FOXES TEAM

Vohme

Tutorial of Numerical Analysis with Matrix.xla

Matrices
and
Linear Algebra

TUTORIAL OF NUMERICAL ANALYSIS FOR MATRIX.XLA

Matrices and Linear Algebra

© 2005, by Foxes Team
ITALY
leovip@libero.it

5. Edition
1 Printing: June 2005

TUTORIAL FOR MATRIX.XLA

Index

About this TULONIAlooi s ann e 5
VAT R KL A ettt e oottt e e e e e e e bbb e et e e e e e e e bbb et et e e e e e saannbeeaee s 5
L] 4 o T Y] =Y o 6
Gauss-Jordan algorithm ... 7
TRE PIVOLING SEALEQYeeeeeeeeeee ettt e ettt e e et e e e e e e e e e e e e eennnes 8
INEEQEI CAICUIALION ...ttt e et ea e 10
Several ways for using the Gauss-Jordan algorithm............ccccooeiiiiiiii e, 13
Solving linear SyStem (NON SINQUIAK)coiueeeeeeeeeeee et e e e s e e anee e 13
Solving simultaneously M lIN@&Ar SYSIEIMSccoccurii et 13
INVErse MatriX COMPULING..........ooo ittt e e et e e e e e e e eaeannnnees 13
Determinant COMPULING.c.ooueee ettt ettt e e et e e s 14
NON Singular LINEar SYSIEIMeiiiiiiiii ettt e e et e e e staee e e snaeeeeanes 15
ROUNG-OFF OIS ...ttt ettt e e s 15
Full pivoting or partial PIVOING?ee ettt 17
SOIULON SEADIMEYcccceeeeeeeeeeeeee et ettt ettt e e e e e ettt e e e e e e s ase e e e s snsseaaaeean 18
COMPIEX SYSEEIMS ...ttt e e et sttt e e e e e e et a e e e e e sttt e e e e e e sssenaaeeanans 21
About complex MAtriX FOIMAL..............ooo ettt e e e e e e e 23
1= (=3 01T =T o | SRR 24
O LIRS = T =Y 0= L1 (o) R 24
Hill-CONAIION@A MALIIX ...ttt ettt e e e e e e e e e 25
LapIace'S @XPANSION ...t e et a e e ne e nnneen 26
Simultaneous LiNear SYSIEMSuuiiiiiiiee e e e e e e e e e e 28
INVEISE MALIIX .ttt sttt a e e bt s ane e et e e s eeenneennee e 28
ROUNG-OFf @ITOF ...ttt e ettt e e e e et e e e e e e e e e e e e e snnnnees 29
How t0 avoid deCIMal MUMBEYS...............eeieeeeeeeee ettt a e e e 31
Homogeneous and Singular Linear SyStemSocuiiiiiiiiiii i 32
L 1= T = g o (o] o ST 33
REANK QNG SUDSPEACE ...ttt ettt 34
General Case - Rouché-Capelli ThEOIremMeeiiiiiiiiiiiieeeee e 36
HOMOGENEOUS SYSIEIM CASEScoeiiiiieeee ettt 37
Non Homogeneous SYSIEM CaASES........ccocuuuii ettt 38
Triangular LiNear SYSIEMS ..ot e e e e e e eeaaa e an 39
TrianQUIAr FACLOMIZALIONveeeeeeeeeeeeeee ettt a e e e e e et a e e e e e tsaa e e e sssssees 39
Forward and BacK SUDSHEULIONS..............couii oottt 39
JIN U - ot (0 74 11 [0 o 40

=] oTed G Iy =T oo [V F= Tl o] o o PP 43
LiN@Ar SYSIEIM SOIVING ...t e e e e e 43
Determinant COMPULING.............ooua e ettt e e ettt e e e e e et a e e 44
PEIMULALIONS ...ttt e e ettt e e e e e ettt e e e e e e e e e e e e e snnnnees 44
EiIQenvaliu@S PrODIEMI............... ettt e e e e e e 44
Several kinds of bIOCK-Eri@anQUIAT FOIMc..oiiiiiiie et 45
POIMULALION MALICES. ...ttt ettt e e rae e nneee s 45
MALEIX FIOW=GIAPRA ...ttt e e e ettt e e e e e et a e e e e s st aa e e e ssssnnees 46
TRE SCOME-AIGOITERIM.......c..ccceeeeeeeeeeeeeeeeee e 47
The Shortest-Pati-alQOrithm....................ooe et e e e e e e ennee s 53
Limits in matrix COMPULAtIONcooiiiiii e 54

TUTORIAL FOR MATRIX.XLA

Eigen-problems ... 57
Eigenvalues and EigenVeCIOrsoooiiiiiiiii ettt 57
Characteristic POIYNOMIAL ..o 57

Roots of characteristic POIYNOMUALooeeee it a e eeennee s 58
Case Of SYMMELIIC MALIIXeeeeeeeeeeee et e et e e e e e e e e e e e e st e e e e e enneeennnes 58
Example — How to check the Cayley-Hamilton theorem...............ccceeveciieinciiiiiie e 60
o =YLV =Tox (o] £ PRSP 61
SEEP-DY-SIEP MEINOU ...ttt 61
Example - Simple @IGENVAIUBScoooueieieie ettt 61
Example - How t0 CRECK @N €IGENVECTON..............eeeiiiieeeiee et 62
Example - Eigenvalues with multiplicity
Example - Eigenvalues with multiplicity not corresponding to eigenvectorscccceeveeeeeeeeeeenn. 64
Example - COMPIEX EIQENVAIUES..............ooeeeeeieeeee ettt ettt a e e e taaa e e e e e 64
EXample = COMPIEX MALIIX...........ccccoeeeeeeeeeee ettt e e et e et a e e e e et aaeesnanees 66
Example - How to check a complex €IQENVECIONcouuuie i 66
Similarity Transformation...........ooo i 68
Factolization METROGS ettt a e e e e e e e 69
Eigen-problems versus resolution methodsccccuvviiiiieiiiiicieee e 69
Jacobi's transformation of Symmetric MAtiXooou oo 70
OrthOGONAI MALIICESceeeeeeeeee et e oottt e e e e et a e e e e e e e e e e e e aanens 71
Eigenvalues with QR factorization MEthOdc.ccooiiiiiiriii e 73
Real and complex eigenvalues with QR mMethOdccoooiiiiiiiiiiiie e 74
Complex eigenvalues of complex matrix with QR methOd................ccceeviieeeiiiiieeie e 76
How to test COMPIEX QIGENVAIUESccceeeeeeeeeeeeee e 76
How to find polynomial root with €igeNValUESccceeeeeeeeeeee e 78
Rooffinder with QR algorithm for real and complex polynomialcccucvveiveeniicnieeniicseene. 78
POWEIS " MEIAOM ...ttt e et e e e e ettt e e e e e e e e e e e annnnees 80
Eigensystems with the power MEtROQc.ccooiiiii it 83
COMPIEX EIGENSYSIOIMIS ...ttt ettt ettt e et 85
How to validate an @igen-SYSIEM............coccuuii ittt 86
How to generate a random symmetric matrix with given eigenvaluesccccceeeeeeeeeeeeeeeeeeeen. 87
Eigenvalues Of tridiaQonal MaALriX.................coeeeeuueeeeeeeeeeeeeeee e ettt a e e s steaa e e e e 88
Eigenvalues of tridiagonal Toeplitz matrix (tridiagonal uniform)................cccecveoveeveveessieeeeecee e 90
Why s0 many different MEINOGS?ooo oot e e 95
Generalized Eigen-problem........ ... 96
Equivalent non SYmMmMmeLriC ProBDIEM..............ccoo i 96
Equivalent Symmetric PrOBIOMI.ooo i 97
DiIAGONAI MALITX ...ttt ettt ettt e et 98
Example - How to get mode shapes and frequencies for a multi-degree of freedom structure 99

Linear regreSSIONuciiiceieiiiiesrriiers s 103
=T o7 | SRR 103
Linear RegresSion MOEISuuiiiiiiie ittt e e e e e e e e e e eeeaaeeeeaanes 104

Lin@ar MOAEI: @0Fa1 X182 X0u.oeeueeeeieeeeeeee ettt e ettt e ettt e e et e e e et e e aaeeeaeaaaeeen 104
Polynomial model: ap+as x+az X2 +ag X e 105
Two variables polynomial model: apta; x+az y + az xy + a4 X%+ as y2 ... 107
Linear model With fiXed iNTEIrCEPE: K X.......cccueii oot 107
Non linear regression - Transformable linear Modelscccocvviiiiiiiiii e 109
(O TT T o T=T Tl 1 Lo To 1= R 109
Exponential curve fit: yoe ettt ettt 109
Logarithmic curve fit: DoHrD1IN(X) ..ooeeeeeeeeeeeeeee et 112
RatiONAl CUIVE fit: (D001 X) T eoeoeeeeeeeeoeeeeeeeeeeeeeee e eeeeeeeeeeee e e e ee e eeee e eee e eeeeeeeee e 113
PPOWET CUIVE fit: @ X ..ottt ettt et e et e et e sttt e e st e s st e anse e st aeansaeansaennnee e 114

LY =Y g 0T o = 1 o o SRR 117

=T or= | 117

TUTORIAL FOR MATRIX.XLA

WHY 10 INTEIPOIALET ... e e e e e e e e e e e e e e st reeeeeas 117
Piecewise polynomial interpolation schema...............occcuiiiiiiii e 118
Lin€ar IN@IPOIALION ... 119
ParaboliC INTEIPOIALIONoeiieeeee ettt e e a e e et e e e e 119
CUDIC INEEIPOIALION ...ttt e et e e et e e e e e et a e e e e s s eeaaeaaanens 122
Instability of higher interpolation AEGreecoouiii i 123
Piecewise polynomial regression SChema...........oooiiiiiiiiii e 125
Piecewise regression versus global regreSSiONccuuuucueiiiccuiiiiicieeeeeie e 127

L] =T = 12 130

About this tutornial

MATRIX.XLA

Matrix.xla is an Excel addin that contains useful functions for matrices
and linear Algebra:

Norm. Matrix multiplication. Similarity transformation. Determinant.
Inverse. Power. Trace. Scalar Product. Vector Product.

Eigenvalues and Eigenvectors of symmetric matrix with Jacobi
algorithm. Jacobi's rotation matrix. Eigenvalues with QR and QL
algorithm. Characteristic polynomial. Polynomial roots with QR
algorithm. Eigenvectors for real and complex matrices

Generation of random matrix with given eigenvalues and random matrix
with given Rank or Determinant. Generation of useful matrix: Hilbert's,
Houseolder's, Tartaglia's. Vandermonde's

Linear System. Linear System with iterative methods: Gauss-Seidel
and Jacobi algorithms. Gauss Jordan algorithm step by step. Singular
Linear System.

Linear Transformation. Gram-Schmidt's Orthogonalization. Matrix
factorizations: LU, QR, SVD and Cholesky decomposition.

The main purpose of this document is to show how to work with matrices and vectors in
Excel and how to use matrices for solving linear systems. This tutorial is written with the
aim to teach how to use the Matrix.xla functions. Of course it speaks about math and the
linear algebra fundamental results, but this is not a math book. You rarely find here
theorems and demonstrations. You can find, on the contrary, many examples that explain,
step by step, how to reach the result that you need. Just straight and easy. And, of course,
we speak about Microsoft Excel but this is not a tutorial for Excel. Tips and tricks for this
program can be found in many Internet sites.

This tutorial is divided into two parts. The first part explains with practical examples how to
solve basic topics about matrix theory and linear algebra. The second part is the reference
manual of Matrix.xla

Linear Systems

This chapter explains how to solve linear system
problems, with the aid of many examples. They cover
the most part of cases: systems with single, infinity and
none solution. Several algorithms are shown: Gauss-
Jordan, Crout's LU factorization, SVD decomposition

Linear System

Example 1. Solve the following 4x4 linear system

Ax=b 1 9 -1 4 18
2 0 1 1 -2
Where A and b are: 1 2 -4 0 17
1 5 1 1 7

Square matrix. If the number of unknowns and the number of equations are the same, the
system has surely one solution if the determinant of the matrix A is not zero. That is, A is
non-singular. In that case we can solve the problem with the SYSLIN function.

s pa | —
P o) P

|

]
Lok == | —

[ny By N R

7] detin) = [F138l

! . =S YSLIN[BZ:E5; G2 G5) '
190 =M_DET(BZ:ES)

11

The determinant can be computed with M_DET function or with the built-in function
MDETERM (Excel USA version) as well.

Gauss-Jordan algorithm

Gauss-Jordan is probably the most popular algorithm for solving linear systems. Functions
SYSLIN and SYSLINSING of Matrix.xla use this method with pivoting strategy. Ancient,
solid, efficient and - last but not least - elegant.

The main goal of this algorithm is to reduce the matrix A of the system A x = b to a
triangular’ or diagonal® matrix with all diagonal elements = 1 by few kind of row operations:
linear combination; normalization, exchange.

Let's see how it works

Example: The following 3x3 system has solution (x;= -1 ; x, =2 ; x3 = 1). We can verify it by
direct substitution.

4x, +x,=-2 2 1 0 >
=2x, = 2x, +x,=-1 N -2 -2 1 -1
1 -2 2 -3

X, —2x,+2x,=-3

Let's begin to build the complete matrix (3x4) with the matrix coefficients and the constant
vector (gray) as shown on the right. Our goal is to reduce the matrix coefficients to the
identity matrix.

Choose the first diagonal element ay, ; it is called the "pivot" element

1. Normalization step: if pivot = 0 and pivot #1 then

1 025 O ’-0.5‘

we divide all first row for pivot = 4. 2 -2 1 -1
1 -2 2 -3
2. Linear combination: if a21 # 0 then substitutes 1 025 0 | -05
the second row with the difference between the 0 15 1 2
second row itself and the first row multiplied by 1 2 2 3
a1
3. Linear combination: if a31 = 0 then substitutes 1 025 0 -0.5
the second row with the difference between the 0 -1.5 1 -2
second row itself and the first row 0 -225 2 -2.5

As we can see the first column has all zeros except for the diagonal element that is 1.
Repeating the process for the second column - with pivot a22 - and for the third column -
with pivot a33 - we will perform the matrix "diagonalization"; the last column will contain, at
the end, the solution of the given system

In Excel, we can do these tasks by using the power of array functions. Below there is an
example of Excel resolution of a system by Gauss-Jordan algorithm

Note that all the rows are obtained by array operations {...}. You must insert them by the
CTRL+SHIFT+ENTER key sequence.

! Properly called Gauss algorithm
2 Properly called Gauss-Jordan algorithm

A E C D E
1 4 1 i -2
2 2 2 1 -1
3 2 2 3
4
51 0.25 i 05 [{=A1:D1/A1)
B 0 1.5 1 2 |{=A2:D2-A2A5:DE}
7.0 225 2 25 |[{=A3:D3-ATAS DS}
8
9 0 0.16667 | -0.8333 [{=A5:D5-B5°A10:D10}
10, 0 1 -0.BBE7 | 1.33333 |{=A6: DE/EE}
11, 0 0 05 05 |[{=A7:D7-B7A10:D10}
12
13 1 0 i 1 |{=A9:09-CoA15. D15}
14 0 1 i 2 |=A10.D10-C107A15:D15)
15| 0 0 1 1 |i=Aa11:011/C11}

We see in the last column the solution (-1 ; 2 ; 1). Formulas for each row are shown on the
right

Swap rows If one pivot is zero we cannot normalize the corresponding row. In that case
we will swap the row with another row that has no zero in the same position.
Also this operation does not affect the final solution at all; it is equivalent to
reorder the algebraic equation of the given system

Example: The following 3x3 system has solution (x; =5 ; X,=-3 ; x3=7)

A B [8] E
_g 12 ? 33 Note that the first pivot a;4=0. .
1 B 5 55 We cannot normalize this row and

1
2
|
4 in this case the algorithm could not
5 05 | 1.5 |[=A2.02/A2) start

el o 1 g 3_{=ATD1) In this case we swap the first row

(=11
—

; 0 3 25 5.5 |=A3:D3-AFA5:D5} with the second one. Now the new

9 1 0 05| 15 |(=A5D5-B5%A10.D10} pivot is -2 and the normalization

10 0 1 0 | 3 |i=A6:06/EE) can be done.

1; u 0 | 25 [175 |[=A7DI-B7AI0DT0} - Note that the second row has now
the element ay; = 0; so we simply

13 1 0 0 5 |i=A3:D3-CoTA1SD15)

140 1 0 3 |i=a10.010) leave the row unchanged. The

linear combination doesn't need in
this case

19| 0O 0 1 7 [=ATEDTAC

The pivoting strategy

Pivoting can be always performed. In the above example we have exchanged one zero
pivot with any other non-zero pivot in order to continue the Gauss algorithm. But there is
another reason for which the pivoting method is adopted: the round off error minimization.

The Gaussian elimination algorithm can have a large number of operations.

Pivoting If we count the operations for one system resolution, we will discover that
reduce round there are order n°/3 operations. So, if the number of unknowns doubles, the
off error number of operations increases by a factor of 8. If n = 200, then there are

approximately 8/3 million of operations! Certainly, one might begin to worry
about the accumulation of round off error. One method to reduce the round off error is to
avoid division by small numbers, and this is known as row pivoting or partial pivoting
strategy of the Gaussian elimination algorithm.

Let's see the following remarkable example of a 2x2 system

Solution is (x4 ; x2)= (1 ; 1) as we can easily verify by substitution

1 987654321 987654322

123456789 -1 123456788

If we apply the Gauss-Jordan algorithm, with 15 precision digits, we have:

A B % D

1 1 957ES4321 | 9ETES4322

2 | 123456789 -1 123456785

3
ﬂ 1 937654321 | 987654322 [{=A1:C1/m1}

] 0 -1 21936417 | -1 219336417 |{=AZC2-82%04:C4}
G

7 1 0 1.999999762 |{=L4:C4-B4*A5 CE}
3 0 1 1 {=A5C5BEST

The pivot =1

The solution has an error of about
1E-7

While, on the contrary, if we simply exchange the order of algebraic equations, we have

A B G]
1 | 123456759 - 123456758
2 1 9BTES4E21 | OETES4722
3
4 1 BAE-09 | 0999999992 |{=A1:C1/81}
5 0 OBTES4E21 | OETES4EZ1 |{=AZC2-AZtA4C4}
5]
7 1 0 1 {=h4:C4-B4 A5 CE)
g8 0 1 1 {=A5C5ES)

As we can see, this little trick can improve the general

Pivot = 123456789 >> 1

The solution is now much better,
having an error of less than 1E-15

accuracy.

The standard Gauss-Jordan algorithm always search for the max absolute value into the
element under the current pivot; if the max value is greater then the current pivot, then the
row of the pivot and the row of the max value are exchanged.

Not all elements, thus, can be used as 1
pivot exchange. In the matrix to the

right we could use as pivot a33 only the 0
element a33, a43, as3, ae63 (yellow cells). 0
For example: 0
if |as3| =max(|a33|, [a43|, |as3|, |a63|) 0
Then the row 6 and 3 are swapped and 0

the old element a63 becomes the new
pivot 33

al12 a13 al4 a15 al16
1 a23 a24 az25 a26
0 a33 a34 a3 a36
0 a43 ad4 a45 a46
0 a53 ab4 ab55 ab6
0 a63 a64 a65 a66

Full Pivoting

In order to extend the area where to search the max pivot we could exchange rows and
columns. But when we swap two columns the corresponding unknown variables are also
exchanged. So, to rebuild the final solution in the original given sequence, we have to
perform all the permutations, in reverse order, that we have done. This makes the final
algorithm a bit more complicate because we have to store all columns permutations
performed.

The full pivoting method extends the

search area for max value

. . . 1 al12 al3 al4 al5 al6
For example, if the pivot is the element
33, then the algorithm searches for the 0 1 223 a24 a25 a2
absolute max valug into the yellow 0 0 a33 | a34 a35 a36
area. If max value is found at a56, then
the row 5 and 3 are swapped and then, 0 0 @43 a4 ad5 246
the column 5 and 3 are swapped. 0 0 a53 a54 a55 a56
Unknown x5 and x3 are permuted 0 0 a3 ab4 ab5 a6b

The functions SYSLIN and SYSLINSING of Matrix.xla use the Gauss-Jordan algorithm with
full pivoting strategy

Integer calculation

In the above examples we have seen that the Gauss elimination steps introduce decimal
numbers - with round off error -, even if the solutions and coefficients of the system are
integer.

There is a way to avoid such decimal round off error and preserve the global accuracy?
The answer is yes, but in general, only for integer matrices.

This method - a variant of the original Gauss-Jordan - is very similar to the one that is
performed manually by students. It is based on the "minimum common multiple" MCM
(also LCM Least Common Multiple) and it is conceptually very simple

Assume to have the following two rows: the pivot row and the row that has to be reduced.
Pivot is a41 = - 6;

Element to set zero is a,1 = 4;

mcm = MCM(6, 4) =12

Multiply the first one for mcm /a =12/4=3

And the second one for -mcm /a1 = -12/(-6) = 2
-6 0 5 9 |<== pivot row; multiply for 2
4 3 0 10 | <== for reducing; multiply for 3
-12 0 10 18 now, add the two rows
12 9 30
-6 0 5 9 <== the first row remain unchanged
0 9 10 48 | <== substitutes the result to the second row

As we have seen, we can reduce a row without introducing decimal numbers

10

Let's see how it works step by step by the function gauss_jordan_setp of Matrix.xla.

A B C] E F = H | J K L
| -6 0 5 9
b 4 3] 10
7] -1 2 4
3
9| f il 5 9
10 o g T _4g M |{=Gauss_Jordan_step(A5:D7, TRUE)}
11| 0 -1 4
12
13 & il 5 9 e |f=Gauss_Jordan_step{A9:D11, TRUE)}
14 0 -9 -0 | -da
19 0 1] 25 a4
1B {=Gauss_Jordan_step(A13:D15, TRUE)}
17 | 168 il il 1688 |1
18| 0 -3 -0 43
;g LN L =Gauss_Jordan_step(A17:D19, TRUEY}
21 168 il il T6e & |
22| 0 || o | 282 _
723 | a a 28 a4 /{;Gauss_dm dan_step{A21:D023.,TRUE}}
24 4/
25 1]] 1 Cniy the fast normalization step can
2/ n| 1 -0 2 Introdilce decimal folhdoff errors
20 1] 1 3
A

Note the 3rd parameter setting the integer algorithm. If "false”, the operations will perform in
the standard decimal way.

Only the last step could introduce decimal numbers; the previous steps are always exact.
Unfortunately, this method cannot be adopted in general because the values grow up at
each step and they can became too large (overflow error)

The above example can be quickly reproduced. After inserting the function in the
range A9:D11, give the CTRL+C to copy the range still selected; select the cell
A13 and give CTRL+V to paste the new matrix; repeat this simple step still you
reach the final identity 3x3 matrix; the solution will be in the last column.

Tip

This sequence shows how to do.

A B | [| D | E | F BE] = |{=Gauss_Jordan_step(E2.E4, VEROD)}

Linear system complete matrix AlB|lc|DplE|F G| H| I J]K
B 0 =5 q Linear =ystem complete matrix
-5 o a g
4 3] 10 4 3 R
] -1 2 4 oA 2 4

| 0] S8 = S T e | B

5‘1:5-::-|-4|-:‘:mnmm—x

Insert the array function Gauss_Jordan_step with the
CTRL+SHIFT+ENTER key sequence and the given parameter
Given a complete system matrix in range B2:E4, select ("VERO" means "TRUE" in English)

h ABES, j low the gi i
the range AG:ES, just below the given matrix You should see the first step matrix. Leave the selected range and

give the copy command (CTRL+C)

11

A B|c| D E|F AlB|lCc|D|]E]F

1 Linear system complete matriz 1 Linear syatem complete matrix
2 6 0 5 9 2 £ 0 5 a
] 4 3 1] 10 3 4]] 10
4 0 i 2 4 4 0 -1 2 4
5 5
B 5 0 5 9 5 £ 0 5 a
7 1] A A0 | 48 7 a 9 0 | -45
g 0 = 2 4 a8 0 -1 2 4
3 g
| 1 10 5 0 5 9
1 11 0 -8 -0 43
12 12 O 0 28 84
13 13
Select the cell B10, under the 1st step matrix. Make sure that Now, simply give the paste command (CTRL+V) and the 2nd
the range below is empty. step matrix will appear

Repeating the above steps you can get all the Gauss-Jordan step-matrices, either in
decimal or in integer mode

12

Several ways for using the Gauss-Jordan algorithm

The reduction matrix method can be used in several useful ways. Here same basic
cases:

Solving linear system (non singular)

ap dp a3 | X% b,
Ax=b = |a, a, ayl|x,|=|b
a3; 43y Az || X3 b,

The complete matrix (3 x 4) is

a, a, a; b 1 0 0 x
a, G, ay; b, |=]0 1 0 x

a,, ay;, as b, 0 0 1 x4

At the end, the last column is the solution of a given system; the original matrix A is
transformed into the identity matrix.

Solving simultaneously m linear systems

a4 4y X1 X2 X by, b, b,
AX =B = |a, ay ay || X)Xy Xy, |=|by by.by,
31 A3y iz | [X31 X3 X3, by, by, b,
The complete matrix (3 x 3+m) is:
a, a, a3 b, b, b, 1 00 xyx, x,
Ay, Gy, Ay by Dy by, =10 1 0 x5 xy...x,,

as; Ay ay by by, b 0 0 1 x3x3 x5,

3m

At the end, the solutions of the m system are the last m column of the complete matrix

Inverse matrix computing

This problem is similar to the above one, except that the matrix B is the identity matrix
In fact, for definition:

A-A =1
AX =1 < X=4"

13

ap dp dpg X1 X2 X3

AX =1 = |ay 4y Gy || Xy Xy Xy

S O
S = O
— O O

az; di ds X31 X35 X33

The complete matrix (3 x 6) is:

4!
f—/%
a4 dpy 0 0 x, x, x5

0
0

—

0 x) x5 Xy

- o O
Il

1 0
ay Ay Ay 01
00

()

a3 dy dsg Loxy X, Xy

At the end, the inverse matrix is into the 3 last columns of the complete matrix
Determinant computing
For this scope we need only reduce the given matrix to the triangular form.

ay 4 4y hy by b

A=lay ay ap|=> |0 1y iy

s dzp A4y 0 0 1y

So the determinant can be easy computed by the following

Det(A) =1y, -1y 13

14

Non Singular Linear system

The function SYSLIN finds the solution of non-singular linear system using the Gauss-
Jordan algorithm with full pivot strategy.

Example: solve the following matrix equation
Ax=b (1)
The solution is
x=A"b 2)
You can get the numerical solution in two different ways. The first one is the direct

application of the formula (2); the second one is the resolution of the simultaneous linear
system (1)

Example: Find the solution of the linear system having the following A (6 x 6) and b (6 x 1)

-10 93 6.7 5 -47 0 47.7
-0.5 -28 1 7 0 0 -20.5
0 0 1 8 35 -47 -3
45 0 -13 3 -23 -59 -47
65 0.1 3 32 0 0 100.1
-7 4 -1.5 -1 0 4.9 -0.6

We solve this linear system with both methods: by Excel MINVERSE and SYSLIN

function. We found the unitary solution (1, 1, 1, 1, 1, 1) (Note that the sum of each row

is equal to the constant terms)

A, B C] E F B H I
1 Linear System A x=0Db I X A'h
2| 0 | 93 67 5 47 0 477 | 1.0000000000000000| 1 .0000000000000000
3| 05 | -28 1 7 0 0 -205 | 1.0000000000000000] 1.0000000000000000
4 a] 1 & 35 | -47 -3 1 0000000000000000 | 1 .0000000000000000
A | a5] 13 3 23 | 59 -47 | 1.0000000000000000| 0.9993399999999950
B | &5 0. 3 32 0 Q0 1004 | 1.0000000000000000) 1 .0000000000000000
7| 7 4 A5 | A 0 414 06 | 1.0000000000000000| 1.0000000000000000
a
=]
10 |{=SYSLIN(AE:F?,GE:GFJ} I |{=MMULT(MINVEHSE(A2:FFJ,GE:G?j |
11

Note also that the methods give similar - but not equal - results, because theirs
algorithms are different. In this case both the solutions are very accurate (1E-15) but
this is not always true.

Round-off errors

Many times, the round-off errors can decrease the maximum accuracy obtained
Look at the following system:

-151 386 -78 -4 234 387
-76 194 -39 -2 117 194
-299994 599988 3 -2 299994 599989
2 -4 0 2 0 0
-100000 200000 0 0 100001 200001

15

The exact solution is the unitary solution (1, 1, 1, 1, 1, 1).
In order to measure the error, we use the following formula

=ABS(x-ROUND(x, 0)) where x is one approximate solution value

The total error is calculate with

=AVERAGE(H2:H6) total error for SYSLIN function
=AVERAGE(J2:J6) total error for MINVERSE function

A B C D E F G H I J
1 A b X {SYSLIN) err x {MINVERSE) err
2| s 386 -7 4 234 357 0.999999999990755 | 9.21E-12| 1.000000000000000 0
3| -8 194 -3 2 17 194 0.999999999995399| 4.6E-12| 1.000000000000000 0
4 |-799984 | 589985 | 3 -2 299994 [599959 | 0999999999935034| 4.97E-12| 0.999999999941792| 582611
2] 2 -4 0 2 0 0 1.000000000000040| 4 .09E-14| 1.000000000000000| 3.55E-15
6 |-100000) 200000 O 0 100001 | 200001 | 0.999999999999953| 1.1E-14| 1.000000000000040| 3.856-14
7 3.TEE12 117E-11
g [(=SvSLN(2F7 26T} | [{=MMULTIMINVERSE(AZ FT),GZGT); |
T

As we can see the total errors of these solutions are thousand times greater that the
one of the previous example.

Sometimes, round-off errors are so strong that can give totally wrong results. Look at
this example.

3877457 -3 -347 -691789 3877457 387
_ -3773001 0 34 46 -3773001 194
A= -286314 1 0 -2 -286314 599989
-377465 -12 6 4 -377465 0
-1 0 -6 0 -1 200001

As we can easily see by inspection, the matrix is singular having the first and last
column equal. So there is no solution for this system. But if you try to solve this system
with MINVERSE function you will get a wrong totally different result

This error is particularly sneaky because if we try to compute the determinant we get a
finite (wrong) result

MDETERM(A) = -0.0082

As we have told, the algorithm used by Excel and Matrix.xla are not equal. So we can
try to compute the solution by SYSLIN and the determinant by M_DET . In this case
the full pivot strategy of Gauss-Jordan works fine and give us the right answer.

