function returns the sign, as in positive, negative, or zero, of X.
The result will be + 1 if positive, 0 if zero, and — 1 if negative.

130

el e el ol o el oo al al a a aaLL Y

= = o

—

P T = T = T = . T

SIN(X) (sine)

This is the trigonometric sine function. The result will be the sine of X,
where X is an angle in radians.

SQR(X) (square root)

This function will return the square root of X, where X is a positive
number or 0. If X is negative, an ILLEGAL QUANTITY ERROR results.
TAN(X) (tangent)

The result will be the tangent of X, where X is an angle in radians.

USR (X)

When this function is used, the program jumps to a machine
language program whose starting point is contained in memory loca-
tions 1 and 2. The parameter X is passed to the machine language
program, which will return another number back to the BASIC pro-
gram. See the VIC PROGRAMMER'S REFERENCE MANUAL for more
details on this, and on machine language programming.

b. STRING FUNCTIONS

ASC(XS)

This function will return the ASCII code of the first character of X$.

CHRS$(X)

This is the opposite of ASC, and returns a string character whose
ASCII code is X.

LEFTS$(X$,X)

This will return a string containing the leftmost X characters of X$.

LEN(XS$)

Returned will be the number of characters (including spaces and
other symbols) in the string X$.

MIDS(X$,S,X)

This will return a string containing X characters, starting from the Sth
character in X8.

131

RIGHTS(X$,X)

This will return the rightmost X characters in X$.

STRS(X)

This will contain a string which is identical to the PRINTed version of
X$.

VAL(XS)

This function converts the string X$ into a number, and is essentially
the inverse operation from STRS. The string is examined from the left-
most character to the right, for as many characters as are in
recognizable number format. If the VIC finds illegal characters, only
the portion of the string up to that point is converted.

EXAMPLE:

10 X = VAL(*“123.456") X =123.456
10 X=VAL(* 12A13B") X=12

10 X =VAL(“RIUC17*") X=0

10 X=VAL(" -1.23.23.23") X=-1.23

c. OTHER FUNCTIONS
FRE(X)

This function returns the number of unused bytes available in
memory, regardless of the value of X.

POS(X)
This function returns the number of the column (0-21) at which the

next PRINT statement will begin on the screen. X may have any value,
and is not used.

SPC(X)

This is used in the PRINT statement to skip X spaces forward.

TAB(X)

This is used in the PRINT statement. The next item to be printed will
be in column number X.

132

™ ™ D S I N S e A A S e e

O™ T M M S A e

el i el el o o el o o L N N N N N N L Y N N N N _ N o oo e

-

APPENDIX D:
ABBREVIATIONS FOR BASIC KEYWORDS

As a time saver when typing in programs and commands, VIC BASIC
allows the user to abbreviate most keywords. The abbreviation for the
word PRINT is a question mark. The abbreviations for the other words
are made by typing the first one or two letters of the key word,
followed by the SHIFTed next letter of the word. If the abbreviations
are used in a program line, the keyword will LIST in the longer form.
Note that some of the keywords when abbreviated include the first
parenthesis, and others do not.

Looks like Looks like
Command Abbreviation this on screen Command Abbreviation this on screen
AND A N A E:] PRINT# P m R P Q
NOT v o O READ AR -~ O3
CLOSE CL o oL D RESTORE nsm s rRe Y
CLR c n L ¢ D RETURN RE m v ore[[]
CMD c m moc N RUN R m” R A
CONT c m o ¢] SAVE s mA s &
DATA o [EE - o P STEP s E: s O3
DEF D m e o [STOP s MT s Uj
DIM D m) E sYs s m Yy s [:ﬂ
END E v £ THEN T m w1 [
FOR F m o ¢] VERIFY V m e v []
GET G m E G E WAIT w m Aowdp
cosus ol s o ¥ ABS ~ ER: - (1]
GOTO G m o &] ASC A ms A §

A

INPUT# | m N [A ATN A m T A UJ
LET L E L E CHRS c mu c []]
usT L m| ¢ B EXP e Il ¢ &b
LOAD L m o L D FRE F m R F Q
NEXT N m E N E LEFTS T oo RN H
OPEN o IR o D MIDS M m I N
POKE P m o P [:] PEEK P ME P E
PRINT ? ? RIGHTS R | N

133

(

Looks like Looks ke €
Command Abbreviation this on screen Command Abbreviation this on SCIG.‘I'I
RND R n R[] STRS ST R st ;
SGN s MG s [} TAB (R & ¢
SIN s IE s N UsR vIERs vV 4
SPC (s IERr s [VAL viER: v & (
SOR s [l s @)

APPENDIX E
SCREEN & BORDER COLOR COMBINATIONS

You can change the screen and border colors of the VIC anytime, in or
out of a program, by typing

POKE 36879, X

where X is one of the numbers shown in the chart below. POKE 36879,
27 returns the screen to the normal color combination, which is a
CYAN border and white screen.

Try typing POKE 36879, 8. Then type CTRLﬂ and you

have white letters on a totally black screen! Try some other
combinations. This POKE command is a quick and easy way to
change screen colors in a program.

~ BORDER)
SCREEN BLK WHT RED CYAN PUR GRN BLU VYEL
BLACK 8 9 10 11 12 13 14 15
WHITE 24 25 26 27 28 29 30 31
RED 40 41 42 43 44 45 46 41
CYAN 56 57 58 59 60 61 62 63
PURPLE 72 73 74 15 16 711 18 79
GREEN 88 89 % 91 92 93 94 95
BLUE 104 105 106 107 108 109 110 111
YELLOW 120 121 122 123 124 125 126 127
"ORANGE 136 137 138 139 140 141 142 143
LT.ORANGE 152 153 154 155 156 157 158 159
PINK 168 169 170 171 172 173 174 175
LT.CYAN 184 185 186 187 188 189 190 191