16

A B C D E F E; H

1 A b X (SYSLIM) | x (MINVERSE)
2 | 3877457 -3 -347 631739 | 3877457 | 3&538 ? -2 TTREIE+1E
3 | 377300 0 34 45 S37TI001 | -37T2922 7 -1.10853903
4 | 286314 1 0 -2 -28634 | -286315 7 0.152519853
5 | -377465 12 6 4 S3FT4ES | 377444 7 10003915
3] -1 1] - 1] -1 -5 T 2 FTEE2E+16
7

g -0.0052097 | =MDETERME &.2:E6)

g 0|=t_DET(&AZER)

Full pivoting or partial pivoting?

The strategy of full-pivot reduces the round-off errors, so we could aspect that its
accuracy is greater than partial-pivot strategy. But this is not always true. Sometime
can happen that the full strategy gives an error similar or even greater then the one
obtained by partial strategy.

In Matrix.xla we can perform the partial gauss-Jordan algorithm using the didactic
function Gauss_Jorda_step.

Example: Solve the following linear system. The matrix is the inverse of the 6x6
Tartaglia's matrix. The exact system solution is the vector [1, 2, 3, 4, 5, 6]

6 -15 20 -15 6 -1 0

-15 55 -85 69 -29 5 1

A= 20 -85 146 -127 56 -10 0
-15 69 -127 117 -54 10 0

6 -29 56 -54 26 -5 0

-1 5 -10 10 -5 1 0

Let's see how both algorithms - full and partial pivoting - work®.

A|lB|Cc|D|E]|F]| G H | | J K

A * {full-pivot) err x (partial-pivot) err
5] -15 20 -15 5] -1 1.00000000000001 | §.7E-15 0 1.00000000000006 GE-14
-15 55 -85 E9 -29 = 2.00000000000003 29E-14 2.00000000000020 2E-13
20 -85 | 146 | 127 a6 -10 3.00000000000005 7.6E-14| 3.00000000000045 4 .5E-13
-15 B9 127 117 -54 10 4.00000000000017) 1.7E-13| 4.00000000000036 5.6E-13
5] -29 SE -54 26 -5 5.00000000000036 3.6E-13| 5.00000000000945 91 .5E-12
-1 5 -10 10 -5 1 5.00000000000066 8 G6.6E-13| 6.000000000002352 2.3E-12
22E13 8.9E-13

b=

o o o o = O

o~ | m (= WD —

As we can see, in that problem, partial pivoting is even more accurate (but not too
much) than full pivoting.

Then, why we complicate the algorithm with the full pivoting? The reason is that the
Gauss-Jordan with full pivoting is generally more reliable for a large type of matrices.
The round-off error control is more efficient. Disastrous mistakes are greatly reduced
with full-pivot strategy.

Look at this example: Solve the following system

% Note that in these problems we have not inserted the results given by the MINVERSE Excel function, because we
ignore its algorithm in detail (from a long series of testes, we have found that it works similar to the partial-pivot
algorithm).

17

1 3 -9 1 38800000012 38800000000

7 1 12300000045 1 0 12300000052
A= 0 1 0 2 2 1

23 12 6 4 1 22

2 0 -6 0 1 5

Solving with Gauss-Jordan algorithm with both partial and full pivoting we note in this
case a lack age of accuracy more than thousand times for the first solution.

A B C] E F
1 A b
2 1 -3 -9 -1 3580000001 2 35800000000
3 7 -1 12300000045 1 0 12300000052
4 0 1 1 -2 2 1
5 23 -12 B 4 1 2
B 2 1] -G 1] -1 -5
7
B | partial pivot error full pivot errcer
9 | 1.0000019073 1.91E-06 1.0000000000 222E-16
10| 10000019073 1.91E-0E 1.000a000000 7 ITE-1E
11 | 10000000000 8.08E-1E 1.0000000000 0.00E+00
12| 1.0000000000 0.00E+00 1.0000000000 555E-16
13 | 1.0000000000 0.00E+00 1.0000000000 0.00E+00
14 7 .E3E-O0F 3ME-16

We can observe that in general, partial pivoting becomes inefficient for matrices
having large values in the right side. In that case the round-off errors grow sharply; full
pivoting avoids this rare - but heavy - accuracy loss.

Solution stability

Many times, coefficients of a linear system cannot be known exactly. Often, they
derived from experimental results, measures, etc. So they can be affected by several
errors. We are interested to investigate how the system solution changes with these
errors. Many important studies has demonstrated that the solution behavior depends
by the system coefficients matrix. Same matrices tend to amplify the errors of the
coefficients or the constant terms, so the solution will be very different from the one of
the "exact" system. When it happens we say "hill-conditioned" or "unstable" linear
system.

Example: show that the following linear system with the Wilson's matrix, is very
unstable

10x, + 7x, +8x; + 7x, =32

10 7 7 32

Tx, +5x, +6x; +5x, =23 5 5 23
8x, +6x, +10x; +9x, =33 6 10 9 33
5 9 10 31

7x, +5x, +9x; +10x, =31

The solution of the exact system is x = (1,1,1,1); now give same perturbations to the
constant terms. For simplicity we give

b'=b+ Ab with b = 0.1

18

The solution of the perturbed system is now

AXx' =Db'

X' =X+ AX

Defining the system sensitivity coefficient as
S= (Ax %)/ (Ab %)= (| Ax| /| x|)/(|Ab| /| b |)

We have S = 400.

A B C D E F E] H
% Wilson matrix {=EEE8+G11}I
4 |A{dx4) b ® 13 ®
o] 10 7 g 32 1 321 -0.2
3] 7 5 =] 23 1 231 3
7 g & 10 a3 1 3341 05
8 7 a 9 10 31 1 311 1.3
9
10 det{a) Ab | AX _ AD% | AX% s
11 [01 | 13138 | 047 eew | 3942 |
12
13 |M_BS(HEHE)-M_ABS(FEFE) / / T
14 =011 m_ABS(ES ES -E1 Thl_ABS(FSFE) |=G1 1HF11

14

Even worst for the stability of the following linear system

117 85 127 118 447
97 70 103 97 367
A= 74 53 71 64 262
62 45 65 59 231
A B C D E F G H
1 System perturbation
% Wilson matrix
4 |[A{dx4) 1] X 1} ®
5 117 85 127 118 447 1 447 1 305
B | a7 70 103 a7 367 1 366.9 -504 .4
774 53 71 B 262 1 2621 1339
8 | &2 45 65 59 23 1 2309 -79.4
g
10 |det{A) Ab A X ADb% | AX% 5
01 BO76539 | 0015% 30383% | 2052807 |

11

A high value of S
means high
instability. In fact
in this system for
a small
perturbation of
about 0.2% of the
constant terms we
have the solution

-0.2,3,05,1.3

Completely
different from the
exact one

1,1,1,1
Note that Det =1

For a very
small
perturbation of
about 0.01% of
the constant
term, the
system solution
values are
moved far away
from the point
(1,1,1,1)

Note the very high sensitivity coefficient S of this problem and the wide spread of the
solution point even for very small perturbations.
Note also that in both problems the determinant was unitary (Det = 1). So we cannot
discover the instability simply detecting the determinant.

19

One popular factor for instability matrix uses its eigenvalues

Sx=|7\f|max/|7\f|min

But, unfortunately, eigenvalues are not very easy to compute
So another practically index references the SVD decomposition (see SVD D)
function). Extracting the dnax and dnin singular values of the diagonal matrix D we

define the instability factor as:
SD = d max/CI min

For the above matrix the eigenvalues are

So the instabilty factor will be:

S,=2324.0/0.000429 = 754861

While the SVD decomposition gives
Sp = 340.9/0.000308 = 1106504

| A= | 323.98| -5.72328] -1.256573| 0.000429

340.9215
0
0
0

0
7.879412
0
0

0

0
1.208233

0

0

0

0
0.000308

20

Complex systems

Complex systems are very common in applied science. Matrix.xla has a dedicated
function SYSLIN_C to solve them.
We shell to learn how it works with a practically example from the Network theory.

Example - Analysis of the Lattice network. Find voltages and phases at the nodes, for
frequency f = 10, 50, 100, 400 Hz.

N Rz RS Components values

R1=100Q C1=15uF

R2=120Q C1=22yF
TC1 TCQ T“ R2=1200Q C1=22pF
o , , G =2.5sin(2n ft)

vt)=Vsin(wt+0) < V=V =V +jV,

im

As known, using the notation

The Nodal Analysis provides the solution by the following complex matrix equation

[Y]v=1 (1)

Where: [Y] = [G]+ J[B] 4 I = Ire + .] Iim s V = re + .] \/tm

The real matrix G and B are called respectively conductance and susceptance; they
form the complex matrix admittance Y. These matrices dependonthe ®w =2 n f
frequency

Using the worksheet, the problem can be solved, first of all, calculating the frequency
o , the two real matrices G and B and the currents input vector; then, we build the
complex system (1).

A, B C] E F] H I J K
1 Lattice Network Analysis
2 |Compenents conductance matrix susceptance matrix Currents
3 |R1 100 | ahm 0.01833 -0.0053] 3.8E-03 0] 0.02s 0
4 R2 120 |ohm -0.0083 001667 | -0.00283] S.5E-03]] 0
5 R3 120 |ohm 0 -0.0083 000833] 0 5.5E-03] 0
B 1 5E-0E |F
7 |c2 22E-06 F Hode voltages Module phase
g c3 22E-06 |F vl 1.393658 -0655 154122 253
9 G 25 v 036373 03172 089452 -66.0
10 |1 400 Hz w3 = -01239 0735 074537 -99K
11 | 2513274 radiz 1= SLIM_CiDa s J3 KaT}
12

SYSLIN_C provides the vector solution in complex form; to convert it in magnitude and
phase we have used the following well-known formulas

V.
VI=(V S+ (V) 2v= atan(V—WJ
Note that we have to add the imaginary column at the current vector, even if it is pure

real; complex matrices and complex vectors must be always definite with real and
imaginary parts. They must have always an even numbers of columns.

21

In the above example there are many Excel formulas that we couldn't shown for clarity.
To reply the example, copy the following formulas (in blue) in your worksheet.

A B C] E F | B H | J 24
1 Lattice Network Analysis
2 Components conductance matrix susceptance matrix Currents
3 |R1 100 ohm | =1/83+1/184 =-1/B4] =B11*B6 0] =B9/83]
4 |Rrz 120 ohm =-1/84 =1/B4+1./83 =-1/B5] =B11*B7 1] 0 1]
5 R3 120 ohm] =185 =1/B5] u} =B11*B8 u}]
B 1 |15E-06F
FoC2 |22E-0BF Hode voltages Maodulo phase
g |C3 | 22E-06F vl = =M_AB=(ESF3) =ATAMMES FE1*180//PI0
9 |G 23 W= =5 S0LIM_CDEIS SR} |=M_ABS(ES:FS) =ATAMZES FO*180/PI0
10 | 400 Hz vi= =h_ABSET0F10) |=ATARNZE10 F100% 80P
11 25133 radiz

See also the function Mat_Adm for admittance matrix.

Example - Solve the following complex system
(l+iv2)e+ (-2)y —z=—1+i
—\/§x+y+(\/§+i)z=\/§—2

X+y+z= V2-1-i
The system is equivalent to the following complex matrix equation

(+0v2) (1=iv2) -1 J[x] [-1+
-2 1 (\/EH')- y|= J2-2
1 1 1 z| [V2-1+i

With SYSLIN_C function is simple to find the solution of a complex matrix system. We
have only to separate the real and imaginary parts.

A, B C] E F G H I |J K | L
1 | Complex matrix Constant soluntion
2 1 1 -1 14142 [-1.414 0 -1 1 14142 | -2E-16
3 1414 1 1.4142 1] 0 1 -0.556 1] 1E-16 -1
4 1 1 1 1]] 0 24142 -1 1 -1E-16
g {=5YELIM_Cra2Fa H2: 140} I/

22

About complex matrix format

Matrix.xla supports 3 different complex matrix formats: 1) split, 2) interlaced, 3) string

1) Split format 2) Interlaced format 3) String format
1210|0113 1. 012 1|10 3 1T 21| 3
Sl -1]1alZ A ool 3 201 41 -1 [32 -1
gl1|4f(0]-2f0 o of-1 214 0 a |-1-2i 4

Each format has advantages and drawbacks.

As we can see in the first format the complex matrix [Z] is split into two separate
matrices: the first one contains the real values and the second one the imaginary
values. It is the default format

In the second format, the complex values are written as two adjacent cells, so a single
matrix element is fitted in two cells. The columns numbers are the same of the first
format but the values are interlaced: one real column is followed by an imaginary
column and so on.

This format is useful when elements are returned by complex functions (for example
by Xnumbers.xla addin)

The last format is the well known “complex rectangular format’. Each element is
written as a string "a+ib" so the matrix is still squared. Apparently is the most compact
and intuitive format but this is true only for integer values. For long decimal values the
matrix becomes illegible. We have also to point out that the elements, being strings,
cannot be format as other Excel numbers.

23

Determinant

Differently from the solution of linear system, the matrix determinant changes with the
reduction operations of the Gauss-Jordan algorithm. In fact the final reduced matrix is the
identity matrix that has always determinant = 1. But the determinant of the original given
matrix can be computed with the following simple rules

e When we multiply a matrix row for a number k, thus the determinant is
multiply for the same number

o When we swap two rows, thus the determinant change the sign

Gaussian elimination

With these simple rules it's easy to calculate the matrix determinant. It is sufficient to keep
trace of all pivot multiplications and rows swapping performed during the Gauss-Jordan
process

There also another rule, useful to reduce the computing effort.

e Triangular matrix and diagonal matrix with the same diagonal have the
same determinant

So, in order to compute the determinant, we can reduce the given matrix to a triangular
matrix instead of a diagonal one, saving half of computation effort. This is called the Gauss
algorithm or Gaussian elimination.

The determinant of a diagonal matrix is the product of all elements

(@, 0 0
det(4)=detf 0 a,, 0 |=a) -ay- a;
10 0 ay
And also:
_all a, 4]
det(4)=det| 0 a,, a, |=a, -ay- a;
10 0 ay
And also:
fa, 0 0]

det(4)=det|a,, a,, 0 |=aq, -a, a;;

The example below shows how to compute, step by step, the determinant with the Gauss
algorithm

4 1 0
A= 2 -2 1 Det(A) = ?
1 2 2

24

*

1 o N R2 =R1+2*R2 (*)
The formula
A1= 0 -3 2 R Det(A1) = 2 Det(A) R2 =R1+2*R2
1 2 2 is a compact way for describing the
following operations:
1) Multiply the 2™ row for 2.
1 o | R3=R1+ (- 4)R3 2) Add the 2™ row and the 1 row
3) substitute th It to the 2"
A2= 0 3 2 Det(A2) = -8 Det(A)) substitute the result to the row
-4
1 0
A3= 0 9 -8 [<swap Det(A3) = 8 Det(A)
2 |[<swap
0 R3 =R2 + 3*R3
Ad= 0 9 -8 |1 Det(A4) = 24 Det(A)
0 0 3
1 0 Det(A4) = 24 Det(A)
Ad= 0 9 -8 Det(A4) = 4*9*(-2) = -72

The final matrix A4 is triangular. So its determinant - easy to compute - is -72
But itis also:

Det(A,) = 24 Det(A)
Substituting, we have:

-72 = 24 Det(A) = Det(A)=-24/72=-3

Hill-conditioned matrix

Of course there are functions such as M_DET in Matrix.xla and MDETERM in Excel to
obtain quickly the determinant of any square matrix. Both are very fast and efficient,
covering the most part of cases. But, sometime, they can fail because of the round-off error
introduced by the finite precision of the computer. It may happen for large matrices, or even
for small matrices (hill- conditioned matrices). Look at this example.

Compute the determinant of this simple (3 x 3) matrix

127 507 245 &, B & D E
245 -987 553 507 2025 -5a7
245 887 553

1.504E-09 |=M_DET(BZ:D4)

Both functions return a very small, but finite 5 S50 | MDETER B2 DD

value, quite different each other.

00 =4 O (7 e LD 1) —

If you repeat the calculus with other numerical routine in 32 bit OS you will get similar
results. Is there any reason for suspecting this result? Yes, there is, because this
result is completely wrong!

25

In fact, the determinant is 0; the given matrix is singular. You can easily compute by
hand with exact fractional numbers. If you are lazy use the Gauss_Jordan_step
function with integer algorithm

127 -507 245 < swap -507 2025 987 |-127
-507 2025 987 |[<swap 127 -507 245 -507
245 -987 553 245 -987 553
Det(A1) = -1 Det(A) Det(A2) = 507 Det(A)
-507 2025 -987 -245 -507 2025 -987
0 -126 1134 0 -126 1134 |<swap
245 -987 553 -507 0 4284 -38556 |< swap
Det(A3) = -257049 Det(A) Det(A4) = 257049 Det(A)
-507 2025 987 |-476 241332 0 -8205288
0 4284 -38556 (225 0 4284 -38556 |1
0 -126 1134 0 -126 1134 |34
Det(A5) = -122355324 Det(A) Det(A6) = -4160081016 Det(A)
241332 0 -8205288 The last row is all zero. This means that
0 4284 -38556 the matrix is singular and its determinant
0 0 0 is zero.
Det(A6)=0 ==> Det(A) =0

In this case it was easy to analyze the matrix, but for a larger matrix (50 x 50) do you
know what would happen? Before to accept any results - specially for large matrices -
we have to do same extra tests, like for example the SVD decomposition.

Laplace's expansion

Expansion by minors is another technique for computing the determinant of a given square
matrix. Although efficient for small matrices (practically for n = 2, 3), techniques such as
Gaussian elimination are much more efficient when the matrix size becomes large.
Laplace's expansion becomes competitive when there are rows or columns with many
zeros.

The expansion formula is applied to any line (row or column) of the matrix. The choice is
arbitrary. For example, the expansion along the first row of a 3x3 matrix becomes.

| Al= z (=" A la; =14, la,—[4, | ap+| 45| a;
J=1
Where |A j| are the minors, that is the determinant of the sub matrix extracted from the

original matrix eliminating the row i and the column j. The minors are taken with sign + if the
sum of (i+j) is even; on the contrary if odd.

Many authors call cofactor the term: (-1)™|A ;| .

Let's see how it works with an example

26

Example - Calculate the determinant of the given 3x3 8 4 -2
matrix with the Laplace’s expansion. T 12

We use the function MatExtract to get the 2x2 minor sub matrix; we use also the INDEX
function to get the a; element

| F& | = [=MatExtract(A2:C4 F2,G2)}
AlB C D E F|GIH 1lJ]K L M N
A i

8 4 -2 inde 1 1]

1
2
R B —NDEX(5A525CH4 F2 G2)
4 2|3 3| pivat | -
l N
5 g (SMatEdtract{A2:C4 F 2,621}
[minci| -1 | 2
7 3 -3
[m]

Completing the worksheet with the others minor and the cofactor terms we have

AlB/CD/E[/F[c/H[IT[J[KILIMINO P Q
1 A i j i j i i
28 42 inded 1 01 [1 2 [13
ENENERE
4 2 3 -3 paivvit [8] [-4] [-2|=mDEx(A23CH4 02 K2)
A
5 mnof 1 | 2 [1 [2 01 | 4
7 Sl 2 -3l 2 3 {=MatEdract{f2C4,)2 K21}
g =SOMMALGIHT)
9 ||a= 52 cofactar | -24] [-2a] [-10]=0-1)" 2420 4% _DET(G KT
10

Tip. We can use the arbitrary of the row (or column) expansion in order to minimize the
computing. Usually we choose the row or column with the most zeros (if any).

27

Simultaneous Linear Systems

The function SYSLIN can give solutions of many linear systems having the same
incomplete coefficients matrix and different constant vectors.

Example: solve the following matrix equation

AX=B (1)
Where:
1 3 -4 9 59 -19
A= 2 3 5 1 B = 3 20
2 -1 4 10 58 24
0 -1 1 0 -1 6
The solution is
X=A"B (2)

You can get the numerical solution in two different ways. The first one is the direct
application of the formula (2); the second one is the resolution of the simultaneous linear
system (1)

A B (¥] E F G H | J k- L I
Afdxd) Bi{d x 2) Solution X Solution X

1 3 -4 9 59 -19 1) 1 3

2 3 = 1 3 20 2E-14 -2 -2E-14 -2

2 -1 4 10 =] 24 -1 4 -1 4

0 -1 1 0 -1 = £ 1] B -2E-14

el

(MMULTCMINYERSE(AZ: D51 F 2G5} {=SvSLIN(AZ DS F2G51)

000 4| 30| (M| de= | LD D) —

From the point of view of the accuracy both methods are substantially the same; for the
efficiency, the second one is better, especially for larger matrices

Inverse matrix

Computing of the inverse matrix is an especially application of the simultaneous systems
resolution.

In fact, if B is the identity matrix, we have:
AX=1 = X=A"l=A"

You have the function MINVERSE in Excel or the function M_INV in Matrix.xla to invert a
square matrix.

Example: find the inverse of the 4 x 4 Hilbert matrix 1 1/2 1/3 1/4
Hilbert matrices are a known class of hill-conditioned 112 13 1/4 1/5
matrices, 173 1/4 1/5 1/6
very easy to generate: 1/4 1/5 116 17

a(i, j) = 1/(i+j -1)

Inverse of Hilbert matrices are always integer. So, if same decimals appear in the result, we
can be sure that they are due to errors round off and we can valuate consequently the

28

accuracy of the result. You can easily generate these matrices by hand or also by the
function Mat_Hilbert

A, B C 0 E F [H | J K L] M
4
5 1 142 13 114 16 | 120 | 240 | 440 JE43 -8E12| 2E11 AEN
6 12 13 114 105 420 | 1200 2700 1640 8E12| 1E-10 -2E40 2EA0
7B 114 105 16 240 | 2700 G480 | -4200 |_2E11 -2E-10 EE-10 -4E-10
g | 14 115 16 17 440 | 1680 | -4200 2800 JE1] 2610 -4E40) 3E0

3 A
10| |i=Mat_Hilbert(} |{=MINVERSE(A5:DSJ} I/ =ROLMNDIFE,0)-F5 I

1

Round-off error

As you can see, Excel hides the round-off error and the result seems to be exact. But there
is not the true. In order to show the error without format the cells with 10 or more decimal
we can use this simple trick. Extract only the round-off error from each a; value by the
following formula:

E = ROUND(ajj, 0) - aj

Applying this method to the above inverse matrix, we see that there are absolute round-off
errors from 1E-13 till 1E-10.

There is another method to estimate the accuracy of the inverse matrix: multiplying the
given matrix by its approximate inverse we get a "near" identity matrix. The values out of
the first diagonal measures the errors. If we compute the mean of the absolute values we
have an estimation of the round-off error. The M_DIAG_ERR automates this task.

A, B C] E F G H I J K L i
1 Matrix A Matrix A
2 1 112 113 14 15 105 36 630 | 3360 | -7S60 | 7sE0 | -27T2
3 e 113 114 145 155 17 -E30 | 14700 -88200 211630 -2E+05 | S31E0
4 | 13 114 115 105 17 105 3360 -53200 564480 -1E+06 2E+06 | -EE+05
5 | 11 115 115 107 118 119 STSEQ0 211680 -1E+06 | 4E+06 | -4E+06 2E+06
B | 15 16 117 145 14 110 TSEO | -ZE+05 ZE+06 -4E+06 4E+06 | -2E+06
715 117 118 1/ M0 1M1 S2772 | 83160 | -BE+05 | 2E+06 | -2E+0F BI8544
g
9 Matrix AAT' — ;
10 1 4E-12 [1E-11 1E10| 0O | 3E-1 |{ WGl I
11 |-BE-14 1 -1E-11 3E-11 -1E-10 -1E-11 =M _PRODIAZFT HZMT)] I
12 |-GE-14 4E-12 1 1E-10 BE-11| 1E-11
13 | 1E-13| -2E12| TE-12 1| -BE-11 i [M_DiG_ERR(ATOFTS))
14 0 -2E-12| 2E-11| 3E-11 1 -1E-11
15 |-36-14 | 2E-12 7E-12 0 1] 1 Diagonalization accuracy = 2E-111
16

The "diagonalization" accuracy measure the global error due to the following three step:
Global error = Input matrix error + Inversion + multiplication

The first step needs an explanation. Excel can show fractional number as exacts like for
example 1/3 or 1/7. But really, these numbers are always affected by the truncation error of
about 1E-15.

29

Other class of matrices, such as the Tartaglia's matrices, can eliminate the input truncation
error because both the input matrix and its inverse are always integers.

Tartaglia's matrices

Tartaglia's matrices are very useful because they are easy to generate but - this is very
important - the matrix and its inverse are always integer. This comes in handy for testing
the algorithm round-off error.

They are defined with:
a =1 forj=1..n (all 1in the first row)
apn=1 fori=1..n (all 1in the first column)
aj= Xjagn; forj=2.n
Here is a 6x6 Tartaglia’s matrix and its inverse
1 1 1 1 1 1 6 -15 20 -15 6 -1
1 2 3 4 5 6 -15 55 -85 69 -29 5
1 3 6 10 15 21 20 -85 146 -127 56 -10
1 4 10 20 35 56 -15 69 27 117 -54 10
1 5 15 35 70 126 6 -29 56 -54 26 -5
1 6 21 56 126 252 -1 5 -10 10 -5 1

As we can see taht both matrices are integer. Any round-off error of the inverse matrix must
be regard as a round-off error and immediately detected.

In the example below we evaluate the global accuracy of the inverse of 6 x 6 Tartaglia's
matrix

A B C B E F €] H I J K L b
1 |Tartaglia’s matrix inverse Tartaglia's matrix
201 1 1 1 1 1 6 | 15 20 | 15 | B i
31 2 3 4 5 B 415 | 55 | 35 B9 | 28 5
4 1 3 B 10 15 | 21 20 -85 146 | 127 | 56 | -10
51 4 10 20 | 35 | 56 A5 | B9 127 117 | -84 10
B | 1 5 15 | 35 | 70 | 126 6 | -29 55 | 84 | 28 -5
7 B M 5B | 126 | 252 -1 5 -0 10 -5 1
8
I/ couracy =Nz 7] |

10| 1.54639E-13 | =M_DIAG_ERRIM_PROD(AZFT HZ:M71)
11

Sometimes however, Excel produces errors. Excel rounds numbers and will occasionally
compute A even if a matrix has a determinant equal to zero. If this happens, your solution
will be wrong.

Let's see this example:
Example: find the inverse of the following matrix

127 -507 245
-507 2025 -987
245 -987 553

30

As we have seen in a previous example, the given matrix is singular. So, its inverse doesn't
exist. However, if we try to compute the inverse we have the following result

A, B

127
-507
245

L0 20]| O] LT | G| P —

C

A

-50

7

2025

-85

T

D

245
-857
]

-6.9E-10 =MDETERR(BZ:04)

E

|{=I‘I.I1IN"-.-"EF{SE(EIE:D4)}

F [6 | H |
.Iﬁ|.-1
-21E+14 . -3BE+13 -B2E+12
-56E+13 -15E+13 -1.7E+12
-B2E+12 1 FEH12 -1 8B+ 1

Tip. You should always examine the determinant. If the determinant is close to zero, you
should try to verify the solution with other methods. For instance, you can always try to
solve the inverse by the function M_INV (with integere option), or by Gauss_Jordan_Step
function, or with SVD decomposition (see later).

How to avoid decimal numbers

Not always the inverse matrix is integer; many times it has many decimal numbers. If the
given matrix is integer, we can obtain the fractional expression of its inverse with this little

trick
Example
A B c |D| E F 5 |H | J K Note the
1 A A’ B= det * A" compadt formet
% ; g 31 -n.nauag -|:|.11Da1? -D.280313 142 Ta 1; rtiicaton b
g E g - - - scalar
4| -4 -2 1 -01333 02667 -0.0667 5 16 4 {A6*E2:G4)
5 of last matrix
g | -B0[-MDETERM(42:C4) [i=tarivERSEB2 D4} | {(=AFEZG4)
g

Multiplying the inverse for the determinant we get the matrix B of integer values. Thus, the
inverse can be put in the following fractional form

P

" det(4)

4 7 17

B=—1|-12 -6 -6
60

8 -16 4

31

Homogeneous and Singular Linear Systems
Given a linear system with b = 0
Ax=0

and A (n x m) matrix, we say a homogeneous linear system; this class of system always
have the trivial solution x = 0. But we are interested to know if the system has also other
solutions.

Assume A is a square matrix

x+2y—z=0
_x+4y+52=0 Lo
—-2x—-4y+2z=0 -2 -4 2

We note that the last row can be obtained multiply the first one by -2. So, having two rows
linear dependent, the given matrix has determinant = 0; that is singular. One of the two
rows can be eliminate; we choose to eliminate the last row obtaining the following system

b ~0 One of the three variables can be freely chosen and it can be
Xtiy—z= regard as a new independent variable. Assume, for example, z
— x4+ 4y +52=0 as independent parameter; the other variables x, y can be

expressed as function of the independent parameter "z"

{X+2y:Z (1)

x=1z
—x+4y=-5z y=—2z

The linear equation's system (1) expresses all the infinite solutions of the given system.
Geometrically speaking it is a line in the space R®

It can be also regard as a linear transformation that

A
move a generic point P(x, y, z) of the space into X 00 3 X
another point P'(x, y, z) of the subspace. In this yl=[0 0 _% |y
case the subspace is a line and the dimension of
the subspace is R’ z 0 0 1 z
2y —zZ=—X = —%x If we assume, on the contrary, x as independent
3 parameter, the other variables y, z can be express
4y+5z=x Z=3X as function of the independent parameter "x"
That is represented by the linear transformation at X 1 0 O] |x
the right
] yi=|-% 0 0|y
z 2 0 0]z

The Matrix transformation is useful to find the parametric form of the linear function
(mapping function)

32

Parametric form

The linear transformations of the above example give relations between points of the
space. A common form for handling this relation is the parametric form. It easy to pass from
the transformation matrix to its parametric form

Having the transformation matrix, we

X 00 % X search for the variable that has 1 in X —%f
=0 0 —=2]|- the diagonal element, "z" in this case. _|_2
Y S Setting z = t, and performing the Y 3
z 0 0 1 z multiplication, we have the parametric z t
function
Geometrically specking the parametric function is a line with the direction vector: D
given by
—% -7 0.889 _
~ 1 1 Note that \ 62
D= _% . =|=-2|-—=|-0.256 is the norm of
2 2 the first vector
IR R) S N N IR P

You can study the entire problem by the function SYSLINSING of Matrix.xla. Here the
example:

A, B C O E F G | H I
15 A B Direction
16 1 2 1 0 0 | 23333 0889
17 - 4 5 0 0 | -0B67 0254
18 -2 -4 2 0 a 1 0331
19
20 0 |=MDETERM(A16:C18) |{=SYSLINSING(.-'—‘-.1 B:C187}
% |{=G1 B GiM_ABSG1E G181} I
23

SYSLINSING solve a linear singular system, returning the transformation matrix, if exists,
of the solution. The determinant is calculated only to show that the given matrix is singular.
It is not used into calculation. SYSLINSING detects automatically if a matrix is singular or
not. If the matrix is not singular (Det = 0) the function returns all zeros.

From the transformation matrix we have extract the
direction vector by normalization of the third column of z
matrix B; to get the norm of the vector we have used the
function M_ABS. Note that both expression must be
insert as array functions { }

In a RCO xyz, the function represents a line passing
trough the origin, having for direction the vector D, as
shown in the figure.

33

Rank and Subspace

In the above example we have seen that if the matrix of a homogeneous system is
singular, then there are infinite solutions of the system; those solutions, in a RCO represent
a subspace. After that we have find the solution, and we have seen that the subspace was
a line and its dimension was 1.

Well, is there a way to know the dimension of the subspace without resolving the system?
The answer is yes, knowing the rank of the matrices. But we have to say that it is easy for
low matrix dimension, very difficult for higher matrix dimensions.

e Rank of a square matrix is the max number of independent rows (or
columns) that we find in the matrix.

For a 3 x 3 matrix the possible cases are reassume in the following table

Independent Rank Linear System Subspace
rows Solution
3 3 0 Null
2 2 0o Line
1 1 w2 Plane

The function M_RANK of Matrix.xla calculates the rank of a given matrix. In the following
example we calculate the determinant and rank for three different matrices

A, B c 1] E F & H I d K L
A B C

2 2 -1 1 2 -1 1 2 -1

-1 4 3 -1 4 3 -6 -12 5]

-2 -4 2 -2 -4 2 -2 -4 2

28 |=MDETERM(&Z:C4) 0 |-MDETERM(EZG4) 0 |=MDETERM(IZK4)
3 |=h_RANKIAZCA) 2 |=t_RAMMIEZG4) 1 |=t_RAMKIIZ:H4)

o0 =d| o)) b | L) —

Note that the determinant is always 0 when the rank is less then the matrix dimension
Solving homogeneous systems with the given matrices, we will generate in a 3D space
respectively the following subspace: a null space, a line, and a plane.

Let's test the last matrix solving its homogeneous system.

Fis B C] E F [H I J
15 A B Direction
16 1 2 -1] -2 1 -0.894| 07071
17 G 12 5]] 1 -1 0.4472 0
18 -2 -4 2 1] -0 1 0 0.70M
15
20 0 |=MDETERM(A1E.CAS
3% |{=SYSLINSING(M BC18)} |{=G1 B B _ABSI G181} |

Consequently, the transformation matrix has two columns indicating that the subspace has
2 dimensions, thus is a plane.

34

In order to get the parametric form of the plane we observe the transform matrix: variable y
and z have both the diagonal element 1 (a,; = 1, as3 = 1) . The can be assumed as
independent parameters.

Lety =tand z = s, we have

X 0 -2 1| |x X —2t+s
y| =0 O-ly]| =|y|= t
z 0 O z z Ky

Eliminating both parameters we get the normal equations of the plane
x=-2y+z = x+2y-z=0 (2)

The linear equation (2) express all the infinite solutions of the given system. Geometrically
speaking it is a plane in the space R®

Rank for rectangular matrix
Differently form the determinant, the rank can be computed also for rectangular matrix. Its
definition is:

e Rank of a rectangular matrix is the max number of independent rows
(or the max number of independent columns)

Example: find the rank of the following 3 x 5 matrix

A, B C 0] E F

1 2 9 10 -7 g
! 2 - 0 3 10 1 2 g | 10 | 7
2 4 -3 9 1M1 1 2 0 3
12| 2 4 -5 -3 g
13
14| 2 [=M_RANMKA1DE1Z)
15

By inspection we see that there are 2 independent rows and 2 independent columns. In
fact column c2 is obtained multiplying the first for 2;

the columnc4= c1+c3; columncs= ¢c2-c3

So the rank is always given by: rank = 2

One popular theorem - due to Kroneker - says that if the rank = r, then all the square sub-
matrices (p x p) extracted from the given matrix, having p > r, are all singulars

In other way all matrices 3 x 3 extracted from the matrix of the above example have
determinant = 0. You can enjoy finding yourself all the 10 matrices of 3 dimensions. Here
are 5 of them.

1 2 9 1 9 10 2 9 7 1 2 10 1 9 7
1 2 1 1 1 0 2 A1 3 1 2 0 1 1 3
2 4 5 2 5 3 4 5 9 2 4 3 2 5 9

35

General Case - Rouché-Capelli Theorem

Given a linear system of m equations and n unknowns

a, x, +a,x, +..+a, =b
A, X, +ayXx, +...+a, =b,
1

M ay, X, +a,x, +..+a,, =b,

ml

I a, The matrix A is called coefficients' matrix
n . .
or incomplete matrix
Ayy eveeen a

21 22 2

A(mxn) = "
A, Ay e a,.,

a, Ay . a, b The matrix B is called complete matrix

Ay, Ay e a, b
B(m, n+ 1) — 21 22 2n 2

A, Ay e a,, b

If the column b is zero, the system is called homogeneous
In order to know if the system (1) has solutions is valid the following fundamental theorem
ROUCHE-CAPELLI THEOREM.

A linear system has solutions if, and only if, the ranks of
matrices A and B are equals

Thatis: rank(A)=rank(B) < 3 x solution

Note: This rule is always valid for homogeneous systems that are always the x = 0 solution
(trivial solution)

Among ranks of the matrices, number of equations and number of unknowns exist
important relations. The following table reassumes 12 possible cases: 6 for homogeneous
system and 6 for full system. This table, very clear and well organized, is due to Marcello
Pedone.

36

Homogeneous System Cases

Rank of
. Non homogeneous
Case incomplete luti Example
matrix A system solution
Trivial solution 2x+3y=0
1 rank(A)=m =n S(0,0
) 0.0..0) {x—3y:0 00
2x+3y+z=0 s 1 (o0 soluzioni)
n-m : —z,— 2,z |(c0 soluzioni
2 rank(A)=m <n "~ solutions + x=3y+2z=0 6
trivial solution
+.5(0,0,0)
2x+3y+z=0 -3y—z 2
n-r : S , ¥,z |(0”soluzioni
3 rank(A)< m <n « " solutions + {4x+ 6y+2z=0 (2 4 ZJ(soluzioni)

trivial solution

+5(0,0,0)

"' solutions +

4 rank(A)< m =n trivial solution

-2y=0
{x Y S(2y,y)(oolsoluzi0ni)

2x—-4y=0

+5(0,0)
x+2y=0
_ Trivial solution 9.,
5 rank(A)=n <m (0.0..0) 3x-2y=0 §(0,0)
x—y=0
x+2y=0

"' solutions +

6 rank(A)<n <m trivial solution

2x+4y=0 S(=2y,y)(o soluzioni)
3x+6y=0
+5(0,0)

© Marcello Pedone

37

Non Homogeneous System Cases

Rank of
. Non homogeneous
Case incomplete luti Example
matrix A system solution
2x+3y=2
1 rank(A)=m =n One solution 4 S(1,0)
x=3y=1
2x+3y+z=1 z—1 1 .
2 rank(A)= m <n "™ solutions S| 1-z,——, z |(soluzioni)
x=3y+2z=2 6
2x+3 =1 —3y—
rroywe S H#,y,z (o0 soluzioni)
n-r . 4x+6y+2z=2 2
3 rank(A)< m <n oo solutions
If r(B)=r(A) 2x+3y+z=1 o
2) incompatibile r(A)# r(B)
4x+6y+2z=0
-2y=1
1){x Y S(l -2y, y)(oo]soluzioni)
4 | rank(A)<m=n ™" solutions Prody=2
se r(B)=r(A) x-2y=1
2) incompatibile r(A) # r(B)
2x—-4y=1
x+2y=1 |
)43x-2y=0 S(Z'f)
One solution 2x+4y=2
=n<
5 rank(A)=n <m If r(B)=r(A) rr2y=1
2)3x -2y =0 incompatibile r(A)# r(B)
x—y=1
x+2y=1
1{2x+4y=2 S(1-2y;y)(' soluzioni)
R ol 3x+6y=3
lutions Y
6 rank(A)<n <m » S0
(A) If r(B)=r(A) x+2y=1
2)12x+4y =0 incompatibile r(A)#r(B)
3x+6y=3

© Marcello Pedone

38

Triangular Linear Systems

Solving a triangular linear system is simple and very efficient algorithms exist for this task.
Therefore, many methods try to decompose the full system into one or two triangular
systems by factorization algorithms.

Triangular factorization

Having the linear system

Ax=b (1)
Suppose you have got the following factorization
A=LU (2)

Where L is lower-triangular and U upper-triangular. That is:

ay 4 43 4y a, 0 0 0 B Bo Bs B

Ay Uy Gy Gy | | Oy Qp 0 0 0 By Py Pu
3 Gy 4y 4y ay oy a0 0 0 B By
Ay Ay Qg3 Ay Oy Qp Ay Ay 0 0 0 By

In that case, we can split the linear system (1) into two systems:
Ax=b = (LU)x=b = L({Ux)=b
Setting: y=U x we can write:
Ly=b (3) Ux=y (4)

Forward and Back substitutions

The method proceeds in two steps: at the first, it solves the lower-triangular system (3) with
the forward-substitution algorithm; then, with the vector y used as constant terms, it solves
the upper-triangular system (4) with the back-substitutions algorithm. Both algorithms are
very fast.

Let' see how it works

Having the following factorization LU = A, solve the linear system Ax=b

A b L R
6 5 1 19 1 0 0 6 5 1
12 8 6 46 2 2 0 0 -1 2
-6 6 5 -3 -1 1 1 0 0 4

In Matrix.xla we can use the function SYSLIN_T that applies the efficient back/forward
algorithm to solve triangular systems.

This function has an optional parameter to switch the algorithm for upper (Typ = "U") or
lower (Typ ="L") triangular matrix. If omitted, the function tries to detect by itself the matrix

type

39

! - E i R RE | ! ‘| KL The orig_inal
I {=5YSLIM_T(C7:F3,J7:030} _SyStem Is _broken
d12/8 16 | e into two triangular
4 & -6 & {=Z%SLIN_T(AT:C HF:HI)} systems

]

B L U . \ v ; Ax=b

1 00 5 1 14 19 1 Ly=b

a 2 0 1 2 45 . 5)

404 1 1 o 4 3 12 5 Ux=y

1

We can prove that the vector x = (1, 2, 3) is the solution of the original system Ax =b

LU factorization

This method, based on the Crout's factorization algorithm, splits a square matrix into two
triangular matrices. This is a very efficient and popular method to solve linear systems and
to invert matrices. In Matrix.xla this algorithm is performed by the Mat_LU function. This
function returns both factors in a (n x 2n) array.

But there are same things that it is better to point out. Many authors emphasizes the fact
that the LU Crout's factorization is independent from the constant vector b of a system,
getting to understand that once we have the LU decomposition of A we can solve as many
linear system as we want, simple changing the vector b. This is not completely true and it
may induce in wrong results.

Look at this example..

A b
Ax=b where: 2 i ; ?Z
-8 0 9 -35
If we compute the LU factorization we have:
E2 | = I=Mat_ LUAZ: C4))
A B D | F | G | H | I | J | K Note that you must
1 A L u select (3x6) cells if
2 5 1 0 0 & o g you want to get the
3 4 0 1 0 0 5 4 ggicr)izzatlon of a (3x3)
4 0 025 08 1 0 0 -345
5
B [(=Mat_LUAZ C4)
The Crout's algorithm has returned the following triangular
u
1 0 8 0 9
0 1 0 5 4
-025 08 1 0 -345
Now solve the system (3) and (4) in order to have the final solution
Ly=b (3) Ux=y (4)

We have

40

b y=L"b x=U"y

22 22 -16.54348
16 16 -6.608696
-35 -42.3 12.26087

The exact solution of the original system (1) is x = (1, 2, 3), but the LU method has given a
wrong result. Why? What's happened?

The fact is - and too many authors omit this, this algorithm do not give the exact original
matrix A but a new matrix A" that is a rows permutation of the given one. This is due to the
partial pivoting strategy of the Crout's algorithm. You simple prove it by multiplying L and U.

So the right factorization formula would be:
A=PLU
Where P is a permutation matrix
The process to solve the system is therefore:
b'=Pb (5) Ly=b' (6) Ux=y 7)

We have shown that only the information of the two factors L and U are no sufficient to
solve the general system. We must complete it with the P matrix.

But how can we get the permutation matrix? This matrix is provided by the algorithm itself
at the end of the elaboration process. Usually the most part of the LU routines do not give
us the permutation matrix because the formula (5) is applied directly to the vector b passed
to the routines. But the concept is substantially the same: for solving a system with the LU
factorization we need, in generally, three matrices P L U.

A, B C] E F = H I o
1 P L u The original system is
2] 1 o 1 0 0 8 o -4 broken into two
30 o 1 o1 a 0 5 4 triangular systems
4 | 1 0 o |025 08 | 1 0 0 -345
5 _
B| b b y X Ax=b
7| 22 35 35 1 b'=P"b
8 s 22 2 2 ,
9 | 35 16 04 3 Ly=b
10
Ux-=
j]; |{=SYSLIN_T(D2:F4,C?:CEI)} I y
13| [(=MMULTM_T(AZ:C) A7:28); || |[{=SYSLIN_T(GZMETES)} |
14|

The permutation matrix can be obtained comparing the original A matrix and the matrix
obtained from the product A'=LU. Let' see how.

The base vectors uy , us , us are:

ol i) [

We examine now the matrix rows of the two matrices A' and A.

41

The row 1 of A' comes from row 3 of A, = p1=u3 A=LU
The row 2 of A' comes from row 1 of A, = p2 = u1 -8

The row 3 of A' comes from row 2 of A, = p3 =u2

(A=
o oo
[
PR =]
(=R
oMo

So the permutation matrix will be:

P=(p,p,,ps)=us,u ,u,)=

—_— O O
S O =
S = O

Clearly this process can be very tedious for larger matrices. Fortunately the permutation
matrix is supply by the function Mat_LU as the third side of its output. For a 3x3 matrix you
have to select a range of 9 columns to see the permutation matrix.

Mat_LU(A) returns (L ,U , P)arrays
That gives the decompositon A=PLU

Example - Perform the exact LU decomposition for a 5x5 Tartaglia's' matrix

| G2 hd = [=Mat_LU(AZ:ER)}
A B/ C D E F GlH|1]J|K|[L|{m|[N|[O|[P|OQ|R|[S]|[T]U]

1 A L u P
2 1 1 1 1 1 1 i] i] i] i] 1 5 15 35 JO(0 1 o o o
3 1 2 3 4 5 1 1 o] o] o] o -4 14 34 69| 0 0] 0] 1 0]
411 3 6 10 15 1 05 1 0 0 0 o -2 -5 -21|0 0 1 0 0
51 4 10 20 35 1 08 08 1 0 0 0 o 05 21| 0 0 0 0 1
6|1 2 15 35 70 1 03 08 - 1 0 0 0 [1 0 0 0 0
7
B |{=Mat_LU|:A2:EEj|
q

If we perform the matrix product P L U (it is useful the M_PROD function) we obtain
finally the given original matrix. (Note that P must be the first matrix of the product)

42

Block-Triangular Form

Square sparse matrices, thus matrices with several zero elements, can be, under certain
conditions, put in the useful form called “block-triangular” (also called “Jordan’s form”) by
simple permutations of rows and columns

1 2 1
2 1 5
1 -1 3
6 5 3
1 3 2
-9 7 1

= A AaAa O O O

- O O O

N ©O © O

The block-triangular form saves a lot of computation effort for many important problems of
linear algebra: linear system, determinant, eigenvalues, etc.

We have to point out that each of these tasks has a computing cost that grows approximately
with N°. Thus, reducing for example the dimension to N/2, the effort will decrease 8 times.

Clearly it's a great advantage.

Linear system solving

A4

A21

A

For example, the following (6 x 6) linear system

Ax =b
1 2 1 0 0 O X 1 b,
2 1.5 0 0 O X2 b,
1 1 3 0 0 O X3 bs
6 5 3 1 1 2 X4 b,
1 3 2 1 1 -2 X5 bs
9 7 1 1 2 1 X6 be

It could be written as

A1 X1 = b1

A x; =by—c;

where the vector ¢, is given by: ¢,= Ay x4

Practically, the original system (6 x 6) is split into two (3 x 3) sub-systems

1 2 1 X 1 b4
2 1 5 X2 b
1 -1 3 X3 b,
1 1 2 X4 b4 -6 5 X1
1 -1 -2 X5 bs 1 -3 Xo
1 2 1 Xg be -9 7 X3

43

Determinant computing

Determinant computing also takes advantage from the block-triangular form

For example, the determinant of the following (6 x 6) is given by the determinants product of
the two matrices (3 x 3) A and A, .

1 2 1 0 0 O 1 2 1

2 1. 5 0 0 O 2 1 5= 3

1 1 3 0 0 0= 18 1 1 3

6 5 3 1 1 2 1 1 2

1 3 2 1 1 -2 1 1 2= 6

9 7 1 A1 1 17 2 1
Permutations

Differently form the other factorization algorithms (Gauss, LR, etc.) the block-triangular
reduction use only permutations of rows and columns. From the point of view of the linear
algebra a permutation can be treated as a similarity transformation.

For example, given a (6 x 6) matrix, exchanging the rows 2 and 5, followed by exchanging the
columns 2 and 5, can be formally (but only formally!) written as.

B=P'AP , where the permutation matrix is P = (e1, es, €3, €4, €2, €6)
A P P'AP
1.0 0 1 2 O 1 0 0 0 0O O 1.2 0 1 0 O
1 1 1 2 -3 -2 0 0 0 0 1 0 2 1.0 5 0 O
61 1 3 & 2 0 01 0 0 O 6 5 1 3 1 2
1.0 0 3 10 0 0 01 0 O 1.1 0 3.0 O
2 0 0 5 1 0 01 0 0 0 O 1 31 2 1 -2
9.2 1 1.7 1 0 0 0 0 0 1 9 7 1.1 2 1

Remark. From the point of view of the numeric calculus the matrix multiplication is a very
expensive task that we should be avoided when possible; we use instead the direct exchange
of the rows and columns or, even better, the exchange of the indices.

Note that the similarity transform keeps the original eigenvalues. Consequently the eigenvalues
of the matrix A are the same of the matrix B

Eigenvalues Problem
The eigenvalue problem takes advantage from the block-triangular form.
For example, the following matrix (6 x 6) A has the eigenvalues:

A=[-7,-1,1,2,3,5]

44

-5 0 16 0 0 O -7 -5 0 -16 1

M0 2 11 0 0 O -1 10 2 11 2

8 0 9 0 0 O 1 8§ 0 9 A, T
1 3 5 3 0 4 2 3 0 4 -1
2 6 1 2 5 4 3 2 5 4 3
-4 9 3 6 -6 -1 5 6 -6 -1 5

The eigenvalues set of the (6 x 6) matrix A is the sum of the eigenvalues setof A; [1,2,-7]
and the eigenvalues set of A, [-1,3,5].

Several kinds of block-triangular form

Up to now the matrices that we have seen are only one kind of block-triangular form; but there
are many other schemas having blocks with different dimension each others. At last, all the
blocks can have unitary dimension as in a triangular matrix.

Just below there are same example of block-triangular matrices (blocks are yellow)

X X X X (X X
X X X X (X X
X X X |[X |© O
X X |X O O O
X X [©O O O O
X X |O O O O
X X X [X X X
X X X X X X
X X X [X X X
X X |X |[O O O
X |X O O O O
X |© © O O O
X X X X X [X
X X X X (X [O
X X X |[X |© O
X X |X O O O
X [X [© © O O
X |©O O O O O

X X X | X X X

X X X |O O O
X X X |©O O O
X X X |©O O O
X X X X |X X

X X X X |©O O
X X X X |©O O
X X X X |©O O
X X X X |©O O

X X X [X X X
X X X [X X X
X X X X [X X
X X X X X [X
X X X X X (O
X X X X X |O
X X X X X (O
X X X X X |O
X X X X X (O

Remark. The effort reduction is high when the dimension of the maximum block is low. In the
first matrix the dimension of the maximum block is 2; in the second matrix is 3; in the third
matrix the dimension is 1, showing the best effort reduction that it would be possible.

On the contrary, the last two matrices give an effort reduction quite poor.

Permutation matrices

Is it always possible to transform a square matrix into a block-triangular form? Unfortunately
not.

The chance for block-triangular reduction depends of course by the zero elements. So only
sparse matrices could be block-partitioned. But this is not sufficient. It depends also by the
zeros configuration of the matrix.

Two important problems arise:

1. To detect if a matrix can be reduced to a block-triangular form
2. To obtain the permutation matrix P

Several methods are developed in the past for solving these problems. One very popular is the
Flow-Graph method.

45

Matrix Flow-Graph
Following this method, we draw the graph of the given matrix following these simple rules:

the graph consists of nodes and branches

the number of the nodes is equal to the dimension of the matrix

the nodes, numbered from 1 to N, represent the elements of the first diagonal a;
for each elements a; =0 we draw an oriented branch (arrow) from node-i to node-j

Complicated? Not really. Let’'s have a look at this example.
Given the matrix A (4 x 4):

4 3 1
o -1 0 1
3 1 1 2
0 1 0 1

The flow-graph G(A) associated, looks like the following (see the macro Graph Draw for
automatic drawing)

a Where
The node 1 is linked to the nodes 2, 3, 4.
The node 2 is linked to the node 4
The node 3 is linked to the nodes 1, 2, 4
The node 4 is linked to the node 2

We observe that from the node 2 there is
not any path linking the node 1 or the node
3

Similarly happens if we start from the node

This is sufficient to say that the graph is not
e strong connected

Flow-Graph rule. If is always possible for each node to find a path going through all other
nodes, then we say that the graph is strong connected

An important theorem of the Graph Theory states that if the flow-graph G(A) is strong
connected then the associate matrix is not reducible to the block-triangular form and vice versa.
On the contrary, if the flow-graph G(A) is not strong connected then it always exists a
permutation matrix P that reduces the associate matrix to the block-triangular form.
Synthetically:

G(A) strong connected = matrix A irreducible

G(A) not strong connected o= matrix A block reducible

This method is quite elegant and very important in the Graph theory. But from the point of view
of the practical calculus it has several drawbacks:

e it becomes laborious for larger matrices
o the software coding is quite complicated
e it does not provide the permutation matrix P

In the above example, we observe that for P = [e,, €4, €1, €3] , the similarity transform gives a
block-triangular form

B=P' AP

46

A P P'AP
4 2 3 1 0 0 1 0 11 0 0
0 -1 0 1 1 0 0 0 11 0 0
3 1 1 2 0 0 0 1 2 1 4 3
0 1 1 01 0 0 1.2 3 -1

For matrices larger than (4 x 4) the effort for searching and testing all possible permutations
grows sharply. For example, it requires a heavy work for matrices like the following one. For
this reasons the flow-graph method becomes practically useless for matrices of (7 x 7) or more

1 0 0 1 2 O
1 1 1 2 3 -2
6 1 1 3 56 2
1 0 0 3 -1 0
2 0 0 5 1 0
-9 2 1.1 7 1

The score-algorithm

In this chapter we shall introduce a heuristic technique for efficiently reducing a sparse matrix
to a block-triangular form. The method is both simple and very efficient, and it can be applied
also to medium-large matrices. It consists of an iterative process having the main goal to group
zeros near the upper-right corner of the matrix using only rows and columns exchanges.

This algorithm was first ideated as automatic program, but thanks to its simplicity it can be also
performed by hand, at least, for low-moderate matrices.

Let's see how it works

Giving for example the (6 x 6) matrix just shown above,

we begin to initialize the permutation vector L2 & o 9 =

€1 € €3 €4 €5 €5

The main goal is to take to the upper triangular area

1 O0*+o0—t+—=—+10 (grey area) the most possible zeros.
111 #————1 Let’s begin to search all elements not zero over the first
5 1 1 €«=—5—a diagonal. The searching must start from the first row and
from right to left: thus from the element a4 ; if zero, we
10 0 3 A—8+— . .
STolols 108 jump to the near element a5 and so on till to a..
Then we repeat along the second row, from ays to as;.
P2 1 17 1 And so on till the last row
2 5 In this example, the first element not zero is ass;
Let’s search, if exists, the firs zero on the same row, beginning
1.0 0 112 O ;
1 11 2 3 2 from left to right.
6 1 1 3 5 The first O is the element a,. We shell exchange the columns 2
) 5 e 5 and after, therows 2e 5
10 0 3 10
2 00 5 10
9 2 11 7 1

After the permutation (2, 5), the matrix will be the following:

47

A
1.0 0 1 2 0
1 11 2 -3 -2
6 1 1 3 2
10 0 3 -1 0
2.0 0 5 1.0
9 2 1. 1. 7 1

1 5 3 4 2 6
P P'AP
1.0 0 0 0 O 1 2 0 1 0 O
0 0 00 10 2 1.0 5.0 0
0 01 0 00 6 5 1 3 1 2
0 00 1 00 1 1.0 3 0 0
01 0 0 00 1 3 1 2 1 =2
0 0 00 0 1 9 7 1.1 2 1

We observe the zero grouping close to the upper-right corner.

3 4
1 2 01 0 O
2 1 0 5 0 0
6 5 1 3 1 2
110 3 0 O
1 31 2 1 -2
97 11 2 1

Now the first non-zero element starting from right is
aq4. The first 0, starting from left, is a4s.
Thus we permute 3 e 4

After permutation 3, 4 we have:

A
1 2 0 1.0 O
2 170 5.0 0
6 5 1 3 1 2
1 1.0 3.0 O
1 31 2 -1 -2
9 7 1 1 2 1

1 2 4 3 5 6
P P'AP

1.0 0 0 0 O 1.2 1.0 0 O
01 00 00 2 15 0 0 0
0 00 1 00 1 1 3,0 0 0
0 01 0 00 6 5 3 1 1 2
0 000 10 1 3 2 1 1 =2
0 000 0 1 9 7 1 1 2 1

All zeros are now positioned in the upper-triangular area. The matrix is partitioned in two (3 x 3)

blocks. The process ends.

The finally permutation matrix is

1 2 3 4 5 6
el e5 e4 e3 e2 eb

As shown, with only 2 permutations we were able to reduce in block-triangular form a (6 x 6)
matrix. We have to put in evidence that we are worked only by hand. This method keeps a
good efficiency also with larger matrices.

Let's have a look to another example.
Reduce, if possible, the following (6 x 6) matrix

Y Y

3 1 -1 1 502
0 -1/0 1.0 0
5 1 1 2 -3 4
0 0 01 0 0
1 1 7 -9 13 1
0 1. 0 -6 0 1

The first element = 0, from right, is: asg
The first element = 0, from left, is: a,.
So the pivot columns are 1 and 6

48

11 g _lé 0 0o The f?rst element = 0, from right., is: a14
The first element = 0, from left, is: a13.

0- 170 1700 So the pivot columns are 3 and 4

4 1 1 -3 5

0O 0 0 1 0 O

1 1 7 9 13 1

2 1 1 1 -5 3

U U

1 1 6 0 0 0 The fﬁrst element = 0, from right., is:a13

0 1 1.0 0 O The flrst.element =0, from left, is: a21.

00 1. 0 0 0 So the pivot columns are 1 e 3.

4 1 2 1 -3 5

1 1 9 7 13 1

2 1.1 1 -5 3

Finally we get the block-triangular matrix.

1770 0 0 0 O The matrix has been block-partitioned:
11110 0 0 0 There are 3 blocks (1 x 1) and one block (3 x 3)
6 1110 0 O

2 1 4|1 -3 5

9 1 1|7 13 1

1 1 2|1 -5 3

We observe that this algorithm does not provide any information about the success of the
process.

It simply stops itself when there are no more elements to permute. At the end of the process, if
the result matrix is in block-triangular form, then the original matrix is reducible. Otherwise, it
means that the original matrix is irreducible and its flow-graph is strong connected.

The Score-Function

The matrices used up to now had all zero elements completely filled into the upper-triangle
area

Now let's see what happens if the matrix has more zeros than those tightly necessary for block
partitioning (spurious zeros). In that case not all permutations will be useful for grouping zeros.
Same of them will be useless and same others even will go zeros away from the upper-right
corner.

Thus, it is necessary to measure the goodness of each permutation.

By a simple inspection it is easy to select the “good” permutations from “bad” permutations. But
in automatic process it is necessary to choose a function for evaluating the permutation
goodness: the score-function is the measure adopted in this algorithm.

The score function counts the zeros in the upper triangle area
(grey) before (A) and after the permutation (B) returning the

X
difference. K| R
oK | H
score:ZB:W(l,])—ZA:w(l,]) e | x| x| x
) o] . XK M| %X
The score will be positive if the permutation will be
¥ K x| % x| ¥

advantageous otherwise will be negative or null.

The zeros have not the same weight: the zeros nearest to the upper-right corner have a higher
weight, because the matrix filled with zeros close to the upper-right corner is better than the
one with zeros close to the first diagonal.

49

X X 0 X 0 0 X X X X X X

X X X X 0 0 X X 0 X X X

X X X X X X X X X 0 X X

X X X X X X X X X X 0 X

X X X X X X X X X X X 0

X X X X X X X X X X X X
better worse

Apart this concept, the weigh function w(i,j) is arbitrary. One function that we have tested
with good result is the following

wii]) _ 0 < a; * 0 Weight function for a matrix (n x n)
(n—i+1)?- ;> < a;=0

For each permutation recognized, the algorithm measures the score; if positive the permutation
is performed, otherwise the permutation is rejected and the algorithm continue to find a new
permutation. After same loops the zeros disposition will reach the maximum score possible;
every other attempt of permutation will produce a negative or null score. So the algorithm will
stop the process.