LT. PURPLE 200 201 202 203 204 205 206 207
LT. GREEN 216 217 218 219 220 221 222 223

LT. BLUE 232 233 234 235 236 237 238 239
LT.YELLOW 248 249 250 251 252 253 254 255

134

—

~ o~ £~ F e o~ o~ o~ £

il el ol el ol ol ol oo o N N N N Y W Y Y Y N T a o a aaa ae

~~

APPENDIX F
TABLE OF MUSICAL NOTES
APPROX. APPROX. B
NOTE VALUE NOTE VALUE
C 135 G 215
C# 143 G# 217
D 147 A 219
D# 151 A#t 221
E 159 B 223
F 163 C 225
F# 167 C# 227
G 175 D 228
G# 179 D# 229
A 183 E 231
A# 187 F 232
B 191 F# 233
C 195 G 235
C# 199 G# 236
D 201 A 237
D# 203 A# 238
E 207 B 239
F 209 C 240
F# 212 C# 241
SPEAKER COMMANDS: WHERE X CAN BE: FUNCTION:
POKE 36878, X Oto 15 sets volume
__F_‘OKE 36874, X 128 to 255 plays tone
POKE 36875, X 128 to 255 plays tone
_ POKE 36876, X 128 to 255 plays tone
POKE 36877, X 128 to 255 plays “noise”

APPENDIX G:
20 SOUND EFFECTS FOR THE VIC-20

Here are some sample routines to use as a guide for creating sounds
to enhance your programs. You may type them into your VIC -20 either
by themselves or inside other programs. Of course, these are not
nearly all of the possible sounds that your VIC-20 can play, so feel
free to use your creativity.

The sound effects listed here will make a program pause for however
long they take to be completed. It is possible to put these effects into
a program in a way that does not stop whatever animation may be
running, and this topic is discussed in detail in the VIC-20
Programmer's Reference Manual.

135

Remember to use line numbers when you type these routines into the
computer. The numbers are not shown here in order to avoid
confusion when you enter them into your programs.