Same examples
Now let’s see the algorithm in practical cases

A P'AP

1 2 0 2.0 O 1 3|0 0 0 O
0O 1 2 0 -3 0 1 3]0 0 0 O
0 0 1.0 5 3 5 3[1]/0 0 O
0O 3 1 1. 0 0 3 0 2|1]0 O
0O 0 0 0 1 3 0O 0 1 3[1]0
0O 0 0o 0o 1 3 0 0 0 2 211

P =[eb5, €6, €3, e2, e4, el]

Accepted permutations = 6

Rejected permutations = 4

A P'AP

30 0 0 0O 0O 2 3 0 4 1 210 0 0 0O O O O O
6 1 6 3. 0 2 5 1 0 2 1 110 0 0 0 O 0O O O
0O 010 O O1T 0O O O 0O 5/1 5 00 0 0 O O
8 1.8 1.0 0 7 1 0 O 2 0/4 3 3/0 0 0 O O
0 1 10 5 0 0 9 1 5 0 3 0/6 4 1/0 0 0 0 O
O 17 4.0 1 6 1 0 3 5 6 2 6 111 3 2|0 0
0O 0o 2 0 0 0O 1T 0 0 O 7 8 0 8 111 1 0|0 O
4 0 0 0 OO 3 1 0 6 6 7 3 0 111 4 1]0 0
91 9 4 1 3 0 1 1 5 0 9 5 9 1 1 4 3|1 -1
5 0 5 0 0 0 0 0 0 1 9 10 0 10 1 1 5 0|5 O

P=[e7,e3,e10, e1, e8, e2, e4, €6, €9, e5]
Accepted permutations = 9
Rejected permutations = 10

50

P'AP
00000 OO0 O0 O

1

1
1

0O 0 0 0O OO O O

1

0 0 0 0 0 0 O

5

1

4 3.0 0 0 0 0 O

1

1.0 0 0 0 O
1

4

0

0 0 0 O

0 0 0 0 0 0 O

0 1

0

0O 5 0 0 O

1

0

0
3

1
1
1
1

1 0 0 O
0 4 0
3.0 4

1
1

0 0O 0o o 0 O

0
0

0

0

4

[e3, e7, eb, e8, e10, e1, €6, e4, €9, e2]

P=

7

Accepted permutations =
Rejected permutations = 1

51

14 8 0 7 0

3.0 80 0 30 3 0 0 0 6 0 0 O

4

10

00 300O0O0O0OO0OO0OO0OCO0OTGO0OCOTGOTGOZ 3020

0 0 17 10 10 0
4 9 16 9 9 11

4 4.0 0 0 6 06 00 3 900 020 0
0 0 0 0 O

15 0 10 10 0 17 10 16 0

100 10 0 0

9

9

14 9 9 9 30 0 9 15

9 9 8

11

0.0 0 20 O

0 0 0 0O 4 00 O

1320 0 20 12 0 O

1

13

13 13 38 20 13 0

0 0 2020 0 O

0 0000 2 0 2 00 0200007 060

17 11
11

4 11 18/ 0 20 13 11 13 11 11 10 16 11 11 11 34 18 0

5

0

1

0O 0 0 0 200 0 8 0

20 5 0 0 0 7/0 0 0 5/0 0 0 0 0 O

1

0 0 40 0 0 O O0OO0OOO 2 00 00 40 30

4/0 90 000 4 0 0
4 6

6
0

12
13

6 0 0 0 0 O

11

30 0 8 0 8 0 6 5

0 7140 0 9 0 9 0 7 2012 7 7.0 0 0 O

4 0 1912 12 14 12 14 12 0 O

12 12 36 19 12 18 O

170

0 0 5000000 0O 3 0O0O0US8 5 0 4 0

00 0O0OOOOTOOT OO OO OTOO OO OO OTITO0OOO
138 8 0 0 0 8

4 8 15/0 0 10 O

8
0

14

10 0 8 7

1

18 0 0 0 3

00 00O0OOOOTOTOOSO OO OO OO OO OOZ2o0

4 010/ 0 0 5 0 5 0 0 2 8 0 0 O

P'AP

0 0 00 0O O0 O O

0 0 0O 0OOOOOOTOTPO
0 0 00OOOOOOOTO
0 0 00OOOOOOOTO
0 0 0 0OOOOOOOTPO
0 0 0 0OOOOOOOTPO
0 0 0 0O0OOOOOTOTPO
0 0 0 0OOOOOOTUOTP O
0 0 0O 0OOOOOOTOTPO
0 0 0O0OOOOOOOTPO

1

2

0 00 OO O O

323 0000 O0 O

1

4 3 4 2, 0 0 0 0 O

5 4 5 3 8.0 0 0 0

0 20 0 4 10

0 0 O

1

7 6 0200 2 2 0 O

8 7 8 6 14 3 3 3 0
0 8 9 0200 4 4

1

0 0 0 0O O OOTO OO OT O
4 4 0 0 0 0 OO O OO

3

0 0 10 8 18 5 5 4 2
010 0 9 20 6 6 4

1

3

0 0 07 0200

5 5 0 0 0 0 O0O0O0O

6 6 6 6/0 0 0 0 0 0 O

5

11

0 8 8 4 5

0 12 13 11

7 7 7 7.0 0 0 0 O O
8 8 8 8 8 0 0 0 0 O

0 1831412 0 9 9 0 20 O

0 14 1513 0 10 10 4

8
0
0

7

11 11 20

0

1"

0 0 0 12 12(12 12 12 12 12
0 0 O 10 10(10 10 10 10 10

19 18 19 17 36 14 14 4 O

17161715 0 0 0 O O
20 0 20 0 38 0 20 O

13 0 20 0 13 13|13 20 13 0 O

11

12
10

0

11 11 11 11

18 17 18 16 34 13 13 4

9 9 9 9 9 919 9 9 9 9

0 15 16 14 30 11 11 4 8

[e17,e19, €3, e12, 16, €6, €8, e, e11, €20, e2, €10, 13, e14, €18, e15, e4, e7, €9, e5]

P=

Accepted permutations = 18

=237

Rejected permutations

As we can see, also for larger matrices the number of permutations remains quite limited.

Regarding this and that the permutation is much faster then any other arithmetic operation in

floating point, we can guess the high speed of this algorithm

52

In Excel, with Matrix.xla, is very easy to study the matrix permutations.

A simple arrangement for (6 x 6) matrices is shown in the following example. We have used the
function MatPerm . When you change the permutation numbers, also the permutation matrix
changes an, consequently the final transformed matrix

AlBICIDIE[FIG[H][I[J[K[LIM[N|O[P[Q[R[S[T[U]
1 Permutations

2] S 6 3 2041

3 A P PTAP
4(1/2/0 2/0 O oo o oo 13200 0 0
‘510 1/2/0 -3/0 o/oo 1 00 1300 00
‘6B|/0 0 10 5 3 oo 1 0/0 0 /31 0 0 0
710 3 1/1/00 0o/ooo1ao 2021700
g/0 00013 1 00000 oo1 3 1.0
9|00 0013 01 oojon o oo 2 21
10 a\|

% {=MatPerm{H2:mM21} |{=M_PHOD(M_T(H4:MQJ;A4:FQ;H4:ru19)} |

The Shortest-Path-algorithm

The above algorithm does not say if the matrix is irreducible. For that comes in handy the
shortest-path matrix, built by the Floyd's algorithm. In Matrix.xla you can perform this by the
function Path_Floyd or by the macro "Macros>Shortest Path"

Example. Say if the given matrix is reducible

1 0 0 1 2 0 0 1 0

1 -1 1 2 -3 -2 o L L T 1 I b
51 1 3 3 2 1001 o -9 10 4
1 0 0 304 0 1 oA

2 0 0 3 1 0 2 3 0

9 2 1 1 i 1 4 2 1 -5 -8 0

M
\—‘ Shortest Path |— —

The shortest-path matrix show the presence of empty elements. For example, the element a;,
is null, meaning that there is no path reaching the node 2 from the node 1. This is sufficient for
saying that the given matrix is not strong connected and thus, reducible.

Example. Prove that, on the contrary, the following matrix is irreducible

1] 0 1] oA 0 140 -9 | -5 | -7 |15 A7
] 0] 4 2 2.0 19 14 | A0 | A2 | -20 | -22
§o-3 3 0 1] 0 S22 AT | A3 5] 223 25
-0 1] 0 g -2 21 6| 12 14] 22 24
1] 4 1] 0 o -4 13 /10| -6 | -8 | 16 | -15
1] 1] 1] 1 =21 A6 | 2] 14] 22 24

F.
\—‘ Shortest Path |— —J

The shortest-path matrix is dense, meaning that every node can be reached from any other.
For definition, the given matrix is strong connected and thus, irreducible

53

Limits in matrix computation

One recurrent question about matrices computation is: - what is the max dimension for
a matrix operation, for example the determinant, or inversion? -

Well, the right answer should be: it depends. Many factors, such as hardware
configuration, algorithm, software code, operating system and - of course - the matrix
itself, contribute to limit the max dimension. One sure thing is that the limit is not fixed
at all.

In the past, the main limitation was memory and elaboration speed, but nowadays
these factors are not more a limit. We can say that, for the standard PC, the main
limitation is due to the 32-bit arithmetic and to the matrix itself.

Suppose you have a dense matrix (n x n) with its elements a; randomly distributed
from -k to k. With this hypothesis the determinant grows roughly as:

Log(|D|) = n Log(k) + 0.0027-n?> = n Log(k)
where Log is decimal logarithm, n is the dimension of the matrix, k its max value
In 32 bit double precision the max value allowed is about 1E+300, 1E-300. So if we
want to avoid the overflow/underflow error, we must constrain:

300 = n Log(k) (1)

If we plot this relation for all points (k, n) we have the area for computing (blue area in
the graph below). On the contrary, the dangerous error area is the remain (white) area

350

300 1 M Limit of matrix computing

250
200 -

150

overflow

1001 n Log(k) = 300

50 1 computing

0 T T T T T T T T T T T T T k
1.E+01 1.E403 1.E+05 1.E+07 1.E+09 1.E+11 1.E+13 1.E+15

How does it work?

Simple. If you have to compute the determinant of a matrix (80 x 80) having values no
more than 1000, the point (1000, 80) falls into the blue area; so you will be able to
performs this operation.

On the contrary, If you have a matrix (80 x 80) having values up to 1E+7, the point
(1E+7, 80) falls into white area; so you will probably get an overflow error

From this graph we see that matrices (25 x 25) or less, can be elaborated for all
values, while matrices (100 x 100) or more can be computed only if their values are
less that 1000

54

Of course this result is valid only for generic dense matrices not ill-conditioned. If the
matrix is ill-conditioned you could get an overflow/underflow error even for
low/moderate dimension. Fortunately, there are also special kind of matrices that can
be elaborated even if the constrain (1) is false. We speak about diagonal, tridiagonal,
sparse, block matrices etc.

We have to say that, avoiding the overflow error is not sufficient to get a good result.
We have to take care, specially for large matrices, to the round-off errors. They are
quite lay and very difficult to detect. Very often the result of large matrix inversion is
take good even if it is completely wrong.

If you think that this errors regard only large matrices, have a look to the following
example:

Compute the numeric inverse of this simple (3 x 3) matrix

127 -507 245
-507 2025 -087

245 -987 553

If you use a in 32-bit standard precision program on your PC, the answer probably
looks like the following:

-2.121E+14 -5.614E+13 -6.238E+12
-5.614E+13 -1.486E+13 -1.651E+12
-6.238E+12 -1.651E+12 -1.835E+11

And the determinant? You probably get a results near to DET = -6.867E-10
If you repeat the calculus with other programs you get similar results. Is there any
reasons for suspecting this results? Yes, because this result is completely wrong !.

In fact, the exact determinant is 0, the given matrix is singular and its inverse, simply
does not exist (you can easily compute by hand with exact fractional numbers.
(If you are lazy see Step-by-step matrix inversion with Gauss-Jordan algorithm)

In this case it was easy to analyze the matrix, but for a larger matrix (50 x 50) do you
know what would happen? Before to accept any results - specially for large matrices -
we have to do same extra test. In the example above we have to examine the SVD
decomposition, that gives the following diagonal matrix:

2646.049 0 0
0 58.9513 0
0 0 4.87038E-14

The last element is very near to the machine accuracy 1E-15, if we get the ratio
between the lowest and the highest value we have:

m = 4.87038E-14 / 2646.049 = 1.8406E-17 << 1E-15

The ratio is more less than machine accuracy , so we have to conclude that the matrix
D, "numerically specking" has one zero on the diagonal meaning that the given matrix
is singular

55

56

Eigen-problems

This chapter explains how to solve common problems
involving eigenvalues and eigenvectors, with the aid of
many examples and different methods.

Eigen-problems

Eigenvalues and Eigenvectors

These problems are very common in math, physics, engineering, etc. Usually they consist
in solving the following matrix equation

Ax=Ax (1)

Where A is n x n matrix and the unknowns are A and X, respectively called eigenvalue
and eigenvector*. Rearranging the equation (1) we have:

(A=ADx=0 (2)

This homogeneous system can have no-trivial solutions if its determinant is zero. That is:

[4-21]=0)

Characteristic Polynomial

The left side of (3) is an n degree polynomial in A ,—called characteristic polynomial -
whose roots are the eigenvalues of the matrix A.

For a (2x2) matrix, the system (2) becomes:

|:a11 alz}_i[l 0:|:|:a11_ﬂ’ a, }
ay ap 0 1 ax ay -4

*In lingua italiana, A e x sono conosciuti come autovalore e autovettore

57

Computing the determinant we have the equation (3) in expanded form

2 = (ay, +ay,)A+det(4) =0

For a (3x3) matrix, the system (2) becomes:

a, —A4 a; aj
as ay—A4 dy
as as) ay — A

And its characteristic equation (3) becomes

3 2
=4+ (ay, +ay +a)l —(a,,ay — a,a, +)05, — Q1305 + Ayy55 — Aya5,) A +det(4) =0

With larger matrix the difficulty for computing the characteristic polynomial grows sharply;
fortunately there is a very efficient way to compute the polynomial coefficients using the
Newton-Girard recursive formulas. In Matrix.xla we can get these coefficients by the
function MatCharPoly.

Roots of characteristic polynomial

Apart the 2nd degree case only, finding roots of a polynomial need numerical approximated
methods. Matrix.xla has the function Poly_Roots that finds all roots - real or complex - of a
given real polynomial, using the Lin-Bairstow method. This function is suitable for general
polynomials up to 6-7 degree. When possible, the function uses the Ruffini's method for
finding small integer roots.

There is also the function Poly_Roots_QR for finding all polynomial roots. It uses the
efficient QR algorithm and it is adapt for polynomial up to 10-12 degree.

For complex polynomials there is the similar function Poly_Roots_QRC

Case of symmetric matrix

Symmetric matrix plays a fundamental role in numeric analysis. It has a great important
feature. Its eigenvalues are all-real. Or, in other words, its characteristic polynomial has
only real roots. Another important reason for using symmetric matrices is that there are
many straight, efficient and also accurate algorithms for the eigen-system solution; much
more complicated, instead, for asymmetric matrices.

Tip. There is a nice close formula for generating a (n x n) symmetric matrix having the first
n natural numbers as eigenvalues

([+2n—-4i+2
n

ii

n

Below there are the first matrices for n=2, 3, 4, 5, 6, 8

58

eigenvalues: 1, 2

2 0
0 1
7/3 23 0 eigenvalues: 1, 2, 3
2/3 6/3 -2/3
0 -2/3 5/3
25 1 0.5 0 eigenvalues: 1, 2, 3, 4
1 25 0 0.5
0.5 0 2.5 -1
0 -0.5 -1 2.5
26 12 08 04 0 eigenvalues: 1, 2, 3, 4, 5
1.2 2.8 0.4 0 0.4
0.8 0.4 3 0.4 -0.8
0.4 0 0.4 3.2 -1.2
0 04 | 08 -1.2 3.4
8/3 413 3/3 23 13 0 eigenvalues: 1,2, 3,4, 5,6
4/3 9/3 2/3 1/3 0 -1/3
3/3 2/3 10/3 0 -1/3 | <213
2/3 1/3 0 11/3 | -213 | -3/3
1/3 0 -1/3 213 | 1213 | -4/3
0 -1/3 | 213 -3/3 | 43 | 13/3
275 | 15 | 1.25 1 075 | 05 | 0.25 0 eigenvalues: 1,2,3,4,5,6,7,8
1.5 3.25 1 0.75 0.5 0.25 0 -0.25
1.25 1 3.75 0.5 0.25 0 025 | -05
1 0.75 0.5 4.25 0 025 | -05 | -0.75
0.75 0.5 0.25 0 475 | -05 | -0.75 -1
0.5 0.25 0 025 | -05 | 525 -1 -1.25
0.25 0 025 | -05 | -0.75 -1 575 | -15
0 025 | -05 | -0.75 -1 125 | 15 | 6.25

59

Example — How to check the Cayley-Hamilton theorem

Regarding the characteristic polynomial P(A) an important theorem, known as Cayley-
Hamilton's theorem - stats that the any square matrix A verifies its characteristic
polynomial. That is, in formula:

P(A) =0 (where O is the null matrix)

The above matrix equation can be formally obtained substituting the variable & with the
matrix A. Let’'s see how to test this statement with a practical example in Excel.
Given the following (3 x 3) matrix

" 9 -2 Its characteristic polynomial is:

A= -8 -6 2 e 223
. 4 P(A)=6-114+61 -1

After substituting A with A, we have
P(A)=6-1-11-A+6-4* -4

Evaluating this formula by hand is quite tedious, but it is very easy in Excel. Let's see the
following spreadsheet arrangement using the function M_POW

AlB|lC|D|E|F[G|H[I | J][K]|L]|M
1 |Cayley-Hailton test
2
3 |Char Poly. coefficients A FiA)
Fil ap aq az daz 11 o -2] 0 0
5| B 11 B | -1 8 B | Z 1] a a
E 4 4 1 N a a
7 /
g |{:A5*M_ID(3}+EIS*F4:HE+C5*M_F’OW(H:HE,2}+D5*M_F'OW(F4:HE,3}} |

Note that we have inserted the P(A) formula as an array function {=....}

Of course it is also possible to perform the matrix powers with the matrix product.

Alelc|D|E|/F|lc|H|[I]J|K[LIMIN][O]P
1 |Char. Paly. coefficients | Cayley-Hailton test
2 dn a4 az a:
3| B 11 6B | -1
4
5 | A A A
B | 1 0 0 M9 -2 4 37 B 131 123 -14
01 a - £ 2 32 -8 B 104 -96 14
8| 0 0 1 4 4 1 16 16 | 1 52 52 1
5
10 0 |i=M_PROD(SESE SCSEEE:GE)} | | [{=M_PROD(SESE.3GHS 6:HE)}
1] 0 0 0
120 0o 0 [i=A3AE.CE+B3"ER GB+CFB KB+DIMEOB}
1200 0 0
14

60

Eigenvectors

Logically speaking, once we have found an eigenvalue we can solve the homogeneous
system (2) in order to find the associate eigenvector.

(4-14,Dx,=0 = x

Normally for each real eigenvalues having one multiplicity, there is only one eigenvector.
For multiplicity 2, we will find two eigenvectors or even only one.

Step-by-step method

The method explained above is general and is valid for all kind of matrices. It is known by
every math student and it is very popular. For this reasons is explained in this chapter,
despite his intrinsically inefficiency. As we can see in the following paragraphs, there are
other methods that can compute both eigenvectors and eigenvalues at the same time in a
very efficient and fast way. They are suitable for larger matrices, while the step-by-step
method can be applied to matrices of low dimension (usually from 2x2 , up to 5x5).

But didactically speaking this method is still valid and it can help when other methods fail or
raise doubts.

Let's see how it works with same examples

Example - Simple eigenvalues
Find all eigenvalues and associated eigenvectors of the following matrix

A=
4 14 -6
-8 19 -8
-5 10 -3
Reassuming the step-by-step method, we have to:

1. Compute the characteristic polynomial's coefficients
2. Find its roots, that is the matrix eigenvalues X ;

3. Foreachroot A; build the matrix A—A;l
4

Find the associate eigenvector x; solving the homogeneous system

For task 1) we use the function MathCharPoly; for task 2) we use the function Poly_Roots;
task 3) are performed with M_ID function that return the identity matrix; finally task 4) use
the function SYSLINSING to find a solution of the singular system.

61

Al B | ¢ | E F G H J K
1 |A coeff eigenvalues
2] 4 14 B 42 real | imm
3| & 18 -8 -41 2 ad
a1 = 10 3 12 3 0 F{=PDILRD|:|19(E2:E5)} |
g {=MatCharPolyia2:C 43} I"/{‘ ! ! 0
7
8 A-nl | for (A=2 A-hl | for A=3 A-hl | for A=7
9 -G 14 -G -7 14 -G -11 14 -G
10 -0 17 -0 -0 16 -0 -a 12 -a
11 -5 10 -5 -5 10 -G -5 10 -10
E [=AZ:CA-FIM_IDOY | |{:A2:C4-F4*M_IDO} | |{:A2:C4-F5*M_IDO} |
14
15
16 0 0 -1 0 2 0 0 0 2
170 0 0 -0 0 1 0 0 0 2
18| 0 0 1 0 -0 0 0 0 1
19

a0 {=SVELINSINGASC1 1)} I

el

For the given matrix, we have found the following eigenvalues and eigenvectors

|{:SY8LINSING(EQ:G1 11} |

|{:5YSLINSING(IQ:K11)} |

Eigenvalues
Al 2
A2 3
A3 7

Eigenvector
x1 x2 x3
-1 2 2
0 1 2
1 0 1

Example - How to check an eigenvector

Once we have found the eigenvectors, we can easily verify them by simple matrix

multiplication.

If X is an eigenvector, the vector u must be exactly a A multiple of the vector x , as we can

u=A4Ax, > u =4x

see in the worksheet bellow

25
2
23
29
30
31
32
33

A =] C D E F 5 H
Matrix Eigenvector
A %1 H2 ®3
-4 14 H -1 2 2
-8 19 - a 1 2
A 10 -3 1 a 1

Eigenvalues= 2,3, 7

[J K
verify
ul uz u3
-2 B 14
] 3 14
2] 7

=MMULT(A28.C30,E28:G30)}

62

Eigenvectors are not unique. It can be easy prove that any multiple of an eigenvector is an
eigenvector too. It means that if (-1, 0, -1) is an eigenvector, other possible eigenvectors

are:
Matrix Eigenvalue
-4 14 6
-8 19 -8 A =2
5 10 3

Eigenvectors ...

-0.04
0
0.04

-0.5
0
0.5

-1

-2 -3 4 | 5
0 0 0 0
2 3 4 5

For convention, mathematicians use to take the eigenvector with norm 1, thatis: | x | =1.

In that case it is called eigenversor.

Fpllowmg this rulelthe A B C D E F G
eigenvectors matrix becomes as . - . -
t the right 49 Eigenvector Eigenversor
we can see at the ng a0 =1 e *3 ul uz u3
a1 - 2 2 070711 0.89443 | 06EEET
. . . B2 0 1 2 0 044721 0E6EET
Sometime, in order to avoid
. . B3 1] 1 070711 0 033333
decimals numbers, we normalize c4
only the smallest value of the =
vector; for that, we divides all = {=A5T.AS3MM_ABSEAST AGS)}

values for the GCD

The SYSLINSING function adopts this solution. If you want to get the eigenversors you

have to do it manually.

Example - Eigenvalues with multiplicity
Find all eigenvalues and associated eigenvectors of the following matrix

-7
A= 6
-2

-9
8
-2

For the given matrix we have found two

roots:

A=1, m=1

A=2, m=2

With the eigenvalue with multiplicity = 1,
we get one eigenvector; while with the
second eigenvalue with multiplicity = 2,
we get two eigenvector

A B C]

E

F

E

1 A coeff eigenvalues
2 -7 -9 g 4 real imm
3 g] -6 -& 1 il
4 -2 -2 4 5 2 n
5 -1 2 1]
B |{:MatCharPUI3r(A2:Cd]| |/’/J

7

B [A-Al | for b= 1 A -5l far h= 2
9 -& -9 g -q -q g
10 & 7 -G & & -G
1] -2 -2 3 2 2 2
12

13 |[i=AZ:C4-CE*M_IDO} | [=AZC4-FaM_DO |
14

15

15 0o 0 45 0 -1 1
17 0 0 -3 0 1 -0
18 1] 1] 1 1] -0 1
19

20 [{=5YSLINSINGASCT I

[=5YSLINSINGES:G1 1)} |

21

Tip: accuracy of multiple roots is in general lower than the one of the singular roots. For this reason, sometimes,
the SYSLINSING function cannot return any solution. In those cases, try to set the SYSLINSING parameter
MaxError less then 1E-15, depending from the eigenvalue accuracy (usually for a root with m. = 2, we set

MaxError = 1E-10)

63

We note that the matrix obtained with eigenvalue 2 has tree row multiple each other's. So

its rank is 1 and its solution generate a subspace of 3 -1 = 2 dimension.

(See for better details the Rouché-Capelli Theorem in the previous chapter)

But this is always valid? The multiplicity gives the dimension of the eigenvector
subspace? Unfortunately no. There are cases in which the multiplicity doesn't' t
correspond to the associate eigenvectors.
Lets' see the following example.

Example - Eigenvalues with multiplicity not corresponding to

eigenvectors

Find all eigenvalues and associated eigenvectors of the following matrix

1 2
A= 2 0
-1 2

For the given matrix the characteristic

polynomial is:
~ A +421 -42
That has two roots:

A=0, m=1
A=2, m=2

With the eigenvalue with multiplicity = 1, 21

A, B 1 E F B
1 A coeff eigenvalues
2 1 2 1 -0 real | imm
3 2] -2 -4] 0
4 -1 2 3 4 2 0
5 -1 2 0
B |[{=MatCharPoly(AZ:C4) I/
7
8 A-n for h= 0 A-nl far h= 2
g 1 Z 1 - z 1
10 2] 2 2 2 2
1M1 2 3 -1 2 1
12
13 [i=AzC4-Cca"M_IDG} | [=AzCa-Fam_IDgr |
14
15 |
16| © i 1 i i 1
17 0] -]] |
18 o 0 1 0 0 1
149

20 [{=5YSLINSING(AZ.CT |

[£=S¥SLINSINGESG11;} |

we get one eigenvector; with the second

one with multiplicity = 2, we get only one eigenvector, not twice.

Example - Complex Eigenvalues
Sometime happens that not all roots of the characteristic polynomial are real. In that case

the eigenvectors associate at complex eigenvalues are complex too.

Find all eigenvalues and associated eigenvectors of the following matrix

A= 1

The characteristic polynomial is:

— P +127-464+50

64

A B C D E F E; H I e
1 |Matrix A coeff. Complex Eigenvalues
2 52(real imm |{=F'EI|':."_RDD'[S{E3:E5)}
3 9 -6 7 g 2 0
a4l 1 | 4 1 12l s 1 e
5 3 4 -1 Sl & -1
B . |{:MatCharinm3:cs;}
=

The eigenvaluesare A1 =2,A,=5+] ,A;=5—]

In Matrix.xla there is not a SYSLINSING for solve singular complex system, but we can
derive a real system from the original complex one:

Separating both eigenvalue and eigenvector in their real and imaginary parts:
/,L:Z'Ve-i_j/lim x:xre+jxim
The homogeneous linear system, becomes
(A - //’,I)X = O = (A - (//i’re +]//i‘zm)I)(xre + jxim) = 0

Rearranging: ((A Al ;
e xre+ i

tmI xim)+](_ //izm] xre + (A - ﬂ’re])xim) = 0
The above complex equation is equivalent to the following homogeneous system

(A - ﬂ’rel)xre + /,i’im[xim = 0 (A - j’rel) izml xre _ 0
A0 (A=A.D | |x, |

A, x,+(A-11)x, =0
The 6 x 6 homogeneous system matrix is built in four 3x3 sub-matrices.

m

Let's see how to arrange a solution in Excel

A B C 1] E F (B H I J 4 L M
1 |Matrix A coeff. Complex Eigenvalues
2 g2| real | imm
3 9 -G 7 1] .- 0
4 1 4 1 12 =3 1 complex eigenvectors
5 -3 4 -1 1| & -1 re im re i
G -2 1 -1 =
7 |complex eigenvalue = 0 1 -1 0
a 1 1] 1] 1
9 |Homogeneus real system matrix
00 4 -5 7 1 0 0 0 1] 0 0 =2 -1
11 1 -1 1 0 1 0 0 1] 0 0 -0 -1
12 | A3 4 -5 0] 14] 0]] 1 -0
13| 11 0 0 4 = 7 0] 0 0 1 -2
14 (0 -1 0 1 1 1 0 1] 0 0 1 -0
15 |0 L0 -1 -3 4 -5 1] 0 1] 1] -0 1
16
17 l=-DarF | [i=aacity
18
;g [=A3.C5-D7TM_ID0} | |{ET*M_ID|‘J} l [(=8YSLINSING(AaF14) |

The solution of the homogeneous system returned by SYSLINSING is conceptual divided
in two parts: the upper contains the real part of the eigenvectors; the lower there is the

imaginary parts of the same eigenvectors.

65

Substituting the conjugate eigenvalues we find conjugate eigenvectors.

The case of real eigenvalue 2 is the same of the above example, so we do not repeat the
process. Rather we want to show here how to arrange a check for complex eigenvectors.

Example - Complex Matrix

Matrix.xla has several functions developed for solving the eigen-problem for complex
matrices of moderate dimension.

Following the step-by-step method previous seen, we need the following functions:

MatCharPoly_C - computes the complex coefficient of the characteristic polynomial
Poly_Roots_QRC - computes the roots of a complex polynomial
MatEigenvectorinv_C - computes the eigenvectors of a complex matrix

443 | 2-4) | 4+5) [54
1421 | 2 [1+2) | 24
2+4j | 4+2] | 2+2j | 2+6j
3-3) | -3-3) | 3-3j | 1-3

A possible arrangement is shown in the following worksheet.

sl |l clo|E|F || H| 1| gk [L]|mM]|n]|alcF

1 real imag. Coefficients Cigenvalues
24 2 4 s5]3 4 5 4 g 24 re | im
3|01 2 2|2 o 2 22 2 ol -z
4 | 2 4 2 2| a4 2 2 & a7 a1
|3 3 3 1|3 3 3 = 5 2 1 3
B 1 0 4.0
7 {=MatCharPoly_Cra2HS)} /

2 |Eigenvectors

8 (071 07/ 055 0 | O 0 @02 0 |i=Poly_Rocts_GRCCISDME) |
M| 0 0 05 0 |0 -0F 02 0

or 00 e e 00 02, li=MatEigenvectoring_C(AZHS M3:NE); |
12| 0 0 05 02| 0 0 018 067

Note that the given matrix has distinct eigenvalues: 2 real and 2 complex

This means that its eigenvector are distinct and we can use the inverse iteration algorithm
for finding them. Note also that, in general, at a real eigenvalue does not correspond to a
real eigenvector. Curiously the only real eigenvector corresponds to the imaginary
eigenvalues A = -2j

Example - How to check a complex eigenvector
Given the matrix A and one of theirs eigenvalue A, prove that the vector x is an eigenvector

_ 9 -6 7 Xre Xim
A= 1 4 1 A = 54j -1 2
3 4 1 -1 0
0 1

The test can be arrange as in the following worksheet

66

A | B c 0] E F €} H J 34 L | M MNo0

1 Complex eigernvalue] 1

2 check

3 [Complex matrix A eigenvector A x hoX

4 real part imm. part Xre | ®im Hre | ¥im Hre | xim

5 9 -6 7 a 0 a -1 -2 -3 -N 30 -N
ﬁ 1 i 1 a 0 a -1 a A0 A -

7| 3 4 -1 a 0 a a 1 -1] -1]

g

: _ — —

10 f=hd_MLILT_SOASFT HEIT |{:H5.HT*E1-I5.IT*F1} f

1; |{=H5:H?*F1 +HE2ITE}

13

We have used the function for complex matrix multiplication M_MAT _C of Matrix.xla. Note
that we have to insert the imaginary part of the matrix because those complex functions
always request both parts: real and imaginary.

There is also another way to compute directly the eigenvector of a given eigenvalue: the
functions MatEigenvector and MatEigenvector_C of Matrix.xla return the eigenvector
associate to their eigenvalues; the first function works for real eigenvalues and the second
one for complex. See the chapter "Functions References" of the Vol. 2 for details

In the following arrangement we have used the MatEigenvector_C for calculating the
eigenvectors associated and the M_PRODS_C for obtaining the complex scalar product

AlBIcIDIE/FIG|H[I[J[K[L|IM|N[O[P|[Q|R]
1 | matrix Einenvalue Einervectar Al LU
21|85 B 7 0] g 1 -1 -2 -3 -1 -3 -1
31 4 10] -1 1] -5 -1 -5 -1
4 [-3 4 -1 0] a I} 1 -1] -1 g
5 -
5 [(=MatEigervector_C(AZFAHZIZ} | |{=M_PHODS_C(K2:L4.HE:IEJ} |

Of course the final result is equivalent

67

Similarity Transformation

This linear transformation is very important because it leave eigenvalues unchanged. Let's
see how it works. Giving a square matrix A and e second square matrix B we generate a
third matrix C by the formula:

C=B'AB
We say: C is similarity transformed of A by matrix B

Similarity transformations play a crucial role in the computation of eigenvalues because
they leave the eigenvalues of a matrix unchanged. Thus, eigenvalues of A are the same of
those of C, for any matrix B

det(C -2 1)=det(A-11)

In fact, remembering that 1= B"' B, we can write:
det(C-rl)=det(B'"AB-Al)=det(B'AB-AB"B)

But, rearranging, we have
det(B"AB-1B"B)=det(B' (AB-1B)) =det(B* (A-11)B))=
= det(B™) det (A -1 1) det (B) = det (A -1 1) det(B") det (B) = det (A-11)

It can be easily demonstrate that

Example - verify that the similarity-transformed matrix of A by the matrix B has the same
eigenvalues.

To prove that eigenvalues are the same it is sufficient that the characteristic polynomials of
A and B are equals. For computing the transformed matrix it is useful the function M_BAB
of Matrix.xla. But, of course we can use, as well, the standard formula

=MMULT(MMULT(MINVERSE(E3:G5),A3:C5),E3:G5)

A, B C] E F = H | J K
2 Matrix A Matrix B Matrix B'AB
i 1 -2 =] 1 2 0 =T I S T T
4 1 4 -3 -2 1 -1 1714 2 -1.71
5 -2 -4 5 1] -1 -343 4 0429
B
T | coeff eigenvalues {=m_BABAZCS EIGI)} coeff eigenvalues
8 | 30 | real | imm 30 | real | imm
9 -3 2 0 similarity transformation -31 2 0
10| 10 3 a eigenvalues unchanged 10 | 3 a
1M 5 0 -1 5 0

For computing the characteristic polynomial coefficients we have used the function
MatCharPoly

68

Factorization methods
The heart of many eigensystem routines is to perform a sequence of similarity
transformation until the result matrix is nearly diagonal with small error.

A =P APy A_ —==>D Where D is diagonal
A= (Po)" A (P2)

A; = (Ps)" A; (P3) A4 0 0

................. D=10 4 0

A, = (Py)" Avs (Pr) 0 0 4

Eigenvalues of a diagonal matrix are simply the diagonal elements; but, because they are
equal to the matrix A for the similarity property, we have found also the eigenvalues of the
matrix A. We found this strategy in algorithms such as Jacobi' iterative rotations, QR
factorization, etc.

Note: This iterative method does not converge for all matrices. There are several
convergence criterions. One of the most popular says that convergence is guaranteed for
the class of symmetric matrices.

Eigen-problems versus resolution methods

In the above paragraph we have spoke about the general method to resolve eigen-
problems. It starts form the characteristic polynomial and builds the solutions step-by-step.
It is valid for any kind of matrix, with real or complex eigenvalues. That fact is that this
method can be used only for low dimension matrices. When the matrix size is higher than
3, this method becomes quite tedious, long and inefficient.

To overcome this, many algorithms have been developed. Generally, they calculate all
eigenvalues and eigenvector by efficient iterative methods. The price is that those methods
are no more general but they are specialized for matrix class type. Very efficient algorithms
exist for the symmetric matrix class, but the same algorithm cannot work, for example, with
complex eigenvalues matrices. So, for a specific eigen-problem, we have to analyze which
method can be applied.

Matrix.xla offers several different methods; the range of application is synthesized in the
following table

Real eigensystem | Complex eigensystem
Symmetric Real Real Complex
Method real matrix matrix matrix matrix
Jacoby yes no no no
QR factorization yes yes yes yes
Power yes yes no no
Characteristic polynomial yes yes yes yes
Inverse iteration yes yes yes yes
Singular system yes yes yes yes

There are also special efficient algorithm for tridiagonal and Toeplitz, matrices.

69

Jacobi's transformation of symmetric matrix

For real symmetric matrices, Jacobi method is convergent and gives both eigenvalues and
eigenvectors. It consists of a sequence of orthogonal similarity transformation, each of
them — called Jacobi's rotation - is just a plane rotation that annihilate one of the elements
out of the first diagonal.

Referring to the paragraph "Factorization methods", this method gives us two matrices: D
(eigenvalues) and U (eigenvectors), being:

A e 0

limA4,_, =|..
0 .. 4

n

lim PP,..P,_P, =U

n—»0

Example - Solve the eigenproblem for the following 5x5 symmetric matrix

A=
9 26 -14 36 24
26 14 -4 46 14
14 4 6 -6 -54
3 46 6 19 -4
24 14 54 -4 11
A'BCIDIEFIGIHIIT|J|/K L M N OFP @ R
1 Matrix eigenvalues {(Jacobi) eigenvectors {jacobi)
2 9 28 14 36 24 2.0 0O -0 0 0g 04 -0 |04 -0
3 26 14 | -4 46 14 o -0, 0 0 0 -0 |04 06|04 -0
4 14 4 | 6| -6 -54 o o 51 -0 -0 04 06 04| -0 04
5 3 46 B |19 -4 o 0|0 75 0 04 -0 04|06 04
B 24 14 54 4 1M 00 a |-75 -0 04 -0 |04 06
7
g |{=atEinenvalue_JacokilBZFE)} | |{=wlatEigenvectur_dacubi(Elz:FE)}

We can note the high clean of this method. Just plain and straight! By default, both
functions use 100 iterations to reach this high accurate result. Sometime, for larger
matrices, may be need to increase this limit or you have to accept less precision.

Tip. Jacobi's algorithm returns eigenvalues
in the first diagonal. If you like to extract

them in a vector, comes in handy the

function MatDiagExtr

AlB|c|D|E|F|G]
17 |eigenvalues (Jacohbil
18|25 0 o -0 0 25
19| 0 50 0 u] u] -a0
20| o 0o s0 -0 -0 a0
21| o o 0|7 0 78
22| -0 u] u] o -75 -75
23
24 | [{=MatDiagExtrA18:E221} I

ar

70

Example - Compute the first steps A1, A2, ... A6 of the Jacobi's algorithm and study the
convergence of the previous example

Each step of the Jacobi's rotation method makes zero the two highest values out of the first

diagonal. At next steps the zeros cannot be preserved but they are getting lower and lower
step by step. The diagonalization error indicates this convergence, slow but inexorable, to

Zero
AB|C| D E|F G| H | al L LM N o P QR =1 T U | X
1 A matrix at step: 1 matrix at step: 2 matrix at step: 3
2 9 | -26 -14 36 24 g =26 X7 36 | TES g -44 | 27 | 826 TE9 T4 0 -18 692 059
326 14 4 46 14 26 14 13 48 T3E 44 30 -8 o 102 0 55 - 45 (127
4 |14 -4 -6 | -6 54 =27 13 456 16 0 27 -5 456 898 0 18 -21 456 -85 0
5 36 46 -6 13 -4 3 4 16 19 -7 826 0 95 826 -0 692|451 98 6826| -0
B 24 14 54 4 N TE T36 0 -7 | B3 7EI 102 0 -0 -63 089 127 0 -0 | 63
7 {=MatBigenvalue_Jacobil&2:EE H11} {=MatEigenwvalue_JacobilA2EE P11} {=MatEigervalue_Jacokils2:EE W17}
8 [Jacobi's rotation method. diagonalization error 171 diagonalization error: 11.4 diagonalization errar: 742
9 |Each step makes zero the two matrix at step: 4 matrix at step: 5 matrix at step: [
10 |highest values out of the first 374 35 18 682 089 248 28 0 04 07 248 28 03 -03 07
11 |sisgonal. 35| 62 0 252 125 28| £2 202 282 125 28 | &2 [321 038|123
12 -1 -0 498 -0 -2%5 0 202 623 13 | -25 0.3 321 499 0 18
13 E52 252 10 B2 -0 04 252 13 B2 -0 0.3 03 0 75174
14 089 125 -25 0 -B3 07 125 -25 0 -B3 0.7 125 18 174 B3
15 |M_DIAG_ERR(G1U:K14) I {fMatEig.env.alue_Jacobi(AZ:EB Jait {fMatEig.en\falue_.Jacohi(AE:EE,PEI)} {fMatEig-en\falue_Jacobi(AQ:EE,VEI)}
ﬂ diagonalization errar; 5.89. diagonalization error; 361 diagonalization error; 238
17
A B|C| D E|F €] H | J 58
For symmetric matrix the convergence is 1A matrix at step: 15
always guaranteed. In our example, after RN WE TN Icon e 2 10003 -0 lEEA7)0002
15$teps we have an average 326 14 | 4 46 14 0009 | -=50 -0 |SE-04 0DOE7
g 4 14 4|65 -5 -54 -0 -0 50 | -0.01 0006
diagonalization error of about 0.01 5 |26 |45 | € |13 | 4 1615 | 5E-04 | 001 | 75 | -0
B 24 14 |84 4 1 0002 0087 0006 -0 -75
7 {=MatEigenvalue_JacokilA2:E6 H11}
g diagonalization error: 0.0

Orthogonal matrices
The eigenvectors matrix returned by the Jordan algorithm is "orthogonal" with each vector
having norm 1; that is, an "orthonormal" matrix

Indicating the scalar product with the symbol e |, the normal and orthogonal conditions are:

X; ®X; =0y

0, =

In other words, the scalar product of a vector for

l =i=j
0=i#j

— 2 _
X110 X11 = | Xq4]" =1

itself must be 1; for any other different vector
must be 0. (§; is called Kroneker's symbol)

X11® X12 = X171 ® X13 = X110 X14 =0

Orthogonal matrices have also other interesting features.

If U is orthogonal, we have

=

If U is also orthonormal; we have

u'=u"

= |det(U)=1

71

Pay attention that the second statement is not invertible. There are matrices with det = 1
that are not orthogonal at all.

1 1 The matrix at the left, for example, has det =1 (unitary) but is not
det =1 orthogonal. Also all the Tartaglia's matrices, seen in the previous
1 chapters, have always |det|=1 but they are never orthogonal.

Example - verify the orthogonality of the eigenvectors matrix of the above example

To verify, we can calculate the cross scalar product

06 04 -04 04 -04 of each pair of columns with the help of the function
-04 04 06 04 -04 ProdScal. But it will tedious for large matrix. It is

04 06 04 -04 04 faster using the identity U U" = I, as shown in the
04 04 04 06 04 above worksheet.

04 04 -04 04 06

A, B C D E F B H | J 4 L |M|N|OP O
eigenvectors (Jacobi) hortonormalization verify mop-up
0E 04 | -04 04 -04 1 1E-16 -0 -0 1E-1E6 1 o o 0 0
04 | 04 0E 04 | -04 1E-16 1 -0 -0 1E-1E6 0 1 0 0 0
04 0E 04 | -04 04 -0 -0 1 1E16 -0 0 oA 0 0
04 | -04 04 0E 0.4 -0 -0 [1E16 1 -0 0 o o 1 0
04 04 04 | 04 0E 1E-16 1E-16 -0 -0 1 0 o o 0 1
{=MULT A2 EG M_TRAMSPLAZESY)} 1=mathdoplUpl 2 KEY

1

EN
\t ‘=PrudScaIE$A2:$AE,EIE:EIE] |
_{=Prud5cal($A2:$A5,A2:AE) |

Many times the matrix product generates the round-off error as in this case. We can sweep
them with the function MatMopUp

5= o e 00| o | e Lo pa| —

72

Eigenvalues with QR factorization method

Another popular algorithm to find all eigenvalues of a matrix is the QR factorization method.
The heart is the following factorization of a matrix A:

A=QR where Q is orthonormal and R is triangular upper

This factorization is always possible; you can easy make such factorization in Matrix.xla
with the function Mat_ QR .

This method applies the following steps:
1. Factorize the given matrix A=QR
2. Multiply the two factors R and Q obtaining a new matrix A1=R Q

3. Factorize the new matrix A;=QR and repeat the step 2an 3

We have the iterative process, starting with A:

A=QR = A =RQ If the eigenvalues are all distinct in
A =Q Ry = A =R; Q modulo: [L 4] > [k o > [A 5[>..> [R
A=Q,R, — A;=R,Q, and A is symmetric; then the matrix A ,

converges to diagonal form, where the

elements are the eigenvalues of A
A,=Q,R, = A.=RQ 9

With the function Mat_QR _iter it is very easy to test how this process works.

Example - calculate the first 10 and 100 steps of the QR algorithm for the following
symmetric matrix having the eigenvalues 1, 2, 3, 4, 5

We use the function Mat_QR _iter for performing the
first 10 step of the QR algorithm. The convergence to
the diagonal form is evident and becomes more close
after 100 iterations.

Note the eigenvalues 1, 2, 3, 4, 5 appearing in the

2.6 1.2 0.8 0.4 0

1.2 2.8 0.4 0 -0.4
0.8 0.4 3 -04 -0.8
0.4 0 -04 32 12
0 -04 -08 -12 34

diagonal

Alelc|D|]E|F]| & | H P J | K |
1 |Matrix 525 iteration 10
2|26 12 08|04 O 49855 00003 | 0.012 |01051 | 4E-16
3|12 28 04 0 04 00003 2 4E-05 | 1E-05 -1E-03
4|08 04 3 04 08 002 | 1E-05 30001 0.0006 -3E-05
‘5|04 0 04 32 A2 01051 | 1E-05 |0.0005 4.0114 -3E-05
B | o 04 05 12 34 AE-22 | E-03 -3E-05 | -3E-06 1
7 /
o teration 100
TG | [Mat_GR_tera2EEHT) | 5 2E-10 -4E-16 1E-17 | SE-16
10 -ZE-10 4 2E-13 | -8E-14 | -1E-16
11 BE-23 2E-13 3 -ZE-16 -2E-16
2 BE-24 -8E-14 TEA17 2 2EAE
1 OE-B9 | -3E-44 | SE-47 -BE-3 A
14

73

When the given matrix is not symmetric the method works the same; only the final matrix is
triangular instead of diagonal. See the following example.

Example - calculate the first 10 and 100 steps of the QR algorithm for the following
asymmetric matrix having the eigenvalues 1, 2, 3,4, 5

5 3 3 We use the function Mat_QR_iter for performing the
Y 5 4 9 13 first 10 step of the QR algorithm. The convergence at
4 4 3 4 8 the triangular form is evident and becomes more close
a ! 0 3 2 after 100 iterations.

4 4 0 -4 9 Note the eigenvalues 1, 2, 3, 4, 5 appearing in the

diagonal
AlB|lCc|D|E|F| G| H | I | J]| K|

1 [Matrix5x5 iteration 10

2| s ENEE 3 -7 5003 -3612 4.0641 41635 -2247

3| 7 N 5 | A3 0019 20225 -052 (11034 | 1727

4 4 4 3 -4 g 0012 03 3026 0473 1425

5| 4 1 0 3 2 -003 00363 -007 395 5349

B | -4 4 0 -4 g EE-05 | -7E-08 | 1E-07 | 9E-08 1

7 /

a teration 100

TG | [Mat_OR_ter(AZEGH) | 5 0192 61432 29294 2213

10 -E-11 4 08081 12083 | -7E12

11 SE-25 | -9E-13 3 0492 53

2 -GE-25 | 2E-14 1E-14 2 1134

13 7E-71 | 4E-BD | 4E-B0 -BE-46 1

14

Does the QR method always converge? There are cases - very rare indeed - where the
algorithm fails. This happens for example when the eigenvalues are equal and opposite.
Let's see this example

Example - The following (3x3) matrix has the eigenvalues A; =9, A, =-9, A3 = 18. Apply

a PEad

|=MatEigenva|ue_@R(A2:c4j | |=MatEigenva|ue_Jambi(A2:c4:| I

the QR method we get.

A, B C D E F = H I
1 Matrix 3x3 Eigenvalues (QGR) Eigenvalues {Jacobi)
5 -8 10 2| s & | 10 18 -4E-16 | 4E-16 | 18 0 1E-3
8 11 2 3| 8 | 11 -2 | 1E-43 B8E13 -4 SE-16 g 8E-22
-10 -2 2 4 | 0 -2 2 |-4E-44 -89 -BE-13| 3E16 VE1E -9

5

5

7

In this simple case QR fails (we note the two -9 out of the diagonal). It was not able to find
the two opposite eigenvalues = + 9, but it has found only the 18 one. Note that in the same
condition the Jacobi's algorithm finds exactly all the eigenvalues.

Real and complex eigenvalues with QR method

Starting from the simple QR method shown above, a more general QR algorithm was
developed with important improvement - shifting for rapid convergence, Hessember

74

reduction, etc. The result is a very robust and efficient QR general algorithm® being able to
find complex an real eigenvalues of any real matrix.

This task is performed by the function MatEigenvalue_QR of matrix.xla

Example: find all eigenvalues of the given symmetric matrix

275 45 125 1 075 05 02
15 3.25 1 075 05 025
1.25 1 375 05 025 0 -0.2
1 075 05 425 0 -025 -0.
075 05 025 0 475 -05 -0.7
05 025 0 -025 -05 525 -
025 0 -025 -05 -075 -1 57
0 -025 05 -075 -1 -125 -1.

5 0
0 -0.25
5 -05
5 -0.75
5 -1
1 125
5 -15
5 6.25

As previous shown, this matrix has the
first 8 natural eigenvalues

1,2,

3,4,...8

We use the MatEigenvalue_QR to find
all eigenvalues in a very straight way

AlB|lc|D/IE|[F[Gc|IH] I [J | K|
1 |Matrix & x 8 Eigenvalues (QR)
(21275 15 125 1/ 075 05 025 0 1
3| 15 325 1, 075 05 025 0 -02s5 g
4 125 1) 375 05 025 0/-025 -05 7
5| 1/ 075 05 425 0/-025 -05 075 2
B | o7s 05 025 0| 475 05 075 A B
f | 05 025 0 -025 05 525 1125 4
= 0/ -025 05075 1| 575 -5 3
g 0 -025 -05 075 -1/ -125 15 EI25 5
o y— 4
% {=MatEigenvalue_CQR{A1:HE)}

The function can also return complex 1 |05 0 |05 0 0
eigenvalues. Let’s see this example 05 | 5 2 1 0 2
This matrix has 2 real and 4 complex 35185 | 12 145 | 1 | 7
conjugate eigenvalues o [4 12 2 0] -2
. . 7 | 17| 16 | -9 2 | 14
3,4,2+21 ,1£05 45 | 145 14 | 85| 1 | 9
A | B | C | O | E | F | e | H | | | J | L | Note how clean, easy

1 hre | Aim and fast is the

5] 05 0 05 | D 0 S 5 elger_waIL_Jes computation
— also in this case

d|los | s 2 1 o | -2 2 -2

4|35 85 12 45 | 1 7 4 i

6| 0 4 2 2 o | -2 1 0s

B| -7 |47 6 9 | 2 | 14 1 05

7| 45 [145] 14 | 85 | 1 A 3 i

g

3 —— : -~
BT {=MatEigenvalue_QR{AZ:F7}

® Matrix.xla use the routine HQR and ELMHES derived from Fortran 77 EISPACK library

75

Complex eigenvalues of complex matrix with QR method
The function MatEigenvalue_QRC performs the complex implementation of the QR
algorithm for a general complex matrix

Example. Find the eigenvalues of the following matrix
5-14; -77-19j 5 =771 |-14 -19
A= = +
50-4; 80-20j5 50 80 -4 =20

Ale | ¢c| D | E|F | 5|

real im eigenvalues
5 =TT -14 -14 a1 Ga
50 g0 -4 -20 A o3 34

U"I-l‘-‘-l'_n_'l|h-_'l—'-

|{:MatEigerwaluE_G!RC(AE:DSJ} [

This function accept also the compact rectangular format "a+bj"

L[m [v [0[P | @]
M atrix re im
5-14] -77-18] 34 34
50-4j | B0-20 51 -Fig

/

|{:MatEigenvalue_@RC{ME:NS,E}} |

Note that the roots are always returned in split format

How to test complex eigenvalues
This test is conceptually very easy. We have only to compute the determinant of the
characteristic matrix

A-11

For this task, comes useful the functions MatChar Cand M _DET C

A&l c | ol E]F e H] I [J]
1
277 1 3 & 3 A=
314 11 -7 2 3T
4| 6 -3 11 -2 1 7 Det=[___ 0 0|
5
B [(EM_DET_C(MatChar_CAZF 412027} |
7

When the matrix size becomes higher, the round-off errors may mask the final result and
the eigenvalue check may be not so easy and straight.
Just to give you an idea of the problem, let's see the following example

Example. Given the following (10 x 10) real matrix, prove that 1 is an eigenvalue

76

4569 | -9128 | -9136| -4556| -4484 9008 | -9024 | -4348| -9464 | -9840
2004 | -4003| -4016| -1996| -1960 3952 | -3976| -1936| -4200| -4356
68 -136 -127 -76 -76 148 -128 -40 -124 -104
-556 1112 1112 569 562 | -1112 1104 512 1144 1172
316 -632 -632 -316 -299 632 -624 -304 -648 -684
-284 568 568 284 284 -547 576 268 580 648

84 -168 -168 -84 -84 168 -143 -84 -176 -164
144 -288 -288 -144 -144 288 -288 -115 -296 -304
-72 144 144 72 72 -144 144 72 177 152
-36 72 72 36 36 -72 72 36 72 109

We can arrange a worksheet test like that

A& | B | ¢ | p | E| F | e | H | I | 4 | Ifwecomputethe
1 [& determinant of the matrix A —
2 | 4569 9128 9136 4556 4484 0003 9024 4348 9464 9840])| we see, surprisingly, that
BE B b b B . B Lo ch mors inan zero.
5 | 556 1112 1112 569 552 1112 1104 512 1144 1172 yl.\(]hea;e:itvi\g%?agt?we have
B | 36 -632 -632 -316 -209 632 -624 -304 G453 -Ea4 .
7 | 28a se@ se@ 284 284 547 576 268 sa0 mag| computed the determinant
5| &4 -168 -168 -84 -84 168 -143 -84 176 -1g4| With 15 digits floating point
9 | 144 -235 -285 144 144 283 285 -115 -2a5 -3n4| arithmetic and the round-off
10 72 144 144 72 72 144 144 72 177 152| errors have masked the final
11 -3 72 72 3® 3 72 72 3% 72 108| trueresult

12 If we repeat the computation

13 h DET(A - A1) decimal integer mode in integer mode, for example,

1; 1 ¥ 1.325 o by the function M_DET with
& : the parameter IMODE = true,

12 |—r-.-1DETERr-.-1(r-.-1atChar(.ﬂ-.2.-.l11 A147) | '\ we get the correct result

18 |=r-.-1_DET(r-.-1atChar(.ﬂ-.2:J1 1 4147 WERD) |

Note that, in general, we can have decimal matrices or we can have decimal eigenvalues,
so we can use the trick of the exact integer computing.

Perturbed eigenvalue method. In that case we should study the behavior of the
determinant around the given eigenvalue. We can add random little increment ¢ to the
eigenvalue, registering the correspondent absolute determinant. With the aid of the above
functions, this process becomes quite handy. For example, giving incremental steps from
1E-14 to 0.1, we can easily get the following table and plot

vl e | DET] o
1 1E-14 1.322093
1 1E-13 1.1254013 1E+11
1 1E-12 2.4366796 1E+09 |
1 1E-11 0.316329
1 1E-10 11.011358 1E+07 i
1 1E-09 84.180014
1 1E-08 956.28487 100000 b
1 1E-07 9512.5687
1 1E-06 95119.334 1000 1
1 0.00001 951267.55 10 |
1 0.0001 9512010.6 :f?\\.,
1 0.001 95059557 0.1
1 0.01 944559562 1E-14 1E12 1E-10 1E-08 1E-06 0.0001 0.01 1
1 0.1 8.859E+09

77

How to find polynomial root with eigenvalues

In a previous example we have shown how to compute eigenvalues by polynomial roots.
Sometime it happens the contrary: we have to find polynomial roots by eigenvalues
methods.

Example - Find all the roots of the given 4" degree polynomial

X+ 7x —41x* =147 x + 540

We need to get a matrix having its
characteristic polynomial the given

a(r) = +amxr+...+ 12"+ 2"

polynomial. The companion matrix is 00 -+ 0 —aq
what we need. It can be easily built by 1o - 0 -a
hand or - even better - by the function A= |0 T o 0 e
Matcmp P
g0 --- 1 =—apa

When we have the matrix, we can apply a method to find the eigenvalues. Being the matrix
asymmetric, we choose the QR method.

AlBIC[D[JEJFIG[H[T [J]K]L]
1 |Poly coef Companion matrix Eigenvalues = roots
2 a0 340 1] 1] 0 | -540 -5 1]
3 |a -147 1 1] 0 | 147 3 1]
4 a2 -41 o1 0 # 40
5 a3 7 o017 4 0
B |ad 1
¥ /
g_ {=MatCmpniB2:BE6)} |{=I'-.-1atEigenvaIue_@H(D2:GS)}

Eigenvalues are also the roots of the given polynomial.

Rootfinder with QR algorithm for real and complex polynomial
The QR method is so robust and efficient that it is implemented in the rootfinder function
Poly_Roots_QR and Poly_Roots_QRC of Matrix.xla

Thanks to its efficiency, it is especially adapt for higher degree polynomial. Let' see this
example

78

A E | D E F | G H | |

1 |Degree Coefficients Zre Zim Degree Coefficients | Zre Zim
2_ al -39916800 1 0 al 2993500 3 1
3_ a1l 120543540 2 0 al -GBEE1E0 3 -1
4_ a2 -15091 7976 3] a2 TO50545 3 1
5_ &3 105255076 4 0 a3 -43216352 3 -1
B | a4 -459957350] 0 ad 1725716 4 1
A 13339535 G 0 a5 -4 702965 4 -1
Ei_ ak -2637555 7 0 ak G445 5.99997 0
9_ a7 357423 g 0 al -11318| 6.00003 0
£ ad -32670 9 0 ald 942 £.99993 0
l a9 1925 10 0 a9 -46(7.00002 0
12 a0 -6 11 0 a0 1

13| ati 1
% |{=PD|Y_RDDTS_QH(EEZE1 I I |{=Pnly_HDDts_GR|:GE:G1 21 |

In the left 11" degree polynomial all roots are real. The right 10" degree polynomial has
both complex and real roots with double multiplicity. In the first case the general accuracy is
about 1E-9; in the second one is about 1E-6. Even in this difficult case the QR algorithm

returns a sufficient approximation of all the roots

It is the main advantage of this method: to have a good stability for all roots configurations
avoiding the disastrous accuracy lack, characteristic of other rootfinder algorithms.

The function Poly_Roots QRC works similar but for complex polynomials.

Example. find the roots of the following polynomial

x' =2x° = 2:xX°+6x* =131 +4x7+2:x =20 + i+(2:x° — 6:x*+8x +4x” —8x)

A | 8 | ¢ [D] E | F | &
1 coefficients Roots
2 |degree re im re im
K] al -20 1] -2 1]
4 al 2 -8 -1 1]
] az 4 4 I 1
4] ald -13 a 1 1
7 ad G -B 1 -1
a ah -2 1] 1 -2
] ah -2 2 A 2 -1
10 ar 1 1]
11
17 |{=Pnly_Rnnts_QRC{El3:C1 o |
42

79

Powers' method
Powers' method can found the dominant® real eigenvalue and its associate eigenvector of a
real matrix. An ancient method, but still very popular, having same advantages:

It is conceptually simple in its first proposition;

It is robust;

It works with both real symmetric an asymmetric matrices
It has an important didactic meaning

With the matrix reduction method it can find iteratively all real eigenvalues and eigenvectors
But shell we begin to understand the heart of the algorithm:

We suppose a 3x3 matrix (for simplicity) with 3 independent eigenvectors x4, x,, X3 and a
dominant eigenvalue A4, being: |[A¢|>|X2|>| 13|

Taken an arbitrary vector v, - called starting vector calculate the Rayleigh quotient (ratio)
with the formulas:

T
v, V
— —_0 "1
v, = Av, = r=—r
Vo Vo
Iterating, we have:
v, v vy
— _ 1 72 _ _ _n_n+l
v, = Ay, = rE—0= v ,=4v, = ro=—te
IZB% v, v,

Under certain conditions, the ratio converges to the dominant eigenvalue for n >> 1 and
the associate eigenvector can be obtained by the formulas:

limr=4 = Ilimv(4)"=x

n—»0

We shell see how it works in a practical case

Example - Analyze the convergence of the power's method for the following matrix

-1 2 -2 The matrix has three separate eigenvalues:
7»1=—3,7\42=—2 ,7\3=—1

Let's see how to arrange the worksheet. First of all, insert the formulas as indicate to the
left; than, select the appropriate range and drug to the right to iterate the formulas.