#1: SCALES

POKE 36878,15

FOR L=250 TO 200 STEP -2
POKE 36876,L
FORM=1TO 100

NEXT M

NEXT L

FOR L=205TO 250 STEP 2
POKE 36876,L
FORM=1TO 100

NEXT M

NEXT L

POKE 36876,0

POKE 36878,0

#2: COMPUTER MANIA

POKE 36878,15

FORL=1TO 100

POKE 36876,INT(RND(1)"128) + 128
FORM=1TO 10

NEXT M

NEXT L

POKE 36876,0

POKE 36878,0

#3: EXPLOSION

POKE 36877,220
FORL=15TO 0 STEP -1
POKE 36878,L
FORM=1TO 300

NEXT M

NEXT L

POKE 36877,0

POKE 36878,0

#4: BOMBS AWAY

POKE 36878,10

FOR L =230 TO 128 STEP —1
POKE 36876,L
FORM=1TO 20

NEXT M

NEXT L

POKE 36876,0

POKE 36877,200

FOR L=15TO 0 STEP —.05
POKE 36878,L

NEXT L

POKE 36877,0

136

#5: RED ALERT

POKE 36878,15
FORL=1TO 10
FOR M =180 TO 235 STEP 2
POKE 36876,M
FORN=1TO 10
NEXT N

NEXT M

POKE 36876,0
FORM=1TO 100
NEXT M

NEXT L

POKE 36878,0

#6: LASER BEAM

POKE 36878,15
FORL=1TO30

FOR M =250 TO 240 STEP -1

POKE 36876,M
NEXT M

FOR M =240 TO 250
POKE 36876,M
NEXT M

POKE 36876,0
NEXT L

POKE 36878,0

#7: HIGH-LOW SIREN

POKE 36878,15
FORL=1TO 10
POKE 36875,200
FORM=1TO 500
NEXT M

POKE 36875,0
POKE 36876,200
FORM=1TO 500
NEXT M

POKE 36876,0
NEXT L

POKE 36878,0

R Y T - = O = N R R T N A el el oo

—

_—

el el el ool el ol ool o 0 0 . N N N _ N N _ N

#8: BUSY SIGNAL

POKE 36878,15
FORL=1TO 15
POKE 36876,160
FORM=1TO 400
NEXT M

POKE 36876,0
FOR M=1TO 400
NEXT M

NEXT L

POKE 36878,0

#9: PHONE RINGING

POKE 36878,15
FORL=1TOS5
FORM=1TO50
POKE 36876,220
FORN=1TO5
NEXT N

POKE 36876,0
NEXT M

FOR M =1 TO 3000
NEXT M

NEXT L

POKE 36878,0

#10: BIRDS CHIRPING

POKE 36878,15
FORL=1TO 20

#12: OCEAN WAVES

POKE 36877,180
FORL=1TO 10

D = INT(RND(1)*5)*50 + 50
FORM=3TO 15

POKE 36878,M
FORN=1TOD

NEXT N

NEXT M
FORM=15TO 3 STEP —1
POKE 36878,M
FORN=1TOD

NEXT N

NEXT M

NEXT L

POKE 36878,0

POKE 36877,0

#13: VANISHING UFO

POKE 36878,15
FOR L=130TO 254
POKE 36876,L
FORM=1TO 40
NEXT M

NEXT L

POKE 36878,0
POKE 36876,0

FOR M =254 TO 240 + INT (RND(1)*10) STEP —1

POKE 36876,M
NEXT M
POKE 36876,0

FOR M =0 TO INT(RND(1)*100) + 120

NEXT M
NEXT L

#11: WIND

POKE 36878,15
POKE 36874,170
POKE 36877,240
FORL=1TO 2000
NEXT L

POKE 36874,0
POKE 36877,0
POKE 36878,0

137

#14: UFO LANDING

POKE 36878,15

FORL=1TO 20

FOR M =220-L TO 160-L STEP -4
POKE 36876,M

NEXT M

FOR M =160-L TO 220-L STEP 4
POKE 36876,M

NEXT M

NEXT L

POKE 36878,0

POKE 36876,0

#15: UFO SHOOTING

POKE 36878,15
FORL=1TO 15

FOR M =200TO 220+ L"2
POKE 36876,M

NEXT M

NEXT L

POKE 36878,0

POKE 36876,0

#16: WOLF WHISTLE

POKE 36878,15

FOR L =148 TO 220 STEP .7
POKE 36876,L

NEXT L

FOR L=128 TO 200

POKE 36876,L

NEXT L

FORL=200TO 128 STEP -1
POKE 36876,L

NEXT L

POKE 36878,0

POKE 36876,0

#17: RUNNING FEET

POKE 36878,15
FORL=1TO 10
POKE 36874,200
FORM=1TO 10
NEXT M

POKE 36874,0
FORM=1TO 100
NEXT M

NEXT L

POKE 36878,0

#18: TICK—TOCK

POKE 36878,15
FORL=1TO 10
POKE 36875,200
FORM=1TO 10
NEXT M

POKE 36875,0
FORM=1TO 300
NEXT M

POKE 36874,200
FORM=1TO 10
NEXT M

POKE 36874,0
FORM=1TO 300
NEXT M

NEXT L

POKE 36878,0

#19: DOOR OPENING

POKE 36878,15
B=0

FORL =128 TO 255 STEP 11

POKE 36874,L
FORM=1TO 10
NEXT M
B=B+1

IF B=3 THEN B =0: POKE 36874,0

NEXT L
POKE 36874,0
POKE 36878,0

#20: BLIPS

POKE 36878,15
POKE 36876,220
FORL=1TOS5
NEXT L

POKE 36876,0
FORL=1TO 500
NEXT L

POKE 36876,200
FORL=1TO5
NEXT L

POKE 36876,0
FOR L=1TO 500
NEXT L

POKE 36878,0

el el el oo

P N N A A Y el e el el o ol e o e el

~,

™S

—

P T T . T

A S e s L e e e A e e e e e . e e e e e

Pl

-

APPENDIX H: SCREEN DISPLAY CODES

The following chart lists all of the characters built-in to the VIC20
character sets. They show which numbers should be POKEd into
screen memory (locations 7680 to 8185) to get a desired character.
Also, it shows what character corresponds to a number PEEKed from
the screen.

The two character sets are available, but only one set at a time. This
means that you cannot have characters from one set on the screen at
the same time you have characters from the other set displayed. The
sets are switched by holding down the SHIFT and COMMODORE keys
simultaneously. This actually changes the 2 bit in memory location
36869, which means that the statement

POKE 36869, 240 will set the character set to upper case, and POKE
36869, 242 switches to lower case.

If you want to do some serious animation, you will find that it is
easier to control objects on the screen by POKEing them into screen
memory (and erasing them by poking a 32, which is the code for a
blank space, into the same memory location), than by PRINTing to the
screen by using cursor control characters.

Any number shown on the chart may also be displayed in REVERSE.
Reverse characters are not shown, but the reverse of any character
may be obtained by adding 128 to the numbers shown.

NOTE: SEE SCREEN MEMORY MAP APPENDIX.

If you want to display a heart at screen location 7800, find the number
of the character you want to display there (in this case a heart) in this
chart...the number for the heart is 83...then type in a POKE statement
with the number of the screen location (7800) and the number of the
symbol (83) like this:

POKE 7800, 83

A white heart should appear in the middle area of the screen. Note
that it will be invisible if the screen is white. Try changing the position
by changing the larger number, or type in different symbols using the
numbers from the chart.

If you want to change the COLOR of the symbol being displayed,
consult the accompanying chart which lists the COLOR NUMBERS
for EACH MEMORY LOCATION. In other words, to get a different
colored symbol at a particular location, this requires another POKE
command.

139

For example, to get a red heart, type the following:

POKE 38520, 2

In screen pokes
this color is
one less than
the numbers on the
keyboard color keys

This changes the color of the symbol at location 7800 to red. If you
had a different symbol there, that symbol would now be red. You can
display any character in any of the available colors by combining
these two charts. These POKE commands can be added in your
programs and are very effective especially in animation — and also
provide a means to PEEK at certain locations if you are doing
sophisticated programming such as bouncing a ball, which requires
this information.

140

—

el T e e T T e . O - . O O O O O S e N T e O

—

SCREEN CODES

SET1 SET 2 POKE

@

m O O o P

-

I ©

Q £ =

- »® T O 7T

0
1

2

10
1
12
13
14
15
16
17
18
19

20

SET1 SET 2 POKE

u

v

141

u

V'

w

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41

SET1 SET 2 POKE

-

+

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

H
[H
™
[
=1
L
=
=
T
E[I
[
i
1
)
™
-
1 v
m
ks
H]
ol
"

5
96
97
98
99

100
101
102
103
104
105

N
d: R IRISISE s TS

8 9 D
P~ M~ @

142

75

- N m
o o o

77

©
M~
ABCDEFGHIJKLMNOPO_HS

~ HHBIDNDOO0E@PNONOO e

SET1 SET 2 POKE SE'E1 SET 2 POKE| SET 1 SET 2 POKE
T
U
\
W
X
Y
z
™ &
NN

ra il al el e all ol ol o o o o . N N N N . N _ ..

o~

APPENDIX I: SCREEN MEMORY MAPS

Use this appendix to find the memory location of any position on the
screen. Just find the position in the grid and add the numbers on the
row and column together. For example, if you want to poke the
graphic “ball” character onto the center of the screen, add the
numbers at the edge of row 11 and column 11 (7900 + 10) for a total of
7910. If you poke the code for a ball (81, see Appendix H) into location
7910 by typing POKE 7910,81, a white ball appears on the screen. To
change the color of the ball (or other character), find the correspond-
ing position on the color codes memory map, add the row and column
numbers together (38620 + 10, or 38630) for the color code and type a
second poke statement. For example, if you poke a color code into
this location, POKE 38630,3 the ball will change color to cyan. Note
that when POKEing, the character color numbers are one less than
the numbers on the color keys—as shown below.