Assume the starting vectortobe vo=(1,0, 0)

® The eigenvalue that has the highest absolute value is the "dominant eigenvalue"

80

A B [O E F A, B o o E
1 A v vl 1 A il vl
2. s 8 8 | 1 i 5 i 2] s 8 B | 1 5
3] 42 | 22 | 28 | o | Az 3| 2 2 2 12
4 w0 20 26 | o | 10 | 4] 10 2w 2 10
B {=MMULT(A2FCH4 D204} 5|
5] r= :5:\ 6 | h= 5
7 |=ProdScalD2.04 E2.E4)ProdScaliD2. 04 D2.D4) T
g w1 _8 xl
9 | N E 1
] [FERET e > 24 | o]
11 N 11 2
b EE e j i
13 n= 0 | 1 i _13] n=| 0 i

14 DRUG _ e
1

Insert the formulas in the column E Select the range E1:E13 and drug to right

A B c b | ElJF]l el H] T]I] K]L]M]|N
1 A "L vl w2 v3 vl w5 v L vd vy vl
2] 4 2 | 2 1 -1 1 -1 1 -1 1 -1 1 -1 1
3| =2 & 3 -2 25 80 242 728 -2186 RSE0 19632 54043
4| 2| 4 | 1 -2 25 80 242 728 -2186 ASAO 19632 54043
5 |
_6 | t= -1 -3FE7 -3233 -3075 -3.025 -3008 -3003 -3001 -30003 -3
7]
8| wl w2 x3 xd x5 w6 «T w3 19 w0
9 1 0074 003 00M1 0004 0001 SE-04 2E-04 SE-05 2E-05
10 | 2 0595 077 0834 0856 0832 0993 0997 0999 1
11 2 0595 077 0834 0856 0982 0993 0997 0999 1
12
13 n= 0 1 2 3 4 5 & 7 g g 10

As we can observe, the convergence to the dominant eigenvalue A, = -3 and its associate

eigenvector x = (0, 1, 1) is slow but evident.

Rescaling. We note also a first drawback of this method; the values of vector v become
larger step after step. This could cause an overflow error for higher steps. To avoid this,
the algorithm is modified inserting a vector rescaling routine after a fixed amount of steps.

v9 v10 v9 v10

-1 1 = -1E-04 1E-04
-19682 59048 rescaling -1.968 5.905
-19682 59048 dividing for 10000 -1.968 5.905

The value of the rescaling factor is
not very important; only the
magnitude is the main thing.

Note also that the Rayleigh's ratio is
not affected by rescaling

Finding non-dominant eigenvalues. Once the dominant eigenvalue L and its associate
eigenvector x4 are found, we may want to continue to compute the eigenvalues remaining.

81

Compute the normalized of x and the new matrix A, :

U1=X1/|X1| = A1=A-}\,1UUT
The matrix A, has eigenvalues: 0, A, Az;. Now, the dominant eigenvalues of A, is A,

Therefore we can apply the power's method once more.

Example - reduce the matrix A of the previous example with the eigenvalue A, = -3 and
eigenvector x1= (0, 1, 1). Repeat the power's method to find the dominant eigenvector A,

Fil B C D E F] H | J 24
1 A uu’ Ad
2 4 2 2 0 0 0 X 3 | 2
3 2 6 3 o | 05 05 2 45 45
4 2 -4 1 O | 05 05 2 | 25| 25
5
? }‘; “I; “131 [(=MMOLT(CT-C8 m transp(CT-Ca)} |
g 1 E-;g; h‘*|{=5?:59m_ﬂ~55(5?:593} |{=A2:c4-A?*E2:G4}

a
1

The matrix A is the new reduced matrix. It should have all the eigenvalues of the original
matrix A, except L. Let's see. Repeating the power method we will find its dominant
eigenvalues. Choosing (0, 1, 0) for starting vector, we have something like this:

A|lB|C]| D E F G | H | J K L i M

1 A vl vl w2 w3 vl w5 v T vg v vil
2] 2 -2] 2 - 14 -30 2 | 126 | 254 | -510 | 1022 -2048
3| -2 45 45 1 45 5 E g -2 20 -36 6% | -132 | 260
4| 2 25 25 o 25 1 2 - 20 -44 92 | 188 | 380 | -764
5

& r= 45 1213 | -1806 -2051 |-2058 -2036 -2019 | -201 | -2005 -2003
7

a xl x2 x3 xd x5 16 T Pt e w10
g D444 4077 -2.375 1696 -1 678 <1771 1857 -1.915 19517 -1.973
10 1) 3398 1018 0452 0325 0281 0263 0255 02521 0.251
11 0556 063 -0.339 -0452 0541 0619 -0672) -0706 -0.7257 | -0.737
12

13 n= 0 1 2 3 4 5 B 7 g = 10

As we can observe, the convergence to dominant eigenvalue 2, = —2 and its associate
eigenvector x = (-2, 0.25, -0.75) is slow but evident. After 25 steps the error is less than
about 1E-6

The process Power's method + matrix reduction can be iterated for all eigenvalues. We
have to pay attention that since the eigenvalues computing is approximated, round-off
errors will be introduced in the next iterate steps; the last eigenvalue could be affected by a
considerable round-off error. In general, the matrix reduction (or matrix deflation) method

82

becomes more inaccurate as we calculate more eigenvalues, because round-off error is
introduced in each result and it accumulates itself as the process continues.

Does the power's method always converge? Although it has worked well in the above
examples, we must say that there are cases in which the method may fail. There are
basically three cases:

The matrix A is not diagonalizable; that means that has n linearly independent
eigenvectors. Simple, but, of course, it is not easy to tell by just looking at A how
many eigenvectors there are.

The matrix A has complex eigenvalues

The matrix A does not have a very dominant eigenvalue. In that case the
convergence is so slow that often the max iteration limit has exceeded

Eigensystems with the power method

In Matrix.xla the power method is implemented by two main functions:

MatEigenvector_pow returns all eigenvectors
MatEigenvalues_pow returns all eigenvalues

Just simple and straight. Let's see

Example - solve the eigenproblem for the following symmetric matrix

2.6 1.2 0.8 0.4 0
1.2 2.8 0.4 0 -0.4
0.8 0.4 3 -04 08

0.4 04 32 -2
0 04 -08 12 34
A, B C] E F 5 H J K
. eigenvalues
A x35) eigenvectors (power) genve
1 {power)
2|28 12 0.s 0.4 0 -0 66EY -0EE6ET| -0.6667| -0.66E67 1 5
3 12 28 0.4 u] -0.4 | -06667 -06667 -0.6667 1 -0.66EF 4
4 o5 04 3 -0.4 ' -08 | -06667| -06667 1 -0BBEY -06667 i
9 | 04 1] 04 32 12| -0BBEY 1 -0EBEBEY -0.EBEE6Y -06667 2
G 0 04 0 -08 12 34 1 -0EBBEY -06G667| -06667| -0E6GE7 1
7 /r /f
B {=MatEigenvector_pow{A2:EG)} {=matEigenvalue_powis2 EE)}
9

The function MatEigenvector_pow has a second parameter: Norm. If TRUE, the
function returns normalized eigenvectors (default FALSE).

83

A B | C | D |E F G H I J K LM | N | O

1 A x5) U eigenvectors (power) orthogonality test 1= U u’

2 26 1.2 0s 0.4 1] 04 -0.4 -0.4 -0.4 0E 1] 0 0]
3 1.2 24 04 0 04 -04 -04 -04 0E 04] 1 0 0]
4 0e 04 3 04 | -08 | -04 -04 06 -0.4 04]] 1 0 -0
5 04] 04 32 A2 04 0E -04 0.4 04]] 0 1]
B 1] 04 085 |12 34 0g -0.4 -0.4 -0.4 -0.4]] -0 0 1

7 /

a

g

{=matEigerwvector_powis2.EG, TRLE)} I |{=ru1ru1l_JLT{FE:JE,m_transp(FE:JE]lj}

Because of the symmetry, the eigenvector matrix U is also orthogonal. To prove it, simple
check the relation I = U UT as shown it the above worksheet.

Convergence. Why is there any starting vector in these functions? Well, this algorithm is
started with a random generic vector. Many times it converges, but some times not. So if

one of these functions returns the error “limit iterations exceeded”, do not worry. Simply, re-
try it or try to increase the parameter ITERMAX (default 1000).

Example: solve the eigenproblem for the following asymmetric 6x6 matrix.

62 65 -121 -41 95 26 This matrix has eigenvalues -1, 3, -6, 9, 12, -15

43 -40 -77 -13 40 -98 The Power's method can works also for asymmetric
177 17 28 -13 -23 88 matrix. In this case we have left the round-off errors to
16 16 32 25 -22 -64 give an idea of the general accuracy.

26 -26 -52 26 38 26 Eigenvalues errors are shown in the last column.

28 28 56 -28 28 13

A B | C | D E|F E H d K L il I
eigen

1 | A (6x6) Eigenvector values error
2 | B2 -BS-121| -4 95 26| 0286 -0.25 -0.5 1 1 0.0385 -5 5.3E-15
3 | 43 400 77 13 400 -98 1 1 -1 1 -1 1 12 1.1E-14
4 17 17 28 13 -23 &3 -0714| -0.75 1 -1 -2E-14 0 0731 9 3SEE-14
5 16 16 32 25 -Z2| -G4| 0256 0.5 -0.5| -2E-14 1E-14 0.3546 -5 YAE15
B | -26 -26 -52 -26| 3@ 26| 2E-15 -025 -2E-14 EE-15 -5E-15 -0.077 3 0
{0 -2 -2 56 -28| 28 13| 0443 1E1S -TE-16 -2E-15 -1E-15 00769 -1 1.8E-13
a8 {=MatEigenvector_pow (A2 F71} {=MatEigenvalue_pow A2:F 7}
(]

84

Complex Eigensystems

In Matrix.xla the eigen-problem of a general complex matrix is solved with the aid of the
following main functions:

e MatEigenvalues_QRC returns all the eigenvalues by the complex QR algorithm
e MatEigenvectorinv_C returns all distinct eigenvectors by the inverse iteration
e MatEigenvector_C returns the eigenvectors of associated eigenvalue

Example 1. Find eigenvalues and eigenvectors of the following complex matrix

2+4) [-1+3j | 3+j
14-2) | 11-3) | -7+]
6-2] | -3 | 11+7]

A|lB|c|D|E|F|[&[H]|] I |J|RHL|M|N]|]O]|FP |
1 Matrix (3 x 3 Eigenvalues Eigenvectors, norm =2
2] 2 -1 3 4 3 1 4 -2 0447 0447 1]]] 0
3| 14 11 -7 -2 -3 1 g =3 -0.89 0 -0&7] o 0224
4 -G -3 11 -2 -1 v F 12 4 0 0594 0224 1] 0 06
5 / Eigenvectors, norm = 1
B | |{=MstEigenvalue_QRC(a2F4)} | 1 1 o 0 o 0
7] 2 0 i 0 i 1
g |{=MatEigenveu:tcurlnv_C(.&2:F4,H2:I4j} | « 0 2 1 1] 1] 0
q Wy
ET |{=MatNu:urmaIize_C(H2:F‘4 17 |

In this case the eigenvalues are all distinct, therefore we can quickly obtain the
associated eigenvectors by the inverse iteration algorithm

Note that the eigenvectors returned by the function MatEigenvectorinv_C have always
unitary module (norm = 2). For changing the normalization type we can use the
function MatNormalize C.

When the eigenvalues are not all distinct we cannot use the inverse iteration but the
singular system method performed by the MatEigenvector_C

Example. The following matrix has only 2 distinct eigenvalues: 2, |

alealcloplE|F|la|H|1T|J|kK|L|M|n|lolpr|lalr]|s
13 Matrix (3 x 3] Eigenvalues Eigenvectors for h=j Eigenvectar for »= 2
140 1 2z | 4 2 4] A0 @0 1] 2 11 @
150 1 2 5 3 1 o1 2 0 0 5 1. 0
16/ 5 2 1 .0 1 3 2.0 1. 0 00 01
17 /'
18 |{=r-.-1atEigenvalue_GHC(.ﬂ.14:F1 B |
19
0 |{=r-.-1atEigenvectl:ur_C(.ﬂ.14:F1E,H14:I14)} |
% [i=MatEigervector_C(A14F1BHIBIE)}

Note that the eigenvalue A = j with multiplicity = 2 has associated 2 eigenvectors
returned in a (3 x 4) array. The eigenvalue A = 2 has associated one eigenvector
returned in the last (3 x 2) array

85

How to validate an eigen-system
Example - Check the real eigen-system of the previous example
In order to test an eigenvector matrix U of a given matrix A, we can use the definition
A U= (A uq, A Uy,... AgUg)
But before testing, we show how to arrange the eigenvector matrix for avoiding decimals.
This is not essential, but it helps the visual inspection.

First of all, we shell begin with eliminating round off error by the function MatMopUp

A B C D E F G H | J K L

1 Figenvectors Eigenvectors (mop-up)

2 | 02851 -0.25 0.5 1 1| 0.03546(0.258571 -0.25 -0.5 1 1| 0.03846
E 1 1 -1 1 -1 1 1 1 -1 1 -1 1
4 | 07143 -0.75 1 - -2E-14) 07308 -0.7143 -0.75 1 -1 0/ -0.7303
5 | 02851 ns 0.5 -2E-140 1 2E14 035462 028571 0s -0.5 1} 0 0.38462
5 | 18E-15 -0.25) -2E-14 BJE-15 -5E-15 00769 a -0.25 0 a 0/ -0.0763
7 | 014286 98E16 -7E-16 -2E-15) -1E-15 0.07692| 014286 1 0 1} 0 0.07892
g

19|:| \\“|{=MatMDpUp(A2:FT,1 E-1311 I/'

Now, for each column, we choose the pivot, that is, the absolute minimum value, except
the zero.

1 B L bl ! 2 S E ALl o] P QR Multiply each pivot for
igenvectors (mop-up) Integer eigenvectors .
2 [nz857] w23 s 1 1] onsss] 2z | 1 1 1 1 1 the corresponding
3 1 1 A 1 - 17 [a2 1132 eigenvector we obtain
4 -0.714 -0.75 1 -1 0 073 -5 3 -2 -1] -19 a new integer vector
o | 02857 05 -05 n] 0 03846 2 -2 1 u] u] 10 iy h
B o 025 0 0 o w07l o | 1 o0 o | o | -2 that it is still an
7 | 01429] 0 a 0 0oreaf A 0 ‘\\\D\ i i 2 eigenvector
8 Pivot
190 014249 -0.25 -05 1 1 00385 {=HZ:H7HI}
A E © D E F B H I J b L The matrix on the left is
i cigenvectors obtained by multiplying
2 | A (6x6) uf uZz w3 o uwd us ub the O”gmal matrix for
3 62 65 421 41| a5 28] 2 | 1 1 | 1 1 | 1 its eigenvectors matrix:
4 | 43 40 77 13 40 83| 7 4 | 2 1 A | 26 AU.
5 17 ¥ 2 3 23 88l s | 3 -2 1| 0 | 19 The matrix on the right
5 16 16 32| 25 -22 -&4| 2 -2 | 1 o o 10 is obtained by
7| -2 -25 -2 26 3@ ;|| 0 1 o o o | -z multiplying each
g e)| etz (e o) R) S) S e e eigenvectors u; for its
0 E'}?E""a'"es corresponding
1 2 8 M W B eigenvalues.
11 | AU 15 12 9 -G 3 -1
12| 300 12 9 -G 3 1| -0 12 9 -G 3
13| 105 48 18 5 -3 -25|-105 -48 18 -6 3 26 Because the two
14 75 38 48 & 0 19| 75 3w/ A8 B 0 19 matrices are identical,
15| a0 24 a0 o0 0| 30 24 9 0 0 -0 the eigensystem
| . 12/ -0 -0 © 2 a 412 a a o 2z (eigenvectors +
17/ 45 o o o a0 245 0o 0o 0o o -2 eigenvalues)
18 {=MMULT(A3:FE G308} {=GEGEGT1) is correct.

19 {=HZHE*H11}

86

How to generate a random symmetric matrix with given eigenvalues

Many time, for testing algorithms, we need a symmetric matrix with known eigenvalues
For building this test matrix, the following simple method can be useful

First, we generate a random (n x 1) vectors, v

Then we generate the Householder matrix H with the vector v

We create a diagonal (n x n) matrix D with the eigenvalues that we want to obtain.
Finally we make a Similarity Transformation of matrix D by the matrix W.

The result is a symmetric matrix with the given eigenvalues.

Example: Suppose we want a (3 x 3) random symmetric matrix with eigenvalues = (1, 2, 4)
We chose a random vector v, like for example:

2

We create the associate Householder matrix H

. [-13 -2/3 2/3
H=1-2-—=|-2/3 2/3 1/3
MYl 13 23

We create the diagonal matrix D

S

Il
S o =
o o o

0
0
4

We make the Similarity Transform of D by H

25/9 2/9 10/9
A=H''A-H=|2/9 16/9 8/9
10/9 8/9 22/9

Note that, in this case, the inverse of H is the same of H.
The result matrix A has the wanted eigenvalues = (1, 2, 4)

If we want to avoid fractional numbers we can multiply the matrix A for 9 and we get a new
symmetric matrix B

25 2 10
B=9-4=|2 16 8
10 8 22

The eigenvalues of B are now multiply for 9; thus 9, 18, 36

As we can see this method is general and can be very useful in many cases: for testing
algorithm, formulas, subroutine, etc.

87

In the addin Matrix.xla, there are functions for generating Householder matrices and performing
Similarity Transform.

Al |lc|o|E|IF |G| H|] T | J]K]|L]|H
.1 |Random Symmetric matrix with given eigenvalues
2| ¥ D H A
i 2 1] -0.333 -0BE¥ 0BGT 2973 | 0222 1411
i 1 0 2 0 [-0EBE7 0667 0333 0222 | 1778 0589
i -1 0 0 4 | 0667 0333 0OEE7 1111 | 0539 2.444
B 4 '
_? | [Seed random | [eigenvalues {=Mat_Householder(23: A7)
8 wectar setting
g {=M_BAB(C3.E5F3:Ha)}
10

All this process is performed by the function MatRndEigSym

Eigenvalues of tridiagonal matrix

Tridiagonal matrices are very common in practical numerical computation. These matrices can
be worked with all methods show before, but there are specialized dedicated algorithms more
efficient and faster to solve eigenvalues problem. We have to consider that many times
problem involving tridiagonal matrices have a quite larger dimension. Also the storage of a
tridiagonal matrix should be made with suitable cure. A general full matrix 30 x 30 requires 900
cells, but for a tridiagonal one with the same dimension we need to store only 90 cells, saving
more than 90%. Clearly a particularly attention is quite suitable.

In matrix.xla there are the following specialized functions:

e MatEigenvalue QL finds all real eigenvalues with the QL algorithm
e MatEigenvector3 computes the eigenvector of a real eigenvalue
e MatEigenvalue_3U finds all eigenvalues for a uniform tridiagonal matrix

All these function accept the matrix in standard form (n x n) or in compact form (n x 3)

15 x 15 compact form 15 x 15 tridiagona matrix in standard form

0 5 05 5 05 10 0] 0] 0] 0] i}] i}]

-2 | -2 B -1 0] 0] 0] 0] 0] 0]
-1 5 4 u} -1 5 -1] 0] 0] 0] i}] i}]
-1 5 -2 a 0 -1 5 -2 0] 0] 0] i}] i}]
-1 4 05 u} 0 u} -1 4 05 0 0] 0] 0] 0]
-1 CI | u} 0 u} 0 -1 3 -1 0] 0] i}] i}]
-5 BRI | u} 0 u} 0] S -5 -1 u] 0] 0] 0]
-05 E A 0 0 0 0] o 05 & -1 0] 0] 0]
-1 54 u} 0 u} 0] 0] -1 5 -1] i}] i}]
-05 9 4 u} 0 u} 0] 0] o 05 9 -1 0] 0]
-1 2041 u} 0 u} 0] 0] 0] -1 2 -1] i}]
-1 =R | a 0 a 0] 0] 0] 0 -1 -9 -1 i}]
-1 m A u} 0 u} 0] 0] 0] 0] -1 1o u]
-2 -4 u} 0 u} 0] 0] 0] 0] i} -2 -4 -1
-1 -5 0 i} 0 i} 0 i] 0 i] 0 i] 0 i] 0 i] -1 -5

In the compact form we store only the diagonal and sub-diagonals values
For tridiagonal matrices there are several useful lemmas that help us to discover the kind of
eigenvalues

88

One rule says that:

If each “perpendicular couple” of elements have the
same sign, than the matrix has are all real eigenvalues
(The condition is sufficient.)

So we can apply the fast QL algorithm to calculate all 15
eigenvalues of the given matrix

-05 0 1] 0
3 -1 1] 0
-1] -1 0
0 -1 5 -2
0 1] -1 4
0]] -1

In the following example we have computed all eigenvalues and the first 4 eigenvectors with a

very good approximation (about 1E-14)

AlB|lc] D] E EE H | J]
1 |15 % 15 compact form Eigenvalues L v w3 vd
2] 0 5 05 £ 025755629 1259874 460586 1224 &1 599424
3| =2 5 6 767165094 2507261 | 1646267 393292 147623
4 5 B GO5526487 147153 | 2021015 -3864.79 1180671
| E 5 .2 4 BTGEG2645 2440592 -1965600 227211 | 293007 &
B A 4 05 3EITTIITAT 1329154 745918 105432 -572295
7 A 3 4 333252289 5113522 -226795 510926 4175333
BB 5[5] A 5 443755566 SMOE225) 112992 18334 211545
8] os B - 2 533039289 434591 & 197678 156957 | 1234356
o 5 1844973107 1136856 992669 104069 1071564
11| s g 9 265045544 176337 204715 199014 119609
2] 2 1019392647 4449255 -433265 43611 -4262.95
EETE gl - -5 2654539 2914016 269423 275509 3031183
T 1T -3.895173049 BO.54554 | TO2558 70496 5565307
5] 2 4] a4 914373019 4402879 147672 145055 125769
16 K 5 0 524162554 1 1 1 1
7 Al ..
% {=MatEigenvaluz_GL(AZCIE)} | |i=MatEigenvectar3(a2.C16,E2ES)}

Note that the eigenvectors returned by MatEigenvector3 are not normalized. Use for this task

the MatNormalize function.

89

Eigenvalues of tridiagonal Toeplitz matrix (tridiagonal uniform)

In numeric calculus is common to encounter symmetric, tridiagonal, uniform matrices like the
following. For this kind, there is a nice close formula giving all eigenvalues for any size of the
matrix dimension.

If the symmetric matrix has n x n dimension, eigenvalues are:

A = a+2b-cos(k—”j
n+1

where k=1,2...n

S o v o O O
o o O O O
O o O O O O

S O O o o e
o o o o 0 o
oS O o v o O

We can do the following observations:

All eigenvalues are real and distinct being the matrix symmetric
All eigenvalues are symmetric around the point “a”

For n odd exists the trivial eigenvalues A = a

All roots lie into the interval a-2b <. < a+2b

Also the eigenvectors matrix can be written in a closed compact form.

U, Uy u, If the symmetric matrix has n x n dimension, the elements of
the eigenvectors matrix are:
Uy Uy e Uy,
U= -
n+
unl unZ unn

Where i=1,2...n ,k=1,2...n

The unsymmetrical tridiagonal uniform case can be led back to the above one.
We distingue two cases:

1) The sub-diagonals have the same sign. In that case we can demonstrate that all roots are
real and distinct.

a b 00 0 . If the matrix has n x n dimension, and bc > 0, the
c a b 0 0 eigenvalues are:
e 0 ¢c a b 0 ko
10 0 ¢ a b A =a+2x/E~cos(j
n+l
0 0 0 ¢ a ..
J where k=1,2...n

All roots lie on the interval:

a—Z\/E</1k <a+2+/be

2) The sub-diagonals have different sign. In that case we can demonstrate that all root are
complex conjugate for n even; for n odd exists only one real root A = a.

90

If the matrix has n x n dimension, and bc <0, the
eigenvalues are complex:

A, =a+i-24-bc -cos(k—”j:aﬂ'é'k

n+l1

S O O o Q
S O 6o 8 o™
S 6 Q3 o O
o { oo O
I o O O O

where k=1,2...n

All roots lie on the segment:

re(l)=a —2~—bc <im(A,)<2+-hc

Eigenvectors can be computed by the following iterative algorithm

xk:ﬂk_a Where: k=1,2...n ,i=1,2...n
1
1 u, =1, u, =—x
— —r. 1k) k
Uy = _(Uiy — € u(i—2)k)
b
Example
Find all eigenvalues of the following tridiagonal uniform 8 x 8 matrix
10 | 1 0o lo]Jo|lo]o]oO
4 10 1 0 0 0 0 0
0 | 4 10| 1 0l o0o]o]oO
0 | 0] 4 |10 1 0|0] o
0 | 0] o0 | 4 |10] 1 0 | o0
0 0 0 0 4 10 1 0
0 0 0 0 0 4 10 1
I 0 [4] 10

We observe that the values of the sub-diagonals lower and upper have the same sign so all
eigenvalues are real and distinct.
They can be obtained by the following close formula:

Ay :a+2\/ﬁ'cos(kﬁlj

n+
fork=1,2,...8 andwherea=10,b=1,c=4,n=8

Giving the following 8 eigenvalues

A 13.7587704831436
Ao 13.0641777724759
A3 12
g 10.6945927106677
As 9.30540728933228
7\.5 8
A7 6.93582222752409
Ag 6.24122951685637

All eigenvalues are contained into the interval (a—4, a + 4) = (6, 14)

91

Example
Find all eigenvalues of the following tridiagonal uniform 7 x 7 matrix

10 2 0 0 0 0 0
-1 10 2 0 0 0 0
0 -1 10 2 0 0 0
0 0 -1 10 2 0 0
0 0 0 -1 10 2 0
0 0 -1 10 2
0 0 0 0 0 -1 10

We observe that the sub-diagonal values have different sign and the dimension n is odd, then
all eigenvalues are complex conjugate except only one real trivial root A = 10.
They can be obtained by the following close formula:

A, =a+i-2+-bc -cos(k”j=a+i5k

n+l1
fork=1,2,...7 andwherea=10,b=2,c=-1,n=7

Giving the following 7 eigenvalues.

real im
M 10 2.6131259297528
A2 10 2
A3 10 1.0823922002924
Aa 10 0
As 10 -1.0823922002924
A 10 2
A7 10 -2.6131259297528

Example
Find all eigenvalues of the following tridiagonal uniform 8 x 8 matrix

N
N
o

[
N
5N

- - oo

- |~ |O |O |O

- [~ |O |O |O |O

- [~ |O |O |O |O |O

-1
0 | -1

o (O o |[o |o |o
o |[O o |[o |©o
o (O (o |©o
'
N
- -~ O |O |O |o |o |o

We observe that the sub-diagonal values have different sign and the dimension n is even, then
no real eigenvalues exist and all eigenvalues are complex conjugate.
They can be obtained by the following close formula:

A, =a+i-24-bc -cos(kﬂjzaﬂ'ﬁk

n+l

fork=1,2,...8 andwherea=1,b=1,c=-1,n=8

92

Giving the following 8 eigenvalues.

real im
A 1 1.8793852415718
Ao 1 1.5320888862380
A3 1 1
A4 1 0.3472963553339
As 1 -0.3472963553339
g 1 -1
A7 1 -1.5320888862380
Ag 1 -1.8793852415718
Example

Find all eigenvalues of the following tridiagonal uniform 8 x 8 matrix

-2 1 0 0 0 0 0 0
1 -2 1 0 0 0 0 0
0 1 -2 1 0 0 0 0
0 0 1 -2 1 0 0 0
0 0 0 1 -2 1 0 0
0 0 0 0 1 -2 1 0
0 0 0 0 1 -2 1

0 0 0 0 0 1 -2

We observe that the matrix is symmetric so all eigenvalues are real and distinct.
They can be obtained by the following close formula:

A, =a+2b- cos(kﬁ)

fork=1,2,...8

n+l1

Giving the following 8 eigenvalues

M -0.1206147584282
A2 -0.4679111137620
A3 -1
A4 -1.6527036446661
As -2.34729635533386
Ag -3
A7 -3.53208888623796
Ag -3.87938524157182

and wherea=-2,b=1,c=1,n=8

All eigenvalues are contained into the interval (a — 2, a + 2) = (-4, 0)

We observe that they are all negative

The eigenvectors matrix can be obtained in a very fast way using the formula

u; =sin[i-jij
n+1

sin(e) sin(2a) ... sin(8a)
_|sin(Za) sin(4a) ... sin(16)

sin(8ar) sin(16a) ... sin(64a)

That gives the following approximate eigenvectors’ matrix

93

0.34202 | 0.64279| 0.86603 | 0.98481 | 0.98481 | 0.86603 | 0.64279 | 0.34202
0.64279 | 0.98481 | 0.86603 | 0.34202 | -0.34202 | -0.86603 | -0.98481 | -0.64279
0.86603 | 0.86603 0] -0.86603 | -0.86603 0| 0.86603 | 0.86603
0.98481 | 0.34202 | -0.86603 | -0.64279 | 0.64279 | 0.86603 | -0.34202 | -0.98481
0.98481 | -0.34202 | -0.86603 | 0.64279 | 0.64279 | -0.86603 | -0.34202 | 0.98481
0.86603 | -0.86603 0| 0.86603 | -0.86603 0| 0.86603 | -0.86603
0.64279 | -0.98481 | 0.86603 | -0.34202 | -0.34202 | 0.86603 | -0.98481 | 0.64279
0.34202 | -0.64279 | 0.86603 | -0.98481 | 0.98481 | -0.86603 | 0.64279 | -0.34202

Note that the column-vectors are orthogonal.

94

Why so many different methods?

Well, many times we have heard this question. The fact is that numerical methods can be
regarded as tools for solving specific problems. Eigen-problems can lead to very large
different solutions and, we must say that, they represent one of the most difficult aspects of
the numerical calculus. So we need several tools to succeed in solving them. "How many
screwdriver do you have?" More than one, surely. So we have not to be surprised for
several different eigen-system methods. Sometime we will use one and sometime another.

Look at this example

Example - Find the eigenvalues of the following symmetric 3x3 matrix

As we can see, two methods - Jacobi's method and characteristic polynomial - give us the
correct solution, but the two others fail. In that case, the reason is the two eigenvalues sub

dominant having the same modulo (2 and -2).

General speaking we put in evidence that same methods work fine for a certain problems
class, but could fail for others. There is not a general method good for all. This is the

Numeric Calculus!

. 8 10 We shell use same methods that we have studied:
8 11 - . CharaF:teristic polynomial
10 P’) e Jacobi's method
¢ QR factorization (simple method)
e Power method
A B C] E F E H | J 4
1 A {3u3) coeff roots Eigenvalues {power)
2 5 -8 -10 1458 re im 18
3 -8 11 -2 a1 -9 1] -3.332
4 -10 -2 2 18 9 1] 4 081
a -1 18 1]
2]
7 Eigenvalues {Jacobi) Eigenvalues (GR)
a 18 0 1E-3 18 -4E-16 4E-16
Q 9E-16 9 BE-22 1E-43 8E-13 -9
10 3E-16 7E-16 -8 -4E-44 -89 -BE-13
1; right ! wrong !I
1 3 L

95

Generalized Eigen-problem
Given the following matrix equation

Ax=ABx (1)

Where A and B are both matrices symmetric and B is positive definite, is said a
generalized eigen-problem.

Equivalent non symmetric problem
This problem is equivalent to:

(B'"A)x=Ax = Cx=1x (2

In generally C is not symmetric even A and B they are.

Example: transform a generalized eigen-problem into a standard eigen-problem, where the
matrices A and B are

A B
7 0 2 4 2 4
0 5 2 2 17 10
2 2 6 4 10 33

In the following worksheet we have calculate the matrix C=B" A

A B C] E F E] H
1 A B
2 v 1] 2 4 2 4
3 0] 2 2 17 10
4 2 2 B 4 10 33
5
] coeff eigenvalues
7 [0413 re im
8 | 189569 -01413 03638 -0.97s6(0ATT 0
9 | -01533 03225 -00075 2.4194| 0.3033 0
10 -013 -0.02 0.14 -1 1.9444]
11
12
13 |{:MatCharPDIy{AB:C1D}} |{:P'D|3"_HD'315(ET3E1 ip

lg | |{:MMULT{MIN"\J'EHEE{EE:G#},AE:C#}}

As we can see, the matrix C is not symmetric even if A and B are both symmetric. In order
to calculate the eigenvalues we have before extracted the characteristic polynomial with the
function MathCharPoly; then we have approximated its roots with the function Poly Roots.
The approximate eigenvalues are:

M=01717 21 =0.3033 A3=1.9444

To solve the eigenvectors we can now follow the step-by-step method shown in the
previous examples. But, we can also transform the given generalized problem into a
symmetric one. Let's see how.

96

Equivalent symmetric problem
Given the following matrix equation

Ax=ABx (1)
Where A and B are both symmetric matrices and B is positive definite. It is called
"generalized eigen-problem".

In the previous paragraph we have learnt how to transform this problem into a standard
eigen-problem setting C = B'A. But C is not symmetric. Many algorithms works fine only
for symmetric matrices. By contrast there is not equally satisfactory algorithms for not
symmetric case.

So, it is better to recover the given problem to a symmetrical matrix, by the Cholesky's
decomposition
B=LL" (2

Where L is a triangular matrix.

Substituting (2) into (1) and multiplying the equation by L™ , we get:
L'"Ax=2(L"L)LTx = L"Ax=2L"x

And, because I=(L"'L" =(L")"L" , we can write:
L'"AL) L™x=1L"x = L"Ax=aL"x

Set the auxiliary matrix: W=L" and the auxiliary vectord =L"x we have
WAW'd=1rd = Dd=xd (3)

The equation (3) is the new eigen-problem where D =W A W' is symmetric

Eigenvalues of the problem (3) are equivalent to (1) while the original eigenvectors x can
be obtained from eigenvectors d by the following formula:

d=L"x = x=(L""d = x=(L"d
x=W'd

That is, eigenvectors of (1) can be obtained by multiplying eigenvectors of (3) for the
auxiliary matrix W.

In Matrix.xla there is everything you need to solve generalized eigen-problem: Cholesky's
decomposition can be done by the function Mat_Cholesky; eigenvectors and eigenvalues
of symmetric matrix can be calculate with the Jacoby iterative rotations performed by the
two functions MatEigenvalue_Jacobi and MatEigenvector_Jacobi.

Thus, let's see how arrange a worksheet for solving a generalized eigen-problem,
assuming the matrices A and B of the previous example

97

In this worksheet there are all formulas shown before. Formulas used for each matrix are
written in blue, under the matrix itself

A B © E F G H | d 58 L
1 A B L
2 7 0 2 4 2 4 2 0 0
3] 5 2 2 17 10 1 4]
4 2 2 6 4 10 33 2 2 5
=) {=Mat_Cholesky(E2:G4)}
53
7 W w' D
g o0s 0 0 05 | -0125 0 045 175 -0438 -0.325
9 | -0125 | 025 0 il 02s | -01 0433 04219 00563
10| -045 | -0 02] 1] 02 -01325 00563 0.2475

11 {=MMNYERSE(IZ:Kd)}
12

{=M_TRANSP(ARCTOY}

{=M_PROD(AS:C10,A2 C4 ES: G107}

13 Jacobi eigenvalues of D mop-up eigenvalues
14 | 19444 2E-24 3E-33 18444]] 19444
15| 3E17| 03033 TE-18 n 03033 0 0.3033
16 |_3E17 -5E-21 01717 0] 04717 04717

17 |j=MatEiclznvalue_Jacc-biEl8:K'I 09}

13

19 | Jacobi eigenvectors of D

{=Mathioplipt 414161}

eigenvector x

{=MatDiagExtr(E1 4 G16)}

eigenversor u

20 | 08418| 0.2128) 02603
21| 0278 09200| 0.2452
22| -018| 0303 09339

0534 00358 | -0.04
-0.05 02625 | -0.032
-0.038 0061 01868

09931 0136
-0.094 | 0.9659 -0.166
0071 0223 09837

-0.209

23 {=MatEigenvectar _Jacoki(l3:H100} {=tMULT(ES:310,A20:C220}

Diagonal matrix

{=E20:E22M_ABS(E20:E22)}

tl M o F

Q

Ax=hBx

B is positive definite.

Generalized Eigen-problem

where A and B symmetric and

decompaosition

w=L"

symmetrc matrix
D=-WAW'

symmetric eigen-problem
Dd=hd

gigenvectars

x=WTd

narmalized eigenvectors
u=x/|x|

auxiliary matrix from Cholesky

The case in which the matrix B is diagonal is particularly simple because L is diagonal too
and can be computed by a simple square root. Also the L™ is quite simple: just take the
inverse of each diagonal element.

b, 0
B=|0 b,
0

Let's see a practical example.

0 = 0 0
0 L'=| 0 ; 0
Ve 00 g

98

Example - How to get mode shapes and frequencies for a multi-degree of
freedom structure 7

Example 1 - Our problem is an example of the "generalized" eigenproblem:
k¢=o'm¢ (1)

Where k and m are both symmetric positive definite matrices. In the specific case they
were:

Stiffness matrix k: Mass matrix m:
600 -600 0 1 0 0
-600 1800 -1200 0 1.5
0 -1200 3000 0 0 2

This problem is equivalent to a "standard" eigenproblem:

Mk =09 = Co=0’9
The problem is that C is not symmetric. Many algorithms work fine only for symmetric
matrices, but not very well for no symmetric matrices. One can work around the
problem by converting the problem to a symmetric one using the Cholesky's
decomposition

m=LL"
Where L is a triangular matrix. In a case like ours where m is diagonal the L matrix is
also diagonal with each term of L being the square root of the corresponding term in
m. Define new matrix W as:

w=L"
Multiplying equation (1) by W, one gets:

WKW (LT ¢) = 0® (LT 9)
Or, more concisely

Dv=o’v (2)
Where

D=WkW' (3)

The eigenvalues for equation (2) are identical to those of equation (1), and the
eigenvalues of equation (1) can be obtained easily from the eigenvalues of equation

2):

" This example comes from a true problem proposed to me by Douglas C. Stahl of the Architectural
Engineering and Building Construction of Milwaukee School of Engineering. Because it seems to me very
interesting also for other people, | decide to publish it in this tutorial, in the version arranged by Doug and
me.

99

db=(LN"'v=wv

So here's what you do:
Starting with k and m, make L ; then W ; and then D.

65
21=]
70
71
72
73
74
75
Fi=]
7

(4)

A, B C D E F e H J 54
stiffness matrix k mass matrix m:
BOO -B00] 1]]
-G00 1800 1200] 1.5]
o -1200 3000]] 2
L W 1]

1 0] 1]] GO0 -490]
] 1.2247] 0 0.8165] -4399 | 1200 RS2 a2
] 1] 1.4142 1]] 0.7071] -B92.82 0 1500

Calculate the eigenvalues and eigenvectors for D, with functions

matEigenvalue_jacobi and matEigenvector_jacobi contained in the Add-in
MATRIX. Use a number of iteration more than 40. These eigenvalues are the ones
you want. These are the correct squared frequencies for our problem.

50
81
82
83
84
85

The eigenvectors must be converted using equation 4. They are the correct mode

A B
maxloops =

210.88
0.0a

€ D E F €
50
eigenvalues are diags of this matrix: gigenvalues
0.00 0.0o 210.83
963.96 0.0a 963.96
0.00 2516 212516

0.0a

H I J
eigenvectors of D

0743 -0.636 0.210

0.550 0472 0655

0.317 0.5610 0.7k

shapes for our problem. The eigenvectors are already orthonormalized.

(i 0 SV S O

A, B
eigenvectors of D
0743 | -0EB36
0.530 0.472
0.317 0.610

C D E F E
eigervectars of given prablem
0.210 0743 | -0B36 | 0210
-0.655 0.432 0386 | -0.535
0.726 0.224 0.432 0.513

Example 2 - Seven inertia torsion system

H

This example® shows how to solve a more larger torsion system with a good accuracy.
Assume to have the following torsion system equation

Ko=w’Mo

(1)

Where the matrices [K] and [M] are

® Thanks to Anthony Garcia

100

115.2 0 0 0 0 0 0
0 15. 0 0 0 0 0
0 0 1.35 0 0 0 0
M]= 0 0 0 1.35 0 0 0
0 0 0 0 1.35 0 0
0 0 0 0 0 1.35 0
0 0 0 0 0 0 9.21
9400000 -9400000 0 0 0 0 0
9400000 24400000 -15000000 0 0 0 0
0 15000000 49000000 -34000000 0 0 0
Kl= 0 0 -34000000 68000000 -34000000 0 0
0 0 0 -34000000 68000000 -34000000 0
0 0 0 0 -34000000 106000000 -72000000
0 0 0 0 0 -72000000 72000000

Tip. Scaling the given matrix for a suitable factor may increase the computing accuracy of
several orders. In this case we divide the [K[matrix for a factor 10°. The eigenvalues are
proportionally scaled by the same factor. In fact, multiplying both terms of the equation (1)
for the same scaling factor, we have:

10°K ¢ =10° 0® M ¢

Ko=2AMo

where K'=10°K and o

[K1=

2= 10°0
9.4 -9.4 0 0 0 0 0
94 24 .4 -15 0 0 0
0 -15 49 -34 0 0
0 0 -34 68 -34 0 0
0 0 0 -34 68 -34 0
0 0 0 0 -34 106 -72
0 0 0 0 0 -72 72

the Cholesky factorization of M; it can be easily computed because it is a diagonal

matrix

L = [(m11)1/2 ’ (m22)1/2 . (m77)1/2]

[L]= Choleski Decomposition of_[J]=[=qrt[ii]]

I

L I e [e R e [e |

10,7334

1]

297492

I

L I e I e e

1]
1]

11613

1]

1]
0
I

1]

The auxiliary matrix is the inverse of L matrix; but also in this case, it is very easy to
compute the inverse, being

W=L" =[1/Ly, 1o, 1/Ls]

101

[WI[L]"

0.03317 1]
1 025152
1] 1]
a
1] 1]
1] 1]
I 1]

1]

1]
0.2E0EE

0

1]
1]
1]

1]
1]

1]
0.ZE0EE
1]

1]

1]

1] 1] 1]

1] 1] 1]

1] 1] 1]

0 0 0
02E0EE 1] 1]

1] 056066 1]

1] 1] 0.324951

Now we compute the matrix [D]=[W][K'][W]" by the function M_PROD
Note that, being [W] diagonal, is [W]' = [W]

[O]=[wk]

0086 | -0.2202
S02E0E | 15443
0 -3.2478

1] 1]

1] 1]

1] 1]

I I

1]
-i24Te
36,2963
-26.185

1]

1]

I

1] 1] 1] 1]

1] 1] 1] 1]
-20.185 0 0 a0
A0.3704 | 26126 1] 1]
-20185 | B0.3V04 | 250185 1]

1] -26185 | TRA1EE | 2043

I I 20419 | FRIThS

Applying the Jacoby algorithm or, even better, the QL algorithm, to the symmetric
tridiagonal matrix [D], we get all its real eigenvalues. Multiplying them for the factor
108, we have finally the eigenvalues of the given torsion system

Eigennvalues by Jacobi method Eigenvalues
0 0 0 0 0 0 0 0
0 | 129553 0 0 0 o 0 1285533 38
0 0 wzzzal 0 0 0 0 0222839.63
0 0 0 | TedE2E 0 o 0 THEZEEEIT
0 0 0 0 | aFro0E @ 0 2770078771
0 0 0 0 0 | wE | o 101033475.2
0 0 0 0 0 o | 02777 2777E20792
03395 tllz ;g;: UE?E:::[EW] Er;gf Jagnu';iur;mhun guuu 0431 The eigenvectors of [D] may be
03234 03351 -0.2073 00204 00582 00042 03338 computeq by the fjacopy algorithm
00953 00742 05536 04581 06483 01283 047849 or by the inverse iteration
00363 -00045 05338 06916 00286 03305 02064 Here we have used the function
00363 -00530 04026 -0.2035 0EEZT 05362 0.236 ; ;
00363 01573 0.0420) -04969 03043 07482 02542 MatEigenvector_Jacobi
0.2505 -04324 -03562 041522 -0.2082 00639 06885
s e Moo s N e, Pl the [vd] matrix for the
00823 02001 00521 00051 0047 0000 00366 ayXIIIary [W] matrix we have the
00829 00633 04764 03843 -0B6E0) 0008 01540 eigenvectors of the given system
00823 -00033 05163 05952 00247 02845 010776
00823 00715 03465 01751 05704 04615 01333
00823 00354 00361 -04277 02623 06433 02138
00828 00623 -0N74) 00502 -D0BEE 00540 02269
Mormalized Eigenvestors (V2] That can be normalized as we like
03780 -0.0451 00005 00000 0.0000 0.0000 -0.0887 . .
03780 OG04 -O0EEE 0000 00774 00012 0.2 by the function MatNormalize
03780 02033 05396 04628 06617 -01303 03399
03780 00124 0E497 0BA3E 00292 03344 03521
03780 02281 04361 02055 0GTE4 05424 04399
03780 -04320 00455 050200 03M 07563 04829
03780 05178 01477 00533 00814 -0.0535 05007

102

Linear regression

Recalls

Generally, the multivariate linear regression function is:
y=a,+ax +a,x,+..a,x,

Where:

[610, a, az...am]

Is the coefficients vector of regression, which can be found by the following procedure
Make the following variables substitution:

X,=x;,—x fori=1l.m
Y=y-y

Where the right values are the average of samples y and x:

y= ;Zk Vi
1
i~ ;Zk Xik
After that, the system can be writing as:
X X\, a, Y,
Yoo o X la] |1,
That is, in compact form:
[X]-a=Y

We solve this singular system with SVD method, obtaining the following 3 matrices

d, 0 0
(x)=[v)[p)-IVT =[U) | [VT

mm

103

Taking the inverse of the diagonal matrix D, that is trivial because:

D] - l/d,; =i=j
0 = i#]

The system solution is:
a=[r]-[DI"[U] b

The final constant terms can be obtained by the following formulas
a,=Y - a,X,
i=l1
Let's see how to use the regression formulas
Linear Regression models

Linear model: aota1 x1t+az x2

Example - assume to have to find the bivariate linear function f (x4, x2) that better

approximate the following table

The function (model) is
y x1 x2
548.8 0.1 10
558.85 0.2 10.25
580.15] 0.3 10.75 f(x1,x2) = ao + al xl + az x2
601.45 0.4 11.25
622.75 0.5 11.75
644.05 0.6 12.25 We use the linear regression to find the
665.35 0.7 12.75 coefficients ag, a4, az
686.65 0.8 13.25
674.2 0.9 13 Arrange the table data as in the following
673 1 13 worksheet
671.8 1.1 13
445.6 1.2 8 Select the range where you want to paste the
421.9 1.3 75 coefficients, For example the range F7:F9
398.2 1.4 7
3745 15 6.5

104

Al B lc | Db | E|E|G
1] File Modfica Visuslizza Inserisci Formato Strumenti Dati Fipestra 2 1 |Linear regression with 2 variables
DEES SRY tRBEEC o--- &= &34 0 2
Arial -8 ~| G C S = 5 % o0 8 3% | EE i 3 Vv %1 X2

[k8 = 4 545.5 0.4 10
I A B ?2 EI)I E F G H ! 5] 55585 0z 10.25

inear regression with 2 variables
5 B 56015 03 10,75
al y “ ° 7 501.45 04 11.25 a0 =
4 [88] 10 8 52275 0s 1175 al =
5] 55885 02 1025
6 sa0is 03 1078 9 544.05 06 12.25 az =
7| o145 04 125 10| 66535 07 12,75
8 62275 05 1175 1 1
T 50605 Tl D 586 .65 08 13.25
10| eesas 07 1278 12 674.2 0a 13
11| eeess 08| 1325 13 E73 1 13
12 B74.2 09 13
15 = 5 o 14 £71.5 141 13
4 e i1 3 15 445 6 1.2 g
]g sss 12 S 16 421.9 13 75
TARNE Y] 14 ; 17 398.2 14 7
18] aras 15 B85 158 374.5 15 6.5
19 I

Now open the function wizard with %

and insert the REGRL function

- Mo Ll o, sy F7 | ={=REGRL(A4:A18 B4:C18)}
%) D Mot¥ia Weskza fremsa Fometn Srmers Qs Fomta 1
5 2 & -@. A B © D E F
. . O-®-A-.
i sotns S e SRR ARG 1 |Linear regression with 2 variables
DS eRT> 5C U o] sREGR AR e . 5
1 Linsar regression with 7 vaslables
3 v X1 X2
4 5488 0.4 10
- 5 558.85 0.2 10.25
o= 5 530.15 0.3 10.75
'__"' ; 7 B01.45 0.4 11.25 al = 100
£ i 8| 62275 05 1175 al = -12
i - £44.05 06 1225 a2= 45
i | prrymry 10 ess.3s 07 1278
3 ettt 11| 63665 08 1335
| e ~ 7 12 B74.2 09 13
5 (5] spaoteminmo EE‘;} Ao 13 573 1 13
) 14 5718 1.1 13
. 15 445 6 1.2 &
Remember: give the CTRL+SHIFT+ENTER sequence to 16 4218 13 75
enter this function 17 30582 14 7
18 3745 15 65

The solution is ap= 100, a4 = -12 , a,= 45, giving the regression function:

f(x,x,)=100-12x, +45 x,

Polynomial model: act+a1 x+az x2 +as x3

Example: assume to have to find the 3 degree polynomial that better approximate the
following table

y X The function (model) is

19.531 0.1

18.3:: 0.513 f(xX)=a,+a x+a, x* +ax’
22.625 1.5
30 2
41.875 25
59 3
82.125 35
112) 4
149.375 4.5
195 5

Copy the above table in a worksheet and add two other column x? and x°

105

The new values are compute by the x column; now select the range G5:G8 and insert
the REGRL function, giving the correct parameter: y = range A4:A14 and x =B4:D14

G5 ﬂ = I=REGRL{A4 AT4 B4:D143}
A B C D] E F G H | J

;12 Polynomial regression with one variable f(‘\)z a _’_”1 x +(!2 3,-2 + (1’3.‘\'3
3 v A w2 w3
4 19.531 0.1 0m 0.001
b 18.375 04 0.25 0125 al = 20
6 19 1 1 1 al = -5
[22 E25 15 225 3375 a2 = 3
] 30 2 4 g al= 1
] 41 875 25 625 15 625
10 59 3 q 27
11 52125 348 1225 42875
12 T 2 T = |{=REGRL(A4:A14,EM:DMJ} |
13 149375 45 2025 91125
14 195 5| & 25| & 125
15
16
17 =H142 =B14%
15 B1443
19

Polynomial regression for one variable can be made in a more compact way with the
function REGRP. This function computes by itself the power of x and you do not need
this job by hand.

Let's see how to solve the previous example with REGRP

A, B C D E F £}

1 |Polynomial regression with one variable Saving time and space is
% FOO = ag ey x+ayxt +apc clear. It will be even more
> ¥ X evident for higher degree
19531 0.1 ;
olynomial
5 158375 ns al = 20 poly
6 19 1 al = 5
7 22525 15 a2 = 3
3 30 2 a3= 1
9 41 575 25
10 59 3
11| 82125 35
12 112 4 (=REGRF(3,A4:A14,B4:B14)}
13| 149.375 45
14 195 5

106

Two variables polynomial model: aot+ai1 x+az y + as xy + as x2+ as y2

Example: assume to have to find the 2" degree bivariate (x, y) polynomial that better

approximate the following table

f(x,y)=aqa, +a1x+a2y+a3xy+a4x2 +a5y2

Having five parameters: ag, a1, ay, a3, as, as

Linear model with fixed intercept: k x

First of all, we easily
calculate the variables:

Xy,XZ,yz

putting them in the
adjacent columns D, E, F

Then we can calculate the
unknown parameters with
linear regression.

Note that, in this case we have put
the results in a horizontal vector.
REGRL can have both outputs:
horizontal or vertical vector

f(x, y) x y The function (model) that we find is
1338.09 13.5 0.2
1342.41 10.5 1.4
1351.14 7.5 23
1407.91 12 4.9
1503.51 124 8.5
1442.41 -1.5 3.4
1507.54 -4.5 3.3

A | B | ¢ | b | E F
1 Multipolynomial regression
2
3 f{xy) X v v w2 yhz2
4 | 133309 13.5 0.2 27 18228 0.04
5 | 13424 10.5 1.4 147 11025 196
B | 135114 75 23 17.25 56.25 529
7| 1407 91 12 49 55.4 144 24.M
8 | 150351 12.4 55 1054 15376 7225
9 | 14424 15 3.4 -5 225 11 56
10 1507 54 45 33| 1485 2025 10,89
11
12 al al a2 aj ad a5
13] 1450 22 A3 2 1 1]
14 /‘1
15 = : :
16 |{—REGRL[MA1D,EE:1.F1D]|}
17

Sometime we have to fix or even eliminate (fix to 0) the intercept value of a regression

mod

el

Example: A test of a gas-barometer has given the following experimental result. Find

the barometer constant k=P /T (mbar/ °K)

T(°K) | P (mbar)
273 1101.2)
278 1112.3
283 1141.2)
288 1159
293 1178.1
298 1197.2)
303 1221.3

P=kT

The function model that we find is

This model implies that for T=0 = P=0

107

413 |{=REGRL(B4:E10,44:410 FALSE)}

402 |{=REGRL(B4:B10,44:410 TRUE)}

A, B
S P=kT
3 | T} [P {mbar)
4 273 1101 2
g 278 11123
5 283 1141 2
7 288 1159
g 293 11781
g 298 1197 2
10 303 1225
11

al al
-30.09
.00
k= 4.02

Using the linear regression with free intercept we find a coefficient k = 4.13 but we
note also a spurious constant terms not negligible (a0 = -30)

Using the linear regression with fixed intercept to zero, we have a coefficient k = 4.02
that it is more close to the original, not perturbed, model (k = 4)

108

Non linear regression - Transformable linear models

When investigating the relationship between two variables, we usually make
experimental observations to take paired values of the variables (x;, y;). We might then
ask ourselves what mathematically formula best describes the relationships (if any).
As seen in the previous section, the technique used is the least square linear
regression.

But many times the model that we must chose is intrinsically not linear. Exponential,
logarithmic and rational model are the most common (exponential decay, pollution,
etc.).

Quasi linear model
Same simple nonlinear model can be converted into linear model by variables
transformation.

e Exponential y = yge ™
e Logarithmic y = bgtb4In(x)
e Rational y = (bg+ by)’
e Power y=ax"”

Transformable linear models have the advantages that they can be treated with the
known linear regression formulas. This technique, however, is only possible for the
simplest of nonlinear model.

There is another important drawback that we must point out. The models obtained by
transformation are only an approximation of the non-linear least squares model. We
explain better this concept, not much explained by many authors. After that we have
transformed a nonlinear model into a linear one, we apply the linear regression
formulas to get the unknown parameters, for example (a; ,a;). We calculate the sum
of squared residual.

Ssr = Z(yi —f(xl.,al,az))z

Even if we have calculated (a4 ,a;) with the linear Least Square regression method is
the ssr true the least? The answer is in generally negative. In other words, it could be
other different couple of parameter (a; ,a,) that minimized ssr. It is not guaranteed that
the parameters given by linear regression are the best. In the following examples we
show this trap.

Exponential curve fit: yoe kx
The model, having two parameter y, and k, is Y=Y et

Taking the logarithm of both sides, we have

In(y)=1In(y, &) = In(y)=In(y,)+kr

Setting the new variable z = In(y), the equation became linear in x and z, with the
parameters z, and k.

z=In(y) = z=z,+kx

Yo = exp(z,)

109

The original parameter yo can be found by the simple formula

Reassuming, to calculate an exponential regression of data set (x;, yi), we have to
made:

1. Convert the data set (x;, y;) into a new data set (x;, z)) , where z;= Ln(y))
2. Apply the linear regression to find z, and k

3. Convert the zj into yg by the formula y, = exp(zo)

Let's see with an example. The data set is in the following table

t y An experimental test has given the table at the left.
0.1 7.9 We search the exponential decay model
0.2 7.1
0.3 55 f(t) = yo exp (kt)
0.5 4.1 Parameters to determine are: y, and k

1 1.3

1.5 0.6

3 0.3

The worksheet below show the results and the formulas used. The arrangement
should be clear: we have computed the "z" column; then, we have performed the
linear regression of (x, z) with LINEST built-in function, finding "k" and "z,". With the
EXP function we have computed the "y," parameter

Then we have calculated the estimated values of the column "f;", and the value of
residues "error f;". At the bottom, we have computed the standard deviation of the
residues for estimating the standard error.

A, B C D E F B H I J
1 t v z 1 error 1 12 error f2
2 0.1 79 |,20663 17301 | 816873 4 -0.2573 ‘,_[=(EIZ-F2] I
3 0 : 1 9601 16245 | B.7032 '\a'aeak
4 M/ 1.?04/ 0E412 | 54881 | 00119 M|=E1 SERPICHEAZ) I
g ns FE| 1 4147 02737 | 36788 | 04212
E | PERM4ENPECHA) byt 51057 | nsos7 | 13534 0053
7 15 f oaifz | 11588 | -05588 | 04979 | 010
g 3 10 | 04193 | 010689 | 00248 | 02752
9 STD 11 STD T2
10 [=STDEVP(EZES) | n.909az 023883 ¢ =STDEVP(G2:GE) |
1; |{=LINESTECE:CB,.&2:.&8)}
13 k z0 yi
14 parameterforfl | 1194 | 1933 | 5953 ¢—|=ExXPiD14) |
15 parameter for 12 = 10

As we see the exponential parameters found by linear regression are:

k Yo Standard error
-1.194 6.953 0.91

Adjacent to the previous one we have repeat the computing of the error standard for
another regression "f2" obtained with another parameters couple: k = -2, yo = 10
Note that this couple is not given by linear regression; we say that we have known
these value by another nonlinear method, a topic out of the subject of this document.

110

k Yo Standard error
-2 10 0.24

As we can see, the standard error is quite lower than the one given by the linear
regression. So we see that there is another couple of parameter - differently from the
ones given by linear regression, that are better from the point of view of the least
squares criterion.

This can also be seen, at the first sight, by the following graph

N
o

uy
—f1

O =~ N W » 01 O N © ©
I

The curve obtained by the linearized regression f; is not sure the best fit for the original
data set

From the above example a question raises: when can we use this linearized method?
The answer is: it depends by the data set. If we have a data set with many equispaced
samples and with a low level of noise, the linearized method gives result sufficiently
close to the best regression.

Let's repeat the exponential regression with this data set

t y For this data set, we can obtain the
0.1 8 following parameter more close to the
0.3 5.4 best model
0.6 3

1 1.3
1.5 0.5 k 20 y0

2 02 -2.041 | 2323 | 10.204

3 0.02

The better approximation it is evident in the following graph

11

10

9 —f2

8 .y

7

6 | —f1

5 |

4

3

2

14

0 ‘ ‘ ‘ T \ —
0 0.5 1 1.5 2 25 3 35

As we can see the curve obtained by linear regression fits much better the given data
set.

Logarithmic curve fit: bot+b1In(x)

The model, having two parameter by and by, is y =b, +b/1n(x)
Substituting: t=Ln(x) we have t=In(x) = y=b,+bt
Thus the original parameters by and b remain unchanged.

Reassuming, to calculate the logarithmic regression of data set (x;, yi), we have to
made:

1. Convert the data set (x;, y;) into a new data set (t;, y;) , where t; = Ln(x;)

2. Apply the linear regression to find bg , by

Let's see with an example. The data set is in the following table

t y An experimental test has given the table at the left.
13 2.83 We search the logarithmic curve for best fitting

1.6 5.98

5 8.81 f(x) =bg + b Ln(x)

25 10.33 Parameters to determine are: by and b

3 12.35

4 15.19

5 16.68

The worksheet below show the results and the formulas used. We have computed the
"t" column; then, we have performed the linear regression of (t, y) with the LINEST
built-in function, finding "by" and "b+". Then we have calculated the estimated values in
the column "f;", and the value of residues "error f;". At the bottom, we have computed
the standard deviation of the residues for estimating the standard error.

We have made the same for two other parameter by = 1 and b, = 10.