Abbreviated List of Color Codes:

Code Color

Black
White
Red
Cyan
Purple
Green
Blue
Yellow

~NogswWNn 2O

143

012345678 910111213141516171819 20 21

8164 i D [
PAGE 1: SCREEN CHARACTER CODES

012345678 910111213141516171819 20 21

38400 | | . [T T TTT]
38422 | __ | [

38444
38466

38488

38510

38532

38554
38576 |

38598
38620

38642 '

38664 | | 1T
38686 T
38708
38730]
38752 .
38774 '
38796 |
38818 |
38840 ;
38862 !
38884 [

PAGE 2: COLOR CODES MEMORY MAP
144

—

L T o T e T T S S N S N N N O N = = . . U O O =N

—

APPENDIX J: ASCII AND CHR$ CODES

This appendix shows you what characters will appear if you

PRINT CHRS (X), for all possible values of X. It will also show the
values obtained by typing PRINT ASC (“x”) where x is any character
you can type. This is useful in evaluating the character received in a
GET statement, converting upper/lower case, and printing character-
based commands (like switch to upper/lower case) that could not be
enclosed in quotes.

PRINTS CHRS

0

5

10
11

12

RETURN [
s

15

PRINTS CHRS$
16
17
m 18
B o
i 20
21
22
23
24
25
26
27
28
cri_g\a 29
Em 30
31

PRINTS CHRS$

o I

! 33
34

35
$ 36
% 37
& 38
39

(40

) 141
42

+ 43
44

— 45
46

/ 47

145

PRINTS CHRS
g 48
1 49
2 50
3 51
4 52
5 53
6 54
7 55
8 56
9 57

58

59

< 60
= 61
= 62
? 63

PRINTS CHRS
@ 64
A 65
B 66
C 67
D 68
E 69
F 70
G 71
H 72

! 73
J 74
K 75

I 76
M 77
N 78
0 79
P 80
Q 81
R 82
s 83
T 84

PRINTS CHRS

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

I8+ » - % -~ ~n < x & < <

[
L

101
102

103

1O

104

105

h]

PRINTS CHRS$
106
107
108
109
110
111
112
113
114
115
111
117
118

119

OXMO L OUONKUOMN

120

KN
.l

121

=

122

*

r
L

123

124

B B

125

—_—
| |

126

146

PRINTS CHRS
N
128

129

130

131

132

1 133

3 134

5 135

7 136

f2 137

4 138

6 139

8 140
141
By 142
143

A 144

@ 145
m 146

% 147

') P N - - - - O O O O O O T e M

PRINTS CHRS
148
149
150
151
152
153
154
155
M 156
157

28 158

PRINTS CHRS

159
m 160
| DR
mm 162
] 163
L] 164
|] 165
B 166
] 7
w168
Vi e

PRINTS CHRS$

] 1o
H oo
w172
L s
5] 174
— 175

0 s
L a7
178
Hl 179

| 180

PRINTS CHRS$
181

182
183
184
185
186
187
188
189

190

"ujialiSIN"| AN Y BN I | i

191

147

APPENDIX K:

DERIVING MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to VIC BASIC may be calculated as follows:

FUNCTION

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE

INVERSE SECANT
INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE
INVERSE HYPERBOLIC COSINE
INVERSE HYPERBOLIC TANGENT
INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTANGENT

VIC BASIC EQUIVALENT

SEC(X) = 1/COS(X)
CSC(X) = 1/SIN(X)
COT(X) = 1ITAN(X)
ARCSIN(X) = ATN(X/SQR(— X*X + 1))
ARCCOS(X) = — ATN(X/SQR
(=X*X+1)+ 72
ARCSEC(X) = ATN(X/SQR(X*X — 1))
ARCCSC(X) = ATN(X/SQR(X*X — 1))
+(SGN(X) = 1)* 712
ARCOT(X) = ATN(X) + /2
SINH (X) = (EXP(X) — EXP(— X))/2
COSH(X) = (EXP(X) + EXP(- X))/2
TANH(X) = -EXP(— X)(EXP(x) + EXP
(=X)*2+1
SECH(X) = 2/(EXP(X) + EXP(- X))
CSCH(X) = 2/(EXP(X) — EXP(- X))
COTH(X) = EXP(- X)(EXP(X)
—EXP(=X))*2+1
ARCSINH(X) = LOG(X + SQR(X*X + 1))
ARCCOSH(X) = LOG(X + SQR(X*X — 1))
ARCTANH(X) = LOG((1 + X)/(1 — X))/2
ARCSECH(X) = LOG((SQR
(= XX+ 1)+ 1)X)
ARCCSCH(X) = LOG((SGN(X)*SQR
(XX + 1)/x%)

ARCCOTH(X) = LOG(XX + /(X —)2 |

148

APPENDIX L:
PINOUTS FOR INPUT/OUTPUT DEVICES

Here is a picture of the I/O ports on the VIC:

1) Game |/O 4) Serial 110 (disk)
2) Memory Expansion 5) Cassette

3) Audio and Video 6) User Port (modem)

1) GAME /O

T s 4 s PIN# | TYPE 'NOTE |
o o (o] o (o] S AT S,
JOY§
5 2 i JOY1
. JOY?2

JOY3

POT Y
LIGHT PEN
+5V MAX. 18@mA
GND
POT X

-

W oo ~NOoO O e WK

149

2) MEMORY EXPANSION

12345678 910111213141516171819202122

BA S S Ll Il AR BEEEREILE B mmm
- i S SIS SR TERITNT S

ABCDEFHJKLMNPRSTUVWXYZ

PIN# | TYPE PIN # TYPE
i GND 12 BLK3
2 cDg 13 BLKS
3 CD1 14 RAM1
4 cD2 15 RAM2
5 cD3 16 RAM3
6 CD4 17 VRW
7 CD5 18 CRW
8 CD6 19 IRQ
9 cD7 20 NC

10 BLK1 21 +5V
1 BLK2 22 GND

PIN# | TYPE PIN# | TYPE
A GND N CA1¢
B CA@ P CA11

c CA1 R CA12

D CA2 S CA13

E CA3 T 11g2

F CA4 U 1183

H CA5 v S@2

J CA6 W NMI

K CA7 X RESET

L CA8 Y NG

M CA9 Z GND
150

T T

~ —_— — — ~

3) AUDIO/VIDEO

PIN # | TYPE NOTE
1 + 5V REG 10mA MAX
2 GND
3 AUDIO
4 VIDEO LOW
5 VIDEO HIGH

PIN# | TYPE

1 SERIAL SRQ IN

GND

SERIAL ATN IN/OUT
SERIAL CLK IN/OUT
SERIAL DATA IN/QUT
RESET

DWW

T e T T R T T T Y N T T T o a0 O O U U R

5) CASSETTE
123456 " PIN # TYPE |
. | N —]
B ————— AT GND
B-2 +5V
e W W W W c3 CASSETTE MOTOR
ABCDEF | D4 CASSETTE READ
ES CASSETTE WRITE |
‘ F6 CASSETTE SWITCH |
151

6) USER I/0

12 3 456 7 8 9 1011 12

— B B NN NN NN e N Em
L L L L B I B I I I S

A BCDEFHUJKLMN

PIN #| TYPE NOTE | PIN #[TYPE | NOTE
1 | GND A | GND
2 | +5V 100mA MAX.| B | CB1
3 | RESET c | PBo
4 | Jove D | Pe
5 | Jov1 E | pB2
6 |Jov2 F | PB3
7 | LIGHT PEN H | PB4
8 | CASSETTE SWITCH J | PBs
9 | SERIAL ATN IN K | Pes
10 | +9v 100mA MAX. | L PB7
11 | GND M | cB2
12 | GND N GND
S—

152

A04+03M0-4 A3 T 0FHOSE ST T HATHOL I ST=d? T="T1E H+el88

I-7410 51 8,
S-T141D 51 o
S=T4LT ST kR
.Ul.l_n_.._ru SI ._@:
.u:.._ n._n._.l_ m.._,.H :D:
1437 4542 ST IR
HMOT 240 51 _.@:
m_.._DI "WH ..@_.

4712 51 W0
STOGNAS
TVIO3dS OL A3

ASTHNIHLE=041 Z4T
aasH3IHLa=041 ALl

LX3H 131

S 03H0d BAIT

: BATOLOO: A=3H3HLIFLL04d] 55T

@asM3IHL 29=002 4334802 =C 02 433 44009=C0 433441 BsT

PE-0=012270340d ST

20LT=Ha0d T+1

ALTHAHLE=341 a1

B HATAD: ="THIHL T—=d41* T—d=d: 4 HA3H0d LET
AP THIHLBR=T1dI 32T
BLT0L09: ¢+

=01 T=anNaHL1a=30NHSE=C L6 T 2 A33ddT 52T
BE20L008 T-H=H: pRSaNSOONIHLEE=C 8T 2 433441 asl
BE20L00E T+H=H AASINS0OHIHLPE=(LET 2433441 21

SO AHIEd 1zt

w D00 LHIdd STT

wom B ulMIdd artt

wl L, 1lHIdd sar
#2Z+Eab3s0l0abas=H40d 1Al
ffafalala e aa e e eals o LHI 4 aal
W3 4-37 LHO I H-0" L437-2Z, LHIdd TE
:** Du: Uﬁm&m} LIIH +im:PIH&m az
. C L i ; wlHIdd

l"\l

g=d: LX3IN: B H3H0d: £

SZ2° T+HA3H0d

ST+ELATHE=HAT FTHTLITRE=HA
RZiac=40

¥3LYT"a AT 0dN=-A-HHHL LI3Y

AHl OL SWYHO0Hd JIA ‘N XION3ddV

—~ U0 m

™
I]
—

'

-

e |

a="1 189

BAT“ ZE-0TH0d: AT Z24+03H042 09T 1-03H0J 02T “ T+23A0H* BT “IIAH0d BEad
SZT0L09 \ss

ZEP2-030d: 2E22-9340d SES

2EYZ2-03M0d: 25 T2—-03H0d: 82 RA2-03H0d 227 1934042 227 T+93H0d: 22793 H0d BES
1X3IHBAT0LT=HH40d azZs

2+ HZ-0INH0: 2P EZ-93A0d ATS

Qb 22030 24 T2-0TH0H? 9P @A2-0TANL: L T-0TA0S: 3L 7 T+0IA0d: 93793404 Bas
AP0 L0D: (LT 2H33dIHIAd Bar

HanL3y: ¢ O LHIdd ST

" nCHMAHLIMIEL ATE

" wCHIAHLIMTIANL SaE

" w(HIEHLININd 8ag

ceToLnD: ¢ O IHIdd S22

" __H_.H:H__H ..ﬁ_n.__mmk.—.:Huw_l _‘Wﬁﬂ.

w W B wod»E-HLINING 52

n wCHMAEHLIMIAL 228

ST=HHIHLST<H4I 122
a=dM3IHLA:H4I wac

SZTOLOG: 13793H0d 881

GASOLOD: A=dH3IHLIZ#22+0939C04d] L2

BALNIHLZEC (O 43344 32T

b+O=02 227093404 ST

SZTHIHLIA=441 =2

£Z=b £243=0! T=4NIHLA=40HHA-H=C(22/ 3-8682 2 2 IHMI 41 2=

SETOLOD 18T

SETOLO0: TE8=k: T2+3=0" T=4 HIHLlA=d0MHHH-H-Z2=CZ2/C3F-32T31 2 LHI4dI B3]
CEIH3IHLTI=rdI &84T

A9 Z-33H04: 2F 1-F3404d 227 3FH0d * [+3=3 2241

BSTOLOD: A=0M3HLI=341 34T

T+A=M:ZE2-33404: 227 1-3340d: 22 °3390d +24T

154

" " a«ﬁ.u_mmn—..—.szn’
L#3H

: ._ﬁH._l—a—;._Hmﬂh
" FE, cH:3-dL1IHINd

:g piEEHL LTI A

WG IHIAd

" TE: , cH a3 LI Ed

:LLLLEW:,EJthk:Hm&

ST ATTHYIHNI =S T T HASAOL: @aZ0L T=T1440d ¢ T+H=H

Aa="1: 3271 “HAIH0d

SETOLOD

,[ATeTe T TaTaTaTa T eTaTRTaara, « L1 I dd ® L0 S L o 03 S0 SNRREES LM T dd? T+M0=1110
" D, LHIdd
mlwm_jmumﬂxﬁ —-33H0d: ZE 3T H0d: L3N
L3M:as0 L T=04045 2 ~3FH0d: S22 1-3H0L S22 330
1¥3MNas0LI=0404d: 222 rlmmLca"mNNgﬁ IIHOLST 222 73T AH0L
CES TSR IHI-S T EATHDG: AE0LT=0M04 22T THATHDL a7 4|I}miom
P 4N+a2+33 404 a7 A0+ T2+33H04d 87 J0+Z22+33H0d
bR O+ TT A0 Y T—A0+3TH0d 1 A0+ 3T H0 IESAS+33H04d 2F Y TE+33 04 22 22+33H0d
[+3=3