We can observe that, in this case, the linear regression has produced a true best-fit
solution

112

A, B C 0] E F € H I J

X v t | 1 emorfl| 2 erorf2

1
2 1.3 -0.543 3624 0734 § [SE2F2)
3 1.6 0205 | 5700 '\man\
4 2 0754 7931 0879 T,
=F0F1 5+FCH SHLN A2
g 25 0052 | 10163 | 0467 |$ $15+8C3 (A2) I
B 3 0232 | 11986 | 0364
7 4 0163 | 14863 | 0327
g 5 0593 | 17094 | 0414
=(B2-D2
g =) 1 STD f1 STDf2
10 |=STDE\-’F‘(E2:EB) I_.. 05091 05107 -»—|=STDEVP(GE:GB) I
11
12 {=LINEST(CZCB AZ AR} |
13 b1 ho
14 parameter for f1 ! 1009 1.032
15 parameter for 12 10 1

The graph below confirms the best fit

20
18 | —f2

16 - "y

14 1 ——1f1
12
10 -

o N O
]

Rational curve fit: (bot+b1 x)1

The model, having two parameter by and b4, is y= ; lb
+b, x
Substituting: z=1/y we have o
1
—=b,+bx = z=b,+b x
y

Thus the original parameters by and b; remain unchanged.
Reassuming, to calculate the rational regression of data set (x;, yi), we have to made:

3. Convert the data set (x;, yi) into a new data set (x;, z) , where z;= 1/y;

4. Apply the linear regression to find bg , by

Let's see with an example. Two data sets are in the following tables. Find the best fit
for linear rational models

113

X y X y An experimental test has given

1.3 0.66 1.3 0.57 the table at the left.

1.6 0.58 1.6 0.49 We search the rational curve for

2 0.49 2 0.51 best fitting

25 0.32 2.5 0.34 _ -

3 033 3 0.32 f(x) = (bo + by x)

4 0.24 4 0.19 Parameters to determine are: bg

5 0.18 5 0.11 and by

A, B C] E F B

1 X v Z 1 error f1 f2 errorf2 [The workshegt
2 13 066 1521 | 0698 | 004 | OBE7 | -0.009 arrangement is
3 16 053 1718 | osea | 0013 | 0556 | 0026 similar to the
1 2 0.49 2032 | 0456 0036 | 0455 0038 previous one.
5| 25 032 | 3407 | 0365 0043 | 0370 0048 Only the column
B 3 033 | 302 | 0305 0026 | 0313 0018 z", where we have
7 4 024 | 4242 | 0228 0007 | 023 | -0.002 compute the
a 5 013 e ssa0 | 0183 0 -0004 | 0192 0 -0013 '”Ve1r/se
g STDf1 STDf2 z=1ly
10 0.0287 0.0265 , Is changed
11
12
13 I hi
14 parameter for f1 1.088 0018
15 parameter for f2 1 0z
1=

Repeating the rational regression for the two tables we have found the parameters

b1 b0
1st table 1.08 0.018
2nd table 1.878 -1.465
_ 1.2
! —f2
1 4
0.8 1 "y
—_— 0.8 -
06 | f1
0.6 -
0.4 -
= 0.4
0.2 - 02 |
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6

As we can see, the first example approximates much better then the second one. Note
also that in the second left plot, data set has a larger random noise

Power curve fit: a x*

The model, having two parameter by and by, is y=ax

Taking the logarithm of both sides, we have

114

In(y)=In(ax*) = In(y)=In(a)+aln(x)

Setting the new variables z = Ln(y) , t=Ln (x) and setting zo = Ln (a) the equation
became linear in t and z, with the parameters z, and o .

z=z,+at
The original parameters a can be computed by: a = exp(zo)

Reassuming, to calculate the logarithmic regression of data set (x;, yi), we have to
made:

1. Convert the data set (x;, y;) into a new data set (t;, z), where t;=Ln (x)) , z;=Ln
(yi)
2. Apply the linear regression to find «, zo

3. Calculate the original parameter a = exp(zo)

Let's see with an example. Two data sets are in the following tables. Find the best fit
for the power models

X y x y An experimental test has given
1.3 1.79 13 173 the tables at the left.

1.6 1.30 16 162 We search the power curve for
2 1.16 2 112 best fitting

2.5 1.06 25 0.84 — 4 WO

3 1.04 3 0.97 f(x) =ax

4 0.80 4 0.75 Parameters to determine are:
5 0.60 5 0.75 aand a

A, B C 0] E F € H

1 X ') t z T1 error 1 T2 error f2
2 13 174 0262 | 0533 | 1664 0127 1 GE4 0127
3 16 130 0470 | 0266 | 1440 | -0135 1433 | -0134
4 2 116 0633 | 0145 | 1233 | -0076 123 0075
g 25 106 0816 | 0057 | 1055 0.003 1.053 0.006
5 3 104 1099 | 0037 | 04929 0109 0927 REE
7 4 00 1336 | -0217 | 0761 0.044 0758 0.047
g 5 060 1609 _e-0511 |, 0651 0051 0645 | -0.048
g -’ STD 1 STD 2
=LMCAS) =L MBS = %

10 snces) | [Ees) | [-sestahescets | 0.0809 0.0838
11 ; ;

{=LINEST(DZ:DE, C2:CE)
17| <]
13 Yy @ 0 a
14 parameterforf1 | 0597 | 0692 | 199771 }— 1o B3 |
15 |parameter for f2 07 2

Repeating the power regression for the two tables we have found the parameters

04 a
1st table -0.697 1.997
2nd table 1.878 -1.465

115

25
—f2
2 |
.y
15 —1]
N
1 .\-.\.\.\
05
0 ‘
0 1 2 3 4 5

—f2
.y
—f1

We can note the relative high insensibility to the random perturbation of this kind of
regression. In fact the power regression is one of the robust and reliable methods.

116

Interpolation

Recalls

Given a set of values of an unknown function y; = f(x;) calculates at N points x4, X, ...
XN, We want to estimate the value f(x) at an arbitrary point x , being x1 < x < Xy

This process of estimating the outcomes between the sampled data points is called
interpolation.

The idea is that the points lie on an underlying

but unknown curve. The problem is to be able |?°

to estimate the values of the curve at any 5 ?

position between the known points. R

Of course, we cannot calculate directly the 15 | : .
f(x). For example the points f(x;) might result :

from physical experimental measurements or 11 .

from long, heavy calculation. .

In many engineering applications, data 05

sampled are usually discrete and the analytic 0 ‘ £ ‘
expression for f(x) is not always well known. 0 1 2 3

Usually we can only decide the time and the
method of the sampling: so the xi points are often equispaced. Sometime the points
may be random.

Many interpolation methods exist to solve this diffuse and basic problem: linear,
polynomial, trigonometric, rational, Hermite, spline, continue fraction, Pade,
Chebychef, Bezier, Spline, regression, piecewise, etc. Many of them are suitable for a
special kind of data. The scope of this section is limited to some common interpolation
methods: the linear and polynomial interpolation.

We have to point out an important concept. Interpolation is related to, but distinct from,
the function modeling (or function approximation, or fitting) that consist of finding an
easy, approximate model to have a better understanding of the physical phenomenon,
and a more analytically controllable function fitting the field data. This task was
explained and developed in the previous chapter about “linear regression”

In interpolation problems, on the contrary, we do not cure of the model. We are only
focused to obtain the most accurate function value using only the given points data
set.

Many people confuse these concepts, - interpolation and approximation — because
they use the same algorithms.

Why to interpolate?

Many different problems can take advantage from the power of interpolation methods.
The most common is the so called sub tabulation problem. It happens when we want

117

to generate a larger table of function values (x;, y;) starting from an accurate but more
limited table. The interpolation line should pass between the original points (knots).
This is a typical problem of function plotting when values are calculated by computer

simulation programs.

An important task is the inverse of sub tabulation: the data smoothing or data mop-up.
It comes when we have many sample points affected by a considerable error noise
and we want to obtain a table with less, but more accurate values. The interpolation
line does not cross the given points. This situation is very common in many
engineering applications where data came from experimental measurements

Other problem is the data regularization; sometime is not possible to obtain a regular
equispaced grid of points. This happens for example in random algorithms like the
Monte Carlo method. In this case we can use the interpolation method to extract from
the random table another table with equispaced points.

Usually these task, the data smoothing and regularization, may happen at the same

time.

Task

Source Data points

Scope

Sub tabulation

Few accurate points (knots)

To obtain more extra points
between the knots (finer table)

Smoothing

Many approximate points

To obtain more “clean” points
following a more smooth curve

Regularization

Random x; points

Equispaced x; points

Piecewise polynomial interpolation schema

Explained the scope of the interpolation, it remains to decide how to interpolate. Well,
we have to say that there are lots of different interpolation schemes. Many of them,
very ingenious, are dedicated to particular class of given points. It is out of the scope
of this document to illustrate all of them.
We shell discuss here a popular interpolation method called piecewise polynomial
interpolation, a method sufficiently general to approximate large classes of function
that we may find in practice. It is also conceptually simple and didactically important.

Subset selection

From the given set of points we choose a subset of
points nearest the one that we want to evaluate.

l

Subset

Polynomial fitting

We compute the polynomial regression over the chosen

subset of points

Polynomial curve

A 4

Subset

Evaluation

We evaluate the polynomial at the target point.
This is the interpolation value

y = p(x)

118

The second step is common with the modeling problem, but we still emphasized the
fact that here the polynomial is used only to evaluate the y value at point x. Changing
the point x, also the subset and, consequently, the polynomial may change. So there
would be many polynomial formulas covering the entire range of points. This is the
main difference from the modeling problem where the goal is to find the simplest

unique formula that approximate all range of points.

Linear Interpolation
This is the simplest interpolation. It assumes a straight line between 2 knots to

calculate the value y for x between

It is always possible to find two knots satisfying the
above constrain.
The interpolation value is obtained by the linear formula

Or, as well, by the normalized formula

y(x):yb_ya
X, —X

a

X, <x< X,

(x—x,)+,

@)=y, t+y,-(1-1)

1
1
1
1
1
X

Xa Xb

In spite of its moderate accuracy this method has several advantages that make it still
very popular

Parabolic Interpolation

We want to find the value y at given x = 2.2
between a set of given points (x;, y;). If we
want to interpolate the value y with a parabolic
polynomial (2™ degree) we need at least 3
points. Let’s begin to choose the 3 points
nearest to the point x, (Xa, Xp, X¢), having the
corresponding function values (ya, Yo, Yc). The
points a, b, ¢ are called knots of the

interpolation

Xa Xb X Xc

Knots X y
a 1.5 1.37791
b 2 1.69285
c 2.5 1.83318

Note that the point x = 2.2 must be nearest to the central knots x. It assures the
highest accuracy of interpolation. This condition is expressed by the following formula

X +Xx
a b<x

(1a)

If the above condition is not true, we simply shift the points selection to right or left till
the conditions is satisfied. Apart for the first and the last segment, we can always

choose a subset that satisfies this relation

Now we have to compute the parabolic polynomial crossing the 3 knots. There are
many formulas and methods to build such polynomial. We choose here the method of
the linear system because it is simple and has more didactic diffusion.
The equations of the linear system can be built by the generic parabolic polynomial
formula

y=a,+a x+a, x’ (2a)
Substituting the values of the knots, we have 3 linear equations in the unknown (ay, as,
a,) coefficients, which can be rearranged in matrix form

2
ya:a0+a1xa+a2xa :

1 xa 'xa aO ya
2 2

Yy =0yt a, X, +a, x, = 1 x, x |-|a|=|y
) 2

y.=a,+a x. +a,x, ox. x 4, Ye

The system matrix is the Wandermonde’s matrix that can be easily obtained by the
function Mat_Vandermonde and the solution can be find with the SYSLIN function

After we have found the polynomial coefficients, we can compute the interpolate value
y at the point x = 2.2, by the formula (2a)
A possible solution arrangement is shown in the following worksheet

Al e | ¢l o] E | F] 6 | H [1 |
10
— =hat_Wandermonde(A13 4815
11 |Knots |{ = (j}l
12 % ¥ Yandermonde matrix parabolic coeff.
13 1.5[1.3773 1 1.5 2.25 al = -0.514E
14 2| 1.53285 1 2 4 al = | 1852176
15 25183318 1 25 625 a2= | -0.34923
16
17 %= 22 [{=SSLINID1 ZF15,E13:615)} |
18 = | 176994
9 ! e[S 3+ 41 T4 S BT 722]
20 | y= 176994le _ [Siterpolste(E17,A13E152) |
21

Of course we have shown in detail all the process to explain better the interpolation
method but, in Matrix.xla it exists the function Interpolate(x, knots, [degree]) that just
performs this calculus giving the same result.

This function came in handy overall when we have to interpolate many values over a
larger set of knots..

Example. Sub tabulate the following table for with step Ax = 0.1 between 0.5 and 3.5

Knots 25
X Yy 2]
0.5|0.73008 o * o
1 1 1.5 1 IS IS
1.5 [1.37791 1] .
2| 1.69285 .
2.5 |1.83318 0.5 1
3| 1.74207 0 ‘ ‘ ‘
3.5 1.41966 0 1 2 3 4

120

Al B | ¢ | 0| E |

A0 |Knots subtabulation

31 % ¥ % ¥
32 os|o73008 0s[[073008
33 1 1 06| 077542
34| 15[1377 07| 0.&2509
35| 2| 1 6o285 05| 0.&ra07
36| z25|183m8 09| 0as73a
37 3| 1.74207 1 1
g 3.5 1.41966 1.0l 1.06694
39 2| 143821
M| [i=nterpolste(D32 062, 232:035,2); | 12343
1 T = 1.30736

The interpolate(x, knots, degree) function
accepts also a vector of value x. In this
case it returns a vector of values y(x) and
must be insert with the
CTRL+SHIFT+ENTER sequence.

This is the fast way to perform the sub-
tabulation.

Note from the graph how good is the interpolation fitting

2.5

2 |
1.5

1 4
0.5 4 subtabulation

¢ Kbnots
0 : ‘
0 1 2 3

How many polynomials have been necessary to sub tabulate the above function? Well
we can say that the function Interpolate build one polynomial for any consecutive set
of 3 knots; in the case we need 5 parabolic polynomials to cover the interpolation

range.

The coefficients of the interpolation polynomials can be computed by the REGRP

function

In the following example we compute and plot the parabolic polynomials with the first
and the last 3-set of knots

A B | | o | E | F G
1 |Knots
2 ® ¥ A Al Bix)
3 0s| 073008 0.56814 0.73008] -0.11541
4 1 1 0.21589 1| o0.71869
5 15| 137791 0.21597 137791 1.32148
5 2| 1m9za5 B 18635| 1.69209
7 25| 18338 -1.16082 245768 183318
g 3| 174207 236211 315355 174207
q 35| 141966 046261 le 3.9694| 81 41966
10 ="
11| |{(-RECRF(2,B3B5 A% AS)} | [=3D53+3054°A5+5D55°25°2 |

i

1% |{=REGRP(2;E|?:E|9;A?:A9)} | [=3D$7+3DFE £+F0FFLI2 |

The 1 parabolic
polynomial A(x) cross the
knots at x =[0.5, 1, 1.5]

The 2™ parabolic
polynomial B(x) cross the
knots at x = [2.5, 3, 31.5]

121

25 From the graph we understand why we need
many parabolas in order to obtain a good
2 interpolation accuracy for all points of the
range.
15 | The first parabola A(x) is used to interpolate

the points nearest the 1% and 2" knots. At
11 the end, we use the parabola B(x) to better

¢y interpolate points nearest the 6" an 7™ knots.
05 —B(x) Incidentally we note that B(x) works good also
——AX) for points near the 5™ and 4" knots, but it is all
0 / ; ‘ : unable to approximate the points near the first
0 1 2 3 4 knots. On the other hand, the first parabola

works badly at the end of the range.

Cubic interpolation
We may choose a cubic interpolation polynomial providing the necessary 4 knots
subset.

The abscissa x should lie between the 2" and
the 3™ knots. We have to choose the 4 knots
subset that satisfies to the relation

X, <Xx< X,

H
]
]
H
H
H
H
H
3

Apart for the first and the last segment, we can
always choose a subset that satisfies this
relation

xf————=>

Xa Xb Xd

Cubic interpolation is often chosen for its high accuracy.

The function interpolate(x, knots, [degree]) has a third optional parameter for setting
the degree of the interpolation polynomial: if omitted, the function assumes the default
degree = 2 (parabolic interpolation).

Example. Repeat the interpolation at the point x = 2.2 with linear, parabolic and cubic
polynomial for the above set of knots. Compare the error with the exact expect value
given by the formula

f(x)=1+1In(x)-sin(4x/5)

Comparing the error with the exact value for x = 2.2, we note that the cubic error is
lower about 3 times than the parabolic and about 20 times than the linear interpolation
one

A |l B |c| b | E |F] 6 |
1 |Knots
2 ® y %= 22
3 1.5 1.3779093 y (linear) = 1.748983297 |=Interpolate(E2; A3B6,1;1)
4 21 6928516 Y (parabalic)= 1.7B9936871 |=IrterpolatelE2; 85861, 2
5 2518331808 y [cubic) = 1773113055 |=Interpolate(E2; A3.86,1;3)
B 317420722 v (expected) = | 1 774386500
7 error (inear) = 0.02540
a errar (parak.) = 0.00445
=) error (cukic) = 000127
1M

122

It is evident from this example the superiority of the highest degree polynomial. But is
this always true? Unfortunately not. Often, high degree does not means high
interpolation accuracy. Let’s read the following subject.

Instability of higher interpolation degree

For the piecewise interpolation method there is any conceptual limit in the degree of
the interpolation polynomial. We can choose any degree we like providing the
necessary knots subset; for 2 degree we need 3 knots; for 3 degree, 4 knots; and so
on.

Generally: Degree = Knots — 1

On the other hand, we’ll see that there are also many other things suggesting not to
exceed with the degree interpolation.

One first reason concerns the Wandermonde’s matrix, which, increasing the
dimension, is getting sharply hill-conditioned. Its solution becomes error affected that
vanish the accuracy of the final result. But there is a deeper, hidden aspect:
interpolation with high degree polynomials is getting unstable, especially for knots
perturbed by noise, error measurements, etc.

Example. Perform the sub tabulation from 0 to 2.5 with step Ax = 0.1 of the following
table with polynomial of 3™ degree and 5" degree

This problem can be easily solved by the interpolate function. The plots of

Knots the interpolation curves are shown in the following graph.
X y As we can see, the highest polynomial have larger oscillations between
0| 0.0887048 the knots, especially at the boundaries of the range.
0.5 0.11539 On the contrary, the cubic polynomial seems to follow better the trend of
12| 0.0659381 the given samples, avoiding the instability over the critical segments [0,
15| 0121927 9.5] and [2, 2.5]. Clea_ry, there are good reasons to keep low the
18! 0.0513004 interpolation p(_)lynomlal d_eg_ree . _
Generally, cubic polynomial is the best compromise
25| 0.1306148

Both polynomials

03 i | seem to agree at
the middle of the
0.2 range
This suggest that
014 e the best accuracy
should be at the
0 ; : : ‘ ‘ middle of the
0.5 1 15 25 interpolation range.

On the contrary, the

0.1 4 interpolate values
¢ Knots near the range
0.2 - interp (5) limits [0, 2.5] may
interp (3) be largely
03 inaccurate

Note that in the above example the knots are not equispaced. This condition takes to
increase the oscillating phenomena for high interpolation degree. On the contrary, a
uniform equispaced grid reduces the instability.

123

There is another case where it is convenient to keep low the interpolation degree:
when the knots show abrupt changes of direction, due to same non-linearity of the
system under observation. In this case, high degree interpolations may shown
unwanted overshooting, or dumped peaks.

Example. Assume to have sampled in the range [1, 2.7] with the step At = 0.1 the
following function.

, <ty Where:

t) = = =
f() e_k(t_to) : t 2 t‘o to 1.4 5 k 5

Let’s perform the sub-tabulation with At = 0.2 and with linear and parabolic
interpolation

X knots Linear 12
interpolation.

! ! 1 ¢ & knots
1.1 1])
12] The fit appears 0.8 - y interp

' very good. 06 |
1.3 1 The interpolate
1.4 1 0.4 -

: curve seems to
1.5| 0.606531 follow the 0.2
1.6 | 0.367879 original trend of 0
17| 0.223130 the points 1
1.8| 0.135335 .
1.9| 0.082085 Parabolic

- - interpolation

2| 0.049787
21| 0.030197 In this case we
2.2| 0.018316 note a peak
23| 0.011109 near the corner
24| 0006738 atx=14
2.5| 0.004087
2.6| 0.002479
2.7| 0.001503

The parabolic interpolation shows a behavior that is not correlated to the original
points. It is only due to the degree of the interpolate polynomial. As we can see,
surprisingly, the best fitting, in that case, is obtained with the simplest linear
interpolation. We can repeat, if we like, the interpolation with several different degree.
The peak appears more dumped, but the result is substantially the same: the linear
interpolation is better.

Example. Sample the following function in the range [0, 1.7] with Ax = 0.1 and plot the
parabolic interpolation.

_ X
1+10-(x—0.8)°

y

124

] The graph shows
interp (pieces) the interpolation
0.9 - fitting for every
08 | & knots knot.
—— Poli. (knots)
0.7 - We have add also
06 the global
regression with 6"
0.5 -
degree
0.4 | polynomial
03 | (light blu line)
0.2 - As we can see
o4 | the piecewise
parabolic
0 w intepolation is
0 0.5 1 1.5 2 much more
accurate.

Piecewise polynomial regression schema

Many times the knots of the interpolation are affected by errors due to different
sources: noise, measurement, errors calculus, etc. Often the samples occurs in
random, not equispaced, grid. In this situation the exact interpolation shown in the
above paragraphs may give bad results. The solution could be the polynomial
regression with low-moderate degree, over many points. We hope to extract few
accurate points (not worse, at least!) from a set of many approximate points.

This method follows the same schema of the piecewise exact interpolation except that
the subset of points chosen are more then the exact Degree+1. This leads to an over
determined linear system that can be solved with the Least Squares method.

For example, for a parabolic interpolation (that require at least 3 points) we can
choose the nearest 6, or 10 points. The number varies from case to case, and it is
correlated to the error of to the points: great errors involve large subset of points and
vice versa.

One important consequence is that the interpolation curve does not cross for any
points anymore. But this is no more a problem because in this case we have assumed
that every point is affected by error. Conceptually speaking there is no difference from
the interpolate points and original points; they are all error prone.

The function Interpolate(x, knots, [degree], [points]) has a 4™ optional parameter
setting the number of the points to choose for the regression. If omitted, the function
assumes the number equal to the polynomial degree plus one (exact interpolation)

Example. Assume to have obtained 100 samples from a measurement instrument
affected by an evident noise. We plot the parabolic interpolate function obtained with 3
points (exact interpolation), 8 points and 40 points.

125

Row data points

Degree = 2, Points = 3 (exact interpolation)

1.2 1.2
A
" o7, "
) ’\
0.8 -~ - 0.8
“
. ™
0.6 o , 06 1
‘~0 0.
>)
0.4 o . 0.4 1
> LA
o.”.'. “
0.2 40 Rad 02]
0 : : 0 : : :
0 1 2 4 0 1 2 3 4
Degree = 2, Points = 8 Degree = 2, Points = 40
1.2 1.2
11 11
0.8 0.8 |
0.6 - 0.6 -
04 0.4 -
0.2 4 0.2
0 . 0 .
0 1 2 4 0 1 2 3 4
As we can see the “smoothing” effect is quite evident. We put in evidence that a larger
number of points give a more smoothing curve but, on the other hand, shows the
tendency to lose the original trend. We have to choose a right compromise.
Let’s see the following example
Example. Assume to have obtained 100 samples from a measurement instrument
affected by an evident noise. We plot the parabolic interpolate function obtained with 3
points (exact interpolation), 8 points and 40 points.
Row data points Degree = 2, Points = 8
1.2 1.2
1 1 .'..~.' - ss"~o°..~¢.o‘ 14 Vol o :. / :.
0.8 | oo 0.8 | D sl
00.0 .
.”o 4 Yy 4 M
0.6 0.6 1 4
04 1 R 04
02{ & 02 |
0 huet" ‘ ‘ 0 ‘ ‘ ‘
0 1 2 3 4 5 0 2 3 4 5

126

Degree = 2, Points = 20 Degree = 2, Points = 50

1.2 1.2
14 e e o w2l 1
“ 0"‘ oy g *t o o
0.8 | g 0.8
0.6 /. 0.6 -
0.4 0.4
0.2] 0.2
0 : 0
0 1 2 3 4 5 0 1 2 3 4 5

As we can see the 2" piecewise regression with 20 points seems the best
compromise. The 1% curve is not smoothing enough, while the 3™ curve is very smooth
but near the origin it shows a different trend respect to the original points The 2™
curve follow better the local “knee” effect near the origin of the original data.

Piecewise regression versus global regression

We call “global regression” when we perform a polynomial regression using all points
of the dataset, to distinguish from the “piecewise regression” that occurs when we use
only a subset of the given points. As discussed in the previous sections, the two
processes have different scopes even if they use the same method.

The scope of the first one is to understand which mathematical law (model) has
generated the points of the dataset. We want to find a function that best approximates
globally the given points.

The scope of the second regression is to find the best approximate curve that locally
follow the given points, with the highest accuracy possible, no matter which formula is
used.

The difference from global and local fitting is shown in the following example

: : This scattering plot was
19 | : ; extracted from an experimental
: : S i dataset. The points are heavy
7 . :;+L+ * S perturbed by random noise.
7 : >, ! H
++F ++1
S A e We are interested in two
1.5 ey problems:
tnd : : :
1.3 - +#) : : 1) find a smooth curve that best
*&I: follow the trend of the points.
11 o : :
s* : ; ; 2) find a closed simplest
09 : 5 5 formula (if it exists) that best fit
D : : : the points
+ 0+ . . '
07 £ Z
0.5 1 15 2 2.5 3 35

127

The read light continue curve
is the parabola, obtained from
the global regression, which
equation is shown at the top
of the graph. This is our math
“model” of the experimental
points

The tick dark curve is
obtained by the parabolic
regression taking the points
falling in the strip between 1.5
and 2.5. In this range, this
curve follows better the hazy
trend of the points

128

129

References

(1]

(2]

(3]

(4]

(3]

[6]

[7]

(8]
(9]

[10]
(1]

[12]

[13]

"LAPACK -- Linear Algebra PACKage" 3.0, Update: May 31, 2000

"Numerical Analysis" F. Sheid, McGraw-Hill Book Company, New-York, 1968
"Numerical Recipes in FORTRAN 77- The Art of Scientific Computing" - 1986-1992
by Cambridge University Press. Programs Copyright (C) 1986-1992 by Numerical

Recipes Software

"Nonlinear regression”, Gordon K. Smyth, John Wiley & Sons, 2002, Vol. 3, pp 1405-
1411

"Linear Algebra" vol 2 of Handbook for Automatic Computation, Wilkinson, Martin,
and Peterson, 1971

“Linear Algebra” Jim Hefferon, Saint Michael's College, Colchester (Vermont), July
2001.

“Linear Algebra - Answers to Exercises” Jim Hefferon, Saint Michael’s College,
Colchester (Vermont), July 2001

“Calcolo Numerico” Giovanni Gheri, Universita degli Studi di Pisa, 2002

“Introduction to the Singular Value Decomposition” by Todd Will, UW-La Crosse,
University of Wisconsin, 1999

“Calcul matriciel et équation linéaires”, Jean Debord, Limoges Cedex, 2003
“Leontief Input-Output Modelling” Addison-Wesley, Pearson Education

“Computational Linear Algebra with Models”, Gareth Williams, (Boston: Allyn and
Bacon, 1978), pp. 123-127.

“Scalar, Vectors & Matrices”, J. Walt Oler, Texas Teach University, 1980

130

131

Analytical Index

A I
ABS; 16 incomplete matrix; 36
AVERAGE; 16 integer matrices; 10

interpolation; 117

C inverse matrix; 28
characteristic polynomial; 57 J
Cholesky; 97
cofactor; 26 Jacobi; 69; 70
companion; 78
complete matrix; 36 L

complex; 21; 23
complex eigenvalue; 64
Cubic interpolation; 122

least square; 109
Linear Interpolation; 119
linear system; 6
LINEST; 110; 112

D logarithmic; 109
deflation; 82
determinant; 24 M
dominant; 80; 81 M_BAB: 68
E M_DET; 6; 16
M_ID; 61
eigenvalue; 20; 57 M_MAT_C; 67
eigenvector; 57 M_POW; 60
eigenversor; 63 M_PROD; 42
Exponential; 109 Mat_Cholesky; 97
Mat_LU; 40
F Mat_QR; 73
format: 23 Mat_QR iter; 73
Full Pivoting; 10 MatCharPoly; 58
full-pivot; 17 MatCmpn; 78
' MatEigenvalue_Jacobi; 97
MatEigenvalue_QR; 75
G MatEigenvalues_pow; 83
Gauss_Jorda_step; 17 MatEigenvector_Jacobi; 97
Gauss-Jordan; 7; 15 MatEigenvector_pow; 83
generalized eigenproblem; 96 MatExtract; 27
MathCharPoly; 96
H MatMopUp; 72
) . MatPerm; 53
h!II- conqmoned; 25 MatRndEigSym; 88
h|II-cond|t|oned; 18 MDETERM; 16; 25
homogeneous linear system; 32 minors; 26
Householder; 87 MINVERSE; 15; 16; 28
mop-up; 118

132

N
Newton-Girard; 58

0]

orthogonal; 71
orthonormal; 71

P

Parabolic Interpolation; 119
Parametric form; 33

partial pivoting; 8
partial-pivot; 17
permutations; 53

piecewise polynomial interpolation; 118
Pivoting; 8

Poly_Roots; 58; 96
Poly_Roots_QR; 78
Powers; 80

ProdScal; 72

Q
QR; 69; 73

R

Rank; 34

rational; 109
reduction; 82
REGRL; 105

REGRP; 106
regularization; 118
ROUCHE-CAPELLI; 36
ROUND; 16

Round-off error; 29
round-off errors; 15

S

scalar product; 71
sensitivity; 19
similarity; 87
Simultaneous Linear Systems; 28
smoothing; 118
stability; 19

sub tabulation; 117
Subspace; 34
SVD; 20

SYSLIN; 6; 15; 16
SYSLIN_C; 21; 22
SYSLIN_T; 39

T

Tartaglia's matrices; 30
tridiagonal; 90
Tridiagonal; 88

U
uniform; 88; 90
unstable; 18

133

%

Noi

© 2005, by Foxes Team
ITALY
leovip@libero.it

5. Edition
5 Printing: June. 2005

134