APOHAHLZZ#AZS+R3 2L 341

ZEYE-ITH0L: 22 T-33H0d: 22 33 A0S

L3HE 07 T—HATHNG: T—d3 L5820 LSGE=04042 L3 07 T-HATH0d: 252018 Z2=0404

A3 Z2-33:04: S T-3340d: 237 33A0d

SR HASHOLE ST HATHOd: [+22+3=3

2o 22+03H0d: 22 22-03H0d

! FECaZ+3304E 20 12+433H0LE 22 2E+IFA0L 287

.1 |_ .j

ATHOLE PECC40TH0LE B E-0THOLI ZE T ZH0IN0LIZE T T-0FA0SIES T THIIH0LE 22T 23H0L
B=0%a=3

L3 LA AL0L T=HOH042 99 dATHOD?: T-d31L58015T=09404

aT+821 “HA3HOd

L#E3M: L3N THd=4: (403 "0340d : J+E+I0LF+D=11404 52
Z243LEPPOLA=T404: BT ‘6L T23404d B

HO3L3N MHAT L3Y: T=d &2

T+J3=0

LH3M: L3N T4+d=d: Z2 13404 : J+E+I0L3+I=0404
Zod3LSeP0Le=3404

40313 H43 W34 1=4

BIETHELATHETA0L : B=MHIHLA=N4T : Z-N=N:N"FT+S} S THTAD
SZMIHLB=M4I

L3N @3 T=0H29: 27 0L T=H40d

o

Do IR R R TR O

S —t 000 T Ty 0 o D) T 0 T

LH3H: T HIA0 : SES+EaP220LPrPei=Ha04
(@37 '6212340d

i34 AMH LIH wlMIdd

A=1: . #%% 1300 43771 %, INIdd

SCT+ELOTHETADS : D=1 (2T 2AWNIT : I%ZE+AB3L=1) %
H31LHT JHENT A9 13W00 43771 MLLLLL IEr
ZLT0L00 SBS
I=r:az
+3=1! 12-T=3HIAHLS "<CTHOMHASI T—=0@=H:a2-3=17 3SE+ITHC ¢ﬂ+.ﬁ.oza IHI+ZaLL=3 T=0 aas
SRTOLOD:a=H f@a=d4 a3s

. [eTaTeTaTa TR TaTa AT aMIaTd ,, LM T & L0 SHHE L, N0 SOAMEREE, LM dd® T+10=10 254
" %..P:H&& wmh

SWOTGIHIEd 254
: :a ..r_.:H\ml .Lm‘_
T wCT=H 3dLIHIEd T
. wCHIGHLIHIEd B8

",

HE : L%3H: BEAZ0 L T=44404 aF
L3N 8

193N ARS0L T=44404 BE
HepT+0l3T®e3404d T
T-43LSA0LST=H404 B
0d:5 T+ 21453404 5
+OETCTHELITHETHOL @
120109

LA3H: LK3N: T+d=4d
Fo=¢ A3INIHLEE =T 343344 : F+E+I0L3+I=1404

FEd3LlsPrOla=3404d Z2

20109 :

Jquu”v¢+44u44_mexnmﬁmmahﬁnwmmou_:*i%ﬂm}mmpmwn MQMHmEiﬁiﬁﬂﬂn=thmmzthmHu&mH I8
13W H23HD W3d: T=4 82
12733404 &2
5]

4 A=0M3HLERT=CT-52 43344 T4
S aH04HNIHLAR T=(S 4334T B
120109 : @=0H3HLS+LL 541 @9
ZE-S=5:28°530d 55
AsM3IHLE=041 85
ﬁmimm+mﬁ+®mwhnm”ﬁuuzmxhaummzm:=mvmmmHuwthmm (Gl

GRSOL0O: i I3404L53T 3sHd MOOMERREE LHT 34NIHLAST=(82 183 X33d4] 9&

[Vl Pl D T T

mez_mGMGhﬁummm

Aol or k)
00 00 T DU

=X

0109 : 5T=0:B8a+52 Co TSl ATHETAOL T=M: T+L=1: 22 T-534H0
mmDthumﬁu3”E®m+mmﬁﬂmﬂ+m+m~*muxcmnﬁu3”H+th“®um_m

— — — — - e W W e W W N - - 4
— w S i

157

W VW W WY YU UV WW W V W W VY YUYV VYWV Y VWYY Y VYOV

STIOLOS @8=0:28-4=] ZZ&# 3+ 0 TEC T 0INS LNT 24284 d=4: T==3H3HLT=CZ# T HIN4 LINI 4T 587
T=H @&z

B20L09:9°4340d arT

AL0L09: BRSINS0ONIHLEE=(4243344] BET

BA0L09: B=HMIHLI=441 527

I+d=d:Z2 43404 BET

BANIHLA=H4T STT

BEZHIHLA=HII @711

B TI3A404 SAaT

CATIOLOO: @=dH3HL23+@39204] Bal

BA0L00: 5 m:racIthmru_mmxmm&mcmnl 12433441 B

=I=T 28 T304 58
AT IM3IHLIE=34] &2
MMH : L<3H
CAGAE0LT=HHA0d 3 " PT+ZLITHEE3A0L: o 1 0 1 S13A20H F40W OWRERLELE , IN] 44H3HLTZ18=24] S/
BUETHSLSTEET A0S B=HHIHLE=14] Z£
T RT+ELDTH#ETADA: T-T1="THIHL T=H] ﬁw
.n_ I=
SET+HEZT "ET+H2LTH#E3H04 : T=H: 1=-0=0: 0=0: 22 'Z2+2340d : T=GHIAHLE=TOIHH,, , <>$H4T - $H 139 @
ST+22%22+8232=H @9
wdddd bbb L L L L INNENENEEEEERE. LM 44 &85
g e e e e TR T D - T - T B L et LN I 4 B
whdd AMH LIH wlMIdd SE
Dok IHEMWOD L3MI0H dEeNs, LHI4d a8
SHZSHPIFEZ T+ STHIATHDS BT
ST+AZ$Z2+059=T |

158

51
LA3N: 8 HIA0D : CEHET+BBPEC0LZC+BOFES=HA0S T
aln INT A B35 -80P2E=40 2L 2T#6=14 A7

431877 3HENT AT IHEWWOD L3420 L LLLLL Y
L LLLL IO

'

k)

HenL3-
BOST+SLATH53H04d : LX3H

& ORI+ T#63H0d

T-d3L8a0LaT=4404d

SoT+EZT "ET+2L 23 T#53 404

HADLO9
Hen L34
=AM T “HO3H04

mezummgpﬁuoam:u.:ﬂzmmg:m,mxmwxummuHH

2d3LEA T4+ 40 L d=H94 04

BYET+0L TR0

B H0+Z2-4340d: x.mu+u:+mw4:¢
B A0+ T=43404 : 5 uc+ﬁ+mm¢C¢ @404+ 43;
S EE=43H0d: ZE T ETH+43H0L 22 T =43H04: 22 T+43404d - T2 um*:m
:mz F 13 m-:pﬂlum:m
PI+ELATEsT 04

ﬁ mmpumopmﬁuza:u

SEHEIT T ET+EL S T#83H0d

FEE—H43A0A B3] T ZE+43HA04 83T T T-43 404 83T ¢ ﬁ+mmL:m BT " 43404
FrAMHEE~ATHADS £ E2+ A0+ 4304

Fr40+T um*:m POAO+T+43H404 : + 40+ 43404

50 = FE0JSERREE LHI A48 T+05=05

H=H: 8=

CSTTOLOO 29=0:Z20+4=1 22 S+CaT#C T vIMA) LIHI »+82324=4: =3

BIET
HIET
SHET
TEaT
:B_ﬁ

U U L U

D B I B I ot B B Y B s ol o |
R I Iy e R Y R) I]

T T T T W7 LT b

159

R S — S - h S A S A ' S - - T S S S T — S - - L b — ' S S—

APPENDIX N: ERROR MESSAGES

This appendix contains a complete list of the error messages
generated by the VIC, with a description of the causes.

BAD DATA...String data was received from an open file, but the pro-
gram was expecting numeric data.

BAD SUBSCRIPT...The program was trying to reference an element of
an array whose number is outside of the range specified in the DIM
statement.

CAN’T CONTINUE...The CONT command will not work, either
because the program was never RUN, there has been an error, or a
line has been edited.

DEVICE NOT PRESENT...The required /O device was not available for
an OPEN, CLOSE, CMD, PRINT#, INPUT#, or GET#.

DIVISION BY ZERO...Division by zero is a mathematical oddity and
not allowed.

EXTRA IGNORED...Too many items of data were typed in response to
an INPUT statement. Only the first few items were accepted.

FILE NOT FOUND...If you were looking for a file on tape, and END-
OF-TAPE marker was found. If you were looking on disk, no file with
that name exists.

FILE NOT OPEN...The file specified in a CLOSE, CMD, PRINT#, IN-
PUT#, or GET#, must first be OPENed.

FILE OPEN...An attempt was made to open a file using the number of
an already open file.

FORMULA TOO COMPLEX...The string expression being evaluated
should be split into at least two parts for the system to work with.

ILLEGAL DIRECT...The INPUT statement can only be used within a
program, and not in direct mode.

ILLEGAL QUANTITY...A number used as the argument of a function
or statement is out of the allowable range.

LOAD...There is a problem with the program on tape.

NEXT WITHOUT FOR...This is caused by either incorrectly nesting
loops or having a variable name in a NEXT statement that doesn’t cor-
respond with one in a FOR statement.

NOT INPUT FILE...An attempt was made to INPUT or GET data from a
file which was specified to be for output only.

160

N S A P N P Y

™

el T O B N

g,

NOT OUTPUT FILE...An attempt was made to PRINT data to a file
which was specified as input only.

OUT OF DATA...A READ statement was executed but there is no data
left unREAD in a DATA statement.

OUT OF MEMORY...There is no more RAM available for program or
variables. This may also occur when too many FOR loops have been
nested, or when there are too many GOSUBs in effect.

OVERFLOW...The result of a computation is larger than the largest
number allowed, which is 1.70141884E + 38.

REDIM’D ARRAY...An array may only be DIMensioned once. If an ar-
ray variable is used before that array is DIM'd, an automatic DIM
operation is performed on that array setting the number of elements
to ten, and any subsequent DIMs will cause this error.

REDO FROM START...Character data was typed in during an INPUT
statement when numeric data was expected. Just re-type the entry so
that it is correct, and the program will continue by itself.

RETURN WITHOUT GOSUB...A RETURN statement was encountered,
and no GOSUB command has been issued.

STRING TOO LONG...A string can contain up to 255 characters.

SYNTAX...A statement is unrecognizable by the VIC. A missing or ex-
tra parenthesis, misspelled keywords, etc.

TYPE MISMATCH...This error occurs when a number is used in place
of a string, or vice-versa.

UNDEF’'D FUNCTION...A user defined function was referenced, but it
has never been defined using the DEF FN statement.

UNDEF’D STATEMENT...An attempt was made to GOTO or GOSUB or
RUN a line number that doesn't exist.

VERIFY...The program on tape or disk does not match the program
currently in memory.

161

INDEX

A

Abbreviations, BASIC commands 133
Accessories 106, 109

Addition 24, 115

ANMD operator 115

Animation 50, 51-66, 99, 139, 143
Arithmetic Operators 24, 116
Arithmetic Formulas 24, 115, 123, 148
Arrays 114-120

ASC funtion 131, 145

ASCII character codes 145

ATN function 129

BASIC
abbreviations 133
commands 115
operators 115
statements 119
variables 86, 113

Buffer 110

c

Calculations 24
Cassette tape recorder 107, 109
Cassette port 106
CHRS$ function 102, 131, 145
CLR statement 119
CLR/ HOME key 6, 18
Clock 114
CLOSE statement 110, 119
Color
Keys 19, 32
Memory map 63, 143-144
Screen and Border 33, 36, 38, 39, 134
Commands, BASIC 115
Commodore key (see graphics key)
Connecting the VIC to TV / monitor V
CONT command 115
CTRL key 18
CRSR keys 18, 60
Correcting errors 8, 50
Cursor 3, 18, 60
COSine function 129

D

DATA statement 79, 119

Data, saving & retrieving from tape 109
DEFine statement 120

Delay Loop 55, 78, 96

DELete key 3, 8, 19

DiMension statement 120

Division 115, 160

Duration (see FOR....NEXT)

162

E

Editing programs 8, 50
END statement 121

Equal, not-equal-to sign 115
Equations 115

Error Messages 6, 160
Expansion port 106, 149
EXPonent function 129
Exponentiation 115

F

Files, cassette tape 109
FOR statement 121
FOR....NEXT loop 121
FRE function 132
Functions 129

G

Games to try 153

Game controls 108
Game port 108, 149

GET statement 89, 122
GET# statement 123, 111
Getting started V, 3
GOSUB statement 123
GOTO statement 123
Graphic keys 14, 19
Graphic symbols 14, 142, 146-147
Greater than 115

H
Hyperbolic functions 148

IEEE-488 Interface 107
IF..THEN statement 123
INPUT statement 84, 124
INPUT# statement 111
INSert key 3, 8, 19
INTeger function 129
Integer variables 113

1/ O pinouts 149

11O ports 106, 149

J
Joysticks 108

K

Keyboard 17-20

N W el a el el ol al ol ol ol oo o o o W N W W N o o e

L

LEFTS function 131

LENgth function 131

Less than 115

LET statement 124

Line numbers 78

LIST command 8, 9, 50, 116
LOAD command 109, 116
Loading programs on tape 109
LOGarithm function 130
Loops, time delay 55, 78, 96
Lower case characters 20

M

Mailing label program 92
Mathematics

formulas 24, 115, 123, 148, 160

function table 148

symbols 115
Memory 36, 80, 125, 126, 130
Memory expansion 107
MID$ function 43, 131
Modulator, RF VI
Multiplication 115
Music

pitch 68

sound effects 135

table of notes 73

VIC piano 75

writing songs 77

N

Names

program 109

variable 86
Nested Loops 122
NEW command 7
NEXT statement 125
Noise 71, 74
NOT operator 115
Numbers 23, 24, 115, 123
Numeric variables 86, 113

(0]

ON statement 125

OPEN statement 126

Operators
Arithmetic 24, 114
Logical 115
Relational 115

163

P

Parentheses 115
PEEK function 130
Peripherals 106
Pi 20
POKE statement 36, 80, 125
Ports, | / O 149
POS function 132
PRINT statement 5, 21, 127
PRINT# 127
Programs
editing 8, 50
line numbering 79
loading / saving on tape 109
Prompt 84

Q
Quotation marks 96

R

Random numbers 40, 43, 103
READ statement 79, 128
REMark statement 128
Reserved Words 86
Reset (see Restore Key)
Restore key 17, 26
RESTORE statement 128
Return key 18

RETURN statement 128
RIGHTS function 132
RND function 40, 43, 130

ROCKET COMMAND program 153

RUN command 117
RUN / STOP key 19

S

SAVE command 109, 117
Saving programs on tape 109

Screen memory maps 63, 143-144

Serial bus 107

SGN function 130

Shift key 18

SINe function 131

Sound effects 135

SPC function 132

SQR function 131

ST system variable 86
Stop key 19

STOP command 128
String variables 42, 86, 113
STRS function 132
Subscripted Variabies 114
Subtraction 115

SYS statement 128
Syntax Error 6

T

TAB function 132

TAN function 131

Tape Cassette operation 109
Tl variable 114

TI$ variable 114

Time, setting VIC clock 114
TO in BASIC statements 121
Tones 70

TV, connecting the VIC V

U

Upper / lower case mode 20
USR function 131
User-defined function (DEF) 120

v

VALue function 132
Variables

Array 114

Floating point 113

Integer 113

Numeric 86, 113

String 42, 86, 113
VERIFY command 109, 118
VICTIPS 3, 8, 16, 39, 40, 47, 50, 78, 96
VIC person (see animation)
Video port / connections V, 150
Volume 69, 71, 72

w

WAIT statement 129
Writing to tape 109

Y
Your Name in Lights (program) 85

164

A“USER FRIENDLY” COMPUTER

The new VIC computer is designed to be the most
user friendly computer on the market...friendly in
price, friendly in size, friendly to use and expand.

With the VIC, Commodore is providing a computer
system which helps almost anyone get involved in
computing quickly and easily...with enough built-in
expansion features to let the system “grow” with the
user as his knowledge and requirements become
more sophisticated. !

VIC owners who wish to learn more about computing
should ask their Commodore dealer about these
other self-teaching and reference materials:

e VIC LEARNING SERIES...a library of self-teaching
books and tapes/cartridges which help you learn
about computing and other subjects. Volume | in the
VIC Learning Series is called “Introduction to
Computing...On the VIC". Volume Il is called
“Introduction to BASIC Programming”. Subsequent
titles will include Animation, Sound and Music, and
more.

e VIC PROGRAMMER’S REFERENCE GUIDE...a
comprehensive guide to the VIC20 Personal
Computer, including important information for new
and experienced programmers alike.

¢ VIC-PROGRAM TAPES, CARTRIDGES AND
DISKS...a growing library of recreational,
educational and home utility programs which let you
use the VIC to solve problems, develop learning
skills, and play exciting television games. These
easy-to-use programs require no previous computer
experience.

C: commaocdore

COMPUTER

